JPH02232556A - Formation of gas detection electrode for co2 sensor - Google Patents

Formation of gas detection electrode for co2 sensor

Info

Publication number
JPH02232556A
JPH02232556A JP1054723A JP5472389A JPH02232556A JP H02232556 A JPH02232556 A JP H02232556A JP 1054723 A JP1054723 A JP 1054723A JP 5472389 A JP5472389 A JP 5472389A JP H02232556 A JPH02232556 A JP H02232556A
Authority
JP
Japan
Prior art keywords
gas
sensor
detection electrode
gas detection
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1054723A
Other languages
Japanese (ja)
Inventor
Shinichiro Tanaka
伸一郎 田中
Takahiro Nakagawa
中川 隆洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP1054723A priority Critical patent/JPH02232556A/en
Publication of JPH02232556A publication Critical patent/JPH02232556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To realize a longer life of a CO2 sensor along with a higher reliability by forming a CO2 gas detection electrode in a CO2 gas atmosphere or in an atmosphere containing a CO2 gas from 400 to 950 deg.C. CONSTITUTION:Au metal is used as electrode material, mixed with Na2CO3 at a rate of 50% or below by weight and baked on a solid electrolyte in a CO2 gas atmosphere or in an atmosphere containing CO2 gas at a high temperature from 400 to 950 deg.C to form a CO2 gas detection electrode. The Au metal as electrode material usually employs an Au paste which comprises a gold fine powder, an organic dispersant, an organic binder and an organic viscosity adjusting agent. Then, the Au paste is applied on the solid electrolyte and after dried, it is baked in the CO2 gas atmosphere or at the atmosphere containing CO2. An electrode paste may be used as produced by mixing the Au fine powder with other gas detection pole material and an organic binder to be adjusted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,固体TLM.質を用いた空気中のCOよガス
濃度を測定するためのCO■ガスセンサの電極の形成方
法に関する.本発明のCO2ガスセンサは、環境制御,
農畜産,illIi酵工業プロセスを始めとする多数の
分野のCO■ガス濃度測定、あるいはCOt濃度制御に
使用することができる.[従来の技術] 固体電解質を用いたC02センサの原理は既に公知(丸
山S:第10回固体イオニクス討論会講演要旨集69.
1983)であり、その構成は,Go,,os Au 
I Naxcoa l l固体電解質lAu,O・・・
・・・・・・・・・・ (1)で示される,この時のこ
のセンサの起電力は,?=Eo− (RT/2F)I 
n ( aNa,O ・Pcoz/ aNa,C○,) ここでE0は定数,Rは気体定数.Tは絶対温度,Fは
ファラデ一定数,aNa,OはN a,Oの活量,aN
a.,Go.はNa2CO3の活量. pco2はco
2ガス分圧である* a N a z C O 3は通
常1と考えられ,従ってTが一定の条件では起電力はP
 cotのみの関数となり,従って起電力よりCO■ガ
ス濃度(分圧)を求めることができる. 従来の技術として,以下のガス検知電極構成を有するc
o.センサが提唱されている.(1)fl!極反応を円
滑に進め、安定した起電力を得るためにNa,CO3を
含浸した多孔質電極をガス検知g1極として用いる. (2)Na,CO3とf!!極材料であるAuペースト
を混合,塗布し,空気中で焼成し,ガス検知電極とする
. しかしながら、上記のいずれの場合も長期安定性という
面では問題があり、比較的短期間で起電力,感度共に大
きく低下することが明らかとなり,長期間に渡り安定に
作動するCO2センサが望まれている. [発明が解決しようとする問題点コ 上記したように、従来のCO2センサは比較的短期間に
起電力、感度が共に低下するという問題点があり,これ
が本発明が解決しようとする問題点である. [問題を解決するための手段] 本発明は,上記のような事情に鑑みてなされたものであ
る.その手段とするところは、以下に記述する3項目で
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state TLM. This paper relates to a method of forming an electrode for a CO2 gas sensor for measuring the concentration of CO2 gas in the air. The CO2 gas sensor of the present invention provides environmental control,
It can be used for CO2 gas concentration measurement or COt concentration control in many fields including agriculture and livestock production and illIi fermentation industrial processes. [Prior art] The principle of a CO2 sensor using a solid electrolyte is already known (S. Maruyama: Abstracts of the 10th Solid State Ionics Symposium, 69.
1983), whose structure is Go,,os Au
I Naxcoa l l Solid electrolyte l Au, O...
What is the electromotive force of this sensor at this time, shown in (1)? =Eo- (RT/2F)I
n (aNa,O ・Pcoz/aNa,C○,) where E0 is a constant and R is a gas constant. T is absolute temperature, F is Faraday constant, aNa, O is activity of Na, O, aN
a. , Go. is the activity of Na2CO3. pco2 is co
The partial pressure of the two gases * a N a z C O 3 is usually considered to be 1, so under the condition that T is constant, the electromotive force is P
It is a function only of cot, so the CO■ gas concentration (partial pressure) can be determined from the electromotive force. As a conventional technology, c has the following gas detection electrode configuration.
o. A sensor has been proposed. (1)fl! A porous electrode impregnated with Na and CO3 is used as the gas detection g1 electrode to facilitate the polar reaction and obtain a stable electromotive force. (2) Na, CO3 and f! ! The electrode material, Au paste, is mixed, applied, and fired in air to form a gas detection electrode. However, in all of the above cases, there is a problem in terms of long-term stability, and it has become clear that both electromotive force and sensitivity decrease significantly in a relatively short period of time.Therefore, a CO2 sensor that operates stably over a long period of time is desired. There is. [Problems to be Solved by the Invention] As mentioned above, conventional CO2 sensors have the problem that both the electromotive force and the sensitivity decrease in a relatively short period of time, and this is the problem to be solved by the present invention. be. [Means for solving the problem] The present invention has been made in view of the above circumstances. The means for this are the three items described below.

(1)電極材料としてAu金灰を用いNa2CO3を重
量%で50%以下の割合で混合して400℃以上950
℃以下の高温のco2ガス雰囲気、もしくはCO2ガス
を含む雰囲気中において固体電解質上に焼き付け、CO
2ガス検知電極を形成する. (2)電極材料としてAu金属を使いNa2CO,を重
量%で50%以下、固体電解質微粉末を30%以下の範
囲で混合したC02ガス検知極材料を,?00℃以上9
50℃以下の高温のCO■ガス雰囲気,もしくはCO2
ガスを含む雰囲気において固体電解買上に焼き付け、C
O■ガス検知電極を形成する. (3)?!極材料としてAu金属を用いNaオCO3を
重量%で50%以下、850℃以下の温度においてAu
,Na,C○,,固体電解質と化合物を形成しないセラ
ミック微粉末を重量%で30%以下の範囲で混合した検
知極構成材料を,400℃以上950℃以下の高温のC
O■ガス雰囲気,もしくはCO■ガスを含む雰囲気にお
いて固体電解質上に焼き付け,CO■ガス検知電極を形
成する.また、これらのセンサの電極材料としてのAu
金3は、通常、金の微粉末と有機性分散剤,有機系結着
剤及び有機系の粘度調整剤よりなる市販のAuペースト
が用いられる.本発明の実施はAuペーストを固体電解
質上に塗布し,乾燥後C08ガス雰囲気,あるいはCO
■を含む雰囲気中で焼成することにより行なわれるが、
Au微粉末と他のガス検知極材料及び有機バインダーを
混合して調整した電極ペーストを使用しても良レ為.[
作用] 第1図にCOオセンサの感ガス素子概念図を示す.固体
電解質板上(1)の片面に基準電極(2)として多孔¥
IAuf!極が設けてあり,相対する面にCへガス検知
電極(3)が本発明の方法によって形成されている.こ
のCO2感ガス素子を第2図に示すとおり平板状ヒータ
ー(5)と接着し,ステム(7)に取り付けてCO2セ
ンサとする.第1図、第2図に示すC○2センサを素子
温度500℃で作動させ,CO2センサの起電力(以後
EMFと記す)及びCO,ガス濃度を500ppmから
5000ppmに変化させた際の起電力変化量(以後Δ
EMFと記す)の経時特性を長期間に渡って測定した.
その結果として,EMFの経時特性を第3図に、ΔEM
Fの経時特性を第4図に示す.また、本発明の処理を施
していない従来のCO2センサと比較するため,従来品
のデータも合わせて示した. 第3図及び第4図中の(a)は、従来の多孔質?ug極
にNa2CO3を含浸させたガス検知極を有するCO■
センサの経時特性である.又、(b)は、Au粉末とN
a,Go,粉末の混合物を固体電解質上に焼き付けて形
成したガス検知極を有するCO2センサの経時特性であ
る。(2)COC)は、本発明の処理を施したCOよセ
ンサの経時特性である.第3図より.EMFは(a)の
CO■センサにおいては10日目より会、激に低下し、
(b)のCO■センサにおいては20日目より急激に低
下している.更に急激な低下が生じる時点までにおいて
もEMFが徐々に低下していることが観察される.しか
し,本発明の処理を施したCOよセンサは、第3図(C
)に見られる様に、ほぼ初期のEMFの値を50日間維
持している.現時点では50日までのデータしかないが
、更にこの特性を維持できる可能性がある. 次に第4図よりΔEMFの経時特性を比較すると.EM
Fの経時特性と同様な傾向を示している.以上の結果よ
り,本発明の処理を施したCO,センサのEMF及びΔ
EMFの経時特性は大幅に改浮されていることが確認で
きる。(2)COa)(b)(c)のCO2センサを単
純には比較できないが、急激にEMF及びΔEMFが低
下した点を寿命とすると,本発明の処理を施すことによ
り寿命が少なくとも2.5倍、ないしは5倍以上に伸ば
すことが可能となった. 〔実施例] ガス検出電極用ペーストはAuペーストを1.0g、固
体電解質の微粉末(400メッシュ以下)とNa2CO
,(400メッシュ以下)をそれぞれ0.04g,0.
27g,更に有機バインダーを20μl、メノウ乳鉢に
て混合し、得た。
(1) Using Au gold ash as an electrode material and mixing Na2CO3 at a ratio of 50% or less by weight,
Baked onto a solid electrolyte in a high-temperature CO2 gas atmosphere below ℃ or in an atmosphere containing CO2 gas, CO
2. Form the gas detection electrode. (2) A CO2 gas sensing electrode material that uses Au metal as an electrode material and mixes Na2CO in a weight percentage of 50% or less and solid electrolyte fine powder in a range of 30% or less. 00℃ or higher9
High temperature CO gas atmosphere below 50℃ or CO2
Baked on solid electrolyte in atmosphere containing gas, C
O ■ Form a gas detection electrode. (3)? ! Au metal is used as the electrode material, NaOCO3 is 50% by weight or less, and Au is used at a temperature of 850°C or less.
C
It is baked onto a solid electrolyte in an O■ gas atmosphere or an atmosphere containing CO■ gas to form a CO■ gas sensing electrode. In addition, Au as the electrode material of these sensors
As gold 3, a commercially available Au paste consisting of fine gold powder, an organic dispersant, an organic binder, and an organic viscosity modifier is usually used. In the implementation of the present invention, Au paste is applied onto a solid electrolyte, and after drying, it is placed in a CO8 gas atmosphere or a CO2 gas atmosphere.
This is done by firing in an atmosphere containing
Even if an electrode paste prepared by mixing Au fine powder, other gas detection electrode materials, and an organic binder was used, good results were obtained. [
Function] Figure 1 shows a conceptual diagram of the gas-sensitive element of the CO sensor. A porous hole is placed on one side of the solid electrolyte plate (1) as a reference electrode (2).
IAuf! A gas detection electrode (3) is formed on the opposing surface by the method of the present invention. As shown in Figure 2, this CO2 gas sensing element is glued to a flat heater (5) and attached to the stem (7) to form a CO2 sensor. The C○2 sensor shown in Figures 1 and 2 is operated at an element temperature of 500°C, and the electromotive force (hereinafter referred to as EMF) of the CO2 sensor and the electromotive force when the CO and gas concentration are changed from 500 ppm to 5000 ppm. Amount of change (hereinafter Δ
The temporal characteristics of EMF (hereinafter referred to as EMF) were measured over a long period of time.
As a result, the EMF characteristics over time are shown in Figure 3, and ΔEM
Figure 4 shows the temporal characteristics of F. In addition, data for the conventional product is also shown for comparison with a conventional CO2 sensor that has not undergone the treatment of the present invention. Is (a) in Figures 3 and 4 the conventional porous type? CO■ with a gas detection electrode in which the ug electrode is impregnated with Na2CO3
These are the characteristics of the sensor over time. In addition, (b) shows Au powder and N
This is the aging characteristic of a CO2 sensor having a gas detection electrode formed by baking a mixture of a, Go, and powder onto a solid electrolyte. (2) COC) is the temporal characteristic of the CO sensor treated according to the present invention. From Figure 3. The EMF in the CO sensor in (a) decreased sharply from the 10th day.
The CO■ sensor in (b) shows a sharp decline from the 20th day. It is observed that the EMF gradually decreases even up to the point where a more rapid decrease occurs. However, the CO sensor treated according to the present invention is shown in Fig. 3 (C
), the initial EMF value was maintained for 50 days. At present, we only have data up to 50 days, but there is a possibility that this characteristic can be maintained even further. Next, let's compare the temporal characteristics of ΔEMF from Figure 4. E.M.
It shows a similar trend to the temporal characteristics of F. From the above results, the EMF and Δ
It can be confirmed that the EMF characteristics over time have been significantly improved. (2) COa) It is not possible to simply compare the CO2 sensors in (b) and (c), but if the life is defined as the point at which EMF and ΔEMF suddenly decrease, then by applying the treatment of the present invention, the life will be at least 2.5 It is now possible to increase the size by 5 times or more than 5 times. [Example] The paste for gas detection electrode is made of 1.0g of Au paste, solid electrolyte fine powder (400 mesh or less) and Na2CO.
, (400 mesh or less), 0.04g and 0.04g, respectively.
27 g and 20 μl of an organic binder were mixed in an agate mortar to obtain.

上記ペーストを固体電解質に塗布し、120℃で10分
間乾燥させた後,CO,雰囲気中において700℃で1
0分間焼成した。このようにして製作した素子をヒータ
ー(5)に接着し、ヒーター温度をモニターするため熱
な対(6)を付け,ステム(7)に固定した.このよう
゜にして構成したCO.ガスセンサを500℃に加熱し
,長期間に渡ってEMF及びΔEMF (CO.濃度5
00?pm−5000ppmでのEMF変化量)を測定
した.その結果を第3図,第4図に示す.第3図はセン
サのEMFの長期間に渡る経時変化状況を示したもので
ある。
The above paste was applied to a solid electrolyte, dried at 120°C for 10 minutes, and then heated at 700°C for 1 hour in a CO atmosphere.
Baked for 0 minutes. The element thus produced was glued to the heater (5), a thermal couple (6) was attached to monitor the heater temperature, and it was fixed to the stem (7). The CO. configured in this manner. The gas sensor is heated to 500℃ and the EMF and ΔEMF (CO. concentration 5
00? The amount of EMF change at pm-5000 ppm) was measured. The results are shown in Figures 3 and 4. FIG. 3 shows how the EMF of the sensor changes over a long period of time.

第4図はΔEMFの経時変化状況を示したものである. [本発明の効果] 本発明の処理を施したCO2センサは、睨時点において
少なくとも50日間はEMF及び△EMFともに経時変
化をほとんど生じないことが判明した.尚、更に長期間
に渡ってこの性能を維持することが期待できる. このことより、従来のCO■センサと比較して、少なく
とも2.5倍ないし5倍以上の長寿命化を実現し,より
信頼性を向上させることに成功した.以上のことは.C
O2センサの工業的な実用化において非常に有意義であ
る.
Figure 4 shows the change in ΔEMF over time. [Effects of the Present Invention] It was found that the CO2 sensor subjected to the treatment of the present invention showed almost no change over time in both EMF and ΔEMF for at least 50 days at the time of use. Furthermore, it is expected that this performance will be maintained for an even longer period of time. As a result, we have succeeded in achieving a lifespan of at least 2.5 to 5 times longer than conventional CO2 sensors and further improving reliability. That's all. C
This is very significant in the industrial practical application of O2 sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC02センサ素子の概念図である.第2図はC
O2センサの概念図である.第3図はセンサ起電力の長
期特性である.第4図はセンサ変化量の長期特性である
.(1)・・・固体電解質チップ (2)・・・基準電極 (3)・・・ガス検知電極 (4)・ ・ ・Auリード線 (5)・・・ヒーター (6)・・・熱雷対 (7)・・・ステム
Figure 1 is a conceptual diagram of the C02 sensor element. Figure 2 is C
This is a conceptual diagram of an O2 sensor. Figure 3 shows the long-term characteristics of the sensor electromotive force. Figure 4 shows the long-term characteristics of sensor variation. (1)...Solid electrolyte chip (2)...Reference electrode (3)...Gas detection electrode (4)...Au lead wire (5)...Heater (6)...Heat lightning Pair (7)...Stem

Claims (4)

【特許請求の範囲】[Claims] (1)アルカリ金属イオン導電性固体電解質(以後、固
体電解質という)を用いたCO_2センサにおいてCO
_2ガス検知電極を400℃以上950℃以下のCO_
2ガス雰囲気もしくはCO_2ガスを含む雰囲気中で形
成することを特徴とするCO_2センサ。
(1) CO_2 sensor using an alkali metal ion conductive solid electrolyte (hereinafter referred to as solid electrolyte)
_2 Gas detection electrode with CO at 400°C or higher and 950°C or lower
A CO_2 sensor characterized by being formed in a two-gas atmosphere or an atmosphere containing CO_2 gas.
(2)CO_2ガス検知電極がAu金属と検知極物質で
あるNa_2CO_3よりなり、Na_2CO_3が重
量%で50%以下であることを特徴とする特許請求の範
囲第1項記載のCO_2センサ。
(2) The CO_2 sensor according to claim 1, wherein the CO_2 gas detection electrode is made of Au metal and Na_2CO_3 as a detection electrode material, and the content of Na_2CO_3 is 50% or less by weight.
(3)CO_2ガス検知電極がAu金属、Na_2CO
_3及びこれらとは非反応性である耐熱セラミック微粉
末よりなり、Na_2CO_3が重量%で50%以下、
且つ耐熱セラミック微粉末が重量%で30%以下の範囲
内であることを特徴とする特許請求の範囲第1項記載の
CO_2センサ。
(3) CO_2 gas detection electrode is Au metal, Na_2CO
_3 and these are made of non-reactive heat-resistant ceramic fine powder, Na_2CO_3 is 50% or less by weight,
The CO_2 sensor according to claim 1, wherein the heat-resistant ceramic fine powder is in a range of 30% or less by weight.
(4)CO_2ガス検知電極がAu金属、Na_2CO
_3及び固体電解質微粉末よりなり、Na_2CO_3
が重量%で50%以下且つ固体電解質が重量%で30%
以下の範囲内であることを特徴とする特許請求の範囲第
1項記載のCO_2センサ。
(4) CO_2 gas detection electrode is Au metal, Na_2CO
_3 and solid electrolyte fine powder, Na_2CO_3
is 50% or less by weight, and the solid electrolyte is 30% by weight.
The CO_2 sensor according to claim 1, characterized in that the CO_2 sensor is within the following range.
JP1054723A 1989-03-06 1989-03-06 Formation of gas detection electrode for co2 sensor Pending JPH02232556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054723A JPH02232556A (en) 1989-03-06 1989-03-06 Formation of gas detection electrode for co2 sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054723A JPH02232556A (en) 1989-03-06 1989-03-06 Formation of gas detection electrode for co2 sensor

Publications (1)

Publication Number Publication Date
JPH02232556A true JPH02232556A (en) 1990-09-14

Family

ID=12978721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054723A Pending JPH02232556A (en) 1989-03-06 1989-03-06 Formation of gas detection electrode for co2 sensor

Country Status (1)

Country Link
JP (1) JPH02232556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261596A (en) * 1991-06-14 1993-11-16 Matsushita Electric Industrial Co., Ltd. Air quality conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261596A (en) * 1991-06-14 1993-11-16 Matsushita Electric Industrial Co., Ltd. Air quality conditioning system

Similar Documents

Publication Publication Date Title
US4677415A (en) Ceramic humidity sensor
JPH05119015A (en) Carbon dioxide gas detection element
US4459577A (en) Gas sensor
JPH02232556A (en) Formation of gas detection electrode for co2 sensor
US4186071A (en) Process for producing oxygen gas sensor elements
JPH01213565A (en) Formation of electrode of gaseous co2 sensor
CN109211982A (en) A kind of high stable stannic oxide nanometer ceramics based carbon monoxide temperature sensor and preparation method thereof
JPH0418260B2 (en)
JPS62298755A (en) Solid battery measuring oxygen partial pressure and manufacture thereof
JP2707246B2 (en) Humidity sensor
JP3428155B2 (en) Gas sensor
JPH02232557A (en) Co2 sensor
JPH0434696B2 (en)
CN115436434A (en) Humidity sensor based on external electric field polarization bismuth ferrite and preparation method and application thereof
JPS59229802A (en) Moisture sensor
JPH0436340B2 (en)
US4232441A (en) Method for preparing rare earth or yttrium, transition metal oxide thermistors
JPS6250778B2 (en)
JPS6314483B2 (en)
JPH0915184A (en) Membrane humidity-sensitive element and production thereof
JPH04132653A (en) Humidity sensor element
JPS59231802A (en) Moisture sensor
JPS5853739B2 (en) Kanenseigaskenchisoshi
JPS60247901A (en) Moisture sensitive material
JPS628501A (en) Moisture sensor and manufacture thereof