JPH0222934Y2 - - Google Patents

Info

Publication number
JPH0222934Y2
JPH0222934Y2 JP1983084748U JP8474883U JPH0222934Y2 JP H0222934 Y2 JPH0222934 Y2 JP H0222934Y2 JP 1983084748 U JP1983084748 U JP 1983084748U JP 8474883 U JP8474883 U JP 8474883U JP H0222934 Y2 JPH0222934 Y2 JP H0222934Y2
Authority
JP
Japan
Prior art keywords
gas
flow path
fuel cell
distribution device
gas distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983084748U
Other languages
Japanese (ja)
Other versions
JPS59188680U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983084748U priority Critical patent/JPS59188680U/en
Publication of JPS59188680U publication Critical patent/JPS59188680U/en
Application granted granted Critical
Publication of JPH0222934Y2 publication Critical patent/JPH0222934Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【考案の詳細な説明】 この考案は、燃料電池のガス流通装置に関する
ものであり、とりわけ、電解質マトリクスを挾む
1対の電極と、一方の電極の背面に沿つて酸化剤
ガスを、他方の電極の背面に沿つて燃料ガスを流
通させるガス流路と、このガス流路の前後にガス
供給、排出のためのマニホールドを設けてなる燃
料電池のガス流通装置に関するものである。
[Detailed description of the invention] This invention relates to a gas distribution device for a fuel cell, and in particular includes a pair of electrodes sandwiching an electrolyte matrix, and an oxidizing gas flowing along the back surface of one electrode. The present invention relates to a gas distribution device for a fuel cell, which includes a gas flow path through which fuel gas flows along the back surface of an electrode, and manifolds for supplying and discharging gas before and after the gas flow path.

従来の燃料電池の単位電池は、通常、第1図に
示すように構成されていた。図において電解液を
含浸した電解質マトリクス1を電極2a,2bで
挾み、この電極2a,2bの背面に、酸化剤ガス
および燃料ガスをそれぞれ流通させるための流路
3を設けたセパレータ板4でなるものである。こ
の単位電池は複数段積層され、上記ガスの流路3
の前後に、ガス供給、排出のためのマニホールド
を設けて燃料電池を構成していた。かような構成
により、燃料電池に供給される酸化剤ガスおよび
燃料ガスはセパレータ板4に設けられた流路3を
流通する。このとき、酸化剤ガスおよび燃料ガス
の一部はそれぞれ電極2a,2bの背面を通過
し、電解質マトリクス1の部分で化学反応を起こ
し、電極2a,2bから電気エネルギが取り出さ
れる。反応ガス以外のガスおよび末反応ガスは流
路3の出口からマニホールドを経由して排出され
る。
A unit cell of a conventional fuel cell has usually been constructed as shown in FIG. In the figure, an electrolyte matrix 1 impregnated with an electrolytic solution is sandwiched between electrodes 2a and 2b, and a separator plate 4 is provided on the back side of the electrodes 2a and 2b with channels 3 for flowing oxidant gas and fuel gas, respectively. It is what it is. This unit battery is stacked in multiple stages, and the gas flow path 3
A fuel cell was constructed by installing manifolds for gas supply and exhaust before and after the fuel cell. With this configuration, the oxidant gas and fuel gas supplied to the fuel cell flow through the flow path 3 provided in the separator plate 4. At this time, a portion of the oxidant gas and the fuel gas pass through the back surfaces of the electrodes 2a and 2b, causing a chemical reaction in the electrolyte matrix 1, and electrical energy is extracted from the electrodes 2a and 2b. Gases other than the reaction gas and the end reaction gas are discharged from the outlet of the flow path 3 via the manifold.

しかし、従来のこの種の燃料電池においては、
第2図に示すように、反応ガス5は入口マニホー
ルド6から供給され、セパレータ板4に複数等間
隔に設けられた流路3の中を通過して出口マニホ
ールド7に至るのであるが、流路3を通過する際
にガスは勢記の化学反応によう流路3の上流側か
ら徐々に消費されるので、ガス流路に沿つて反応
ガス圧力が低下するとともに、ガス流速がガス流
路に沿つて低下するため、電極の反応面全体にわ
たつて均一な発電反応が行なわれるという欠点が
あつた。
However, in conventional fuel cells of this type,
As shown in FIG. 2, the reaction gas 5 is supplied from an inlet manifold 6, passes through a plurality of channels 3 provided at equal intervals in the separator plate 4, and reaches an outlet manifold 7. As the gas passes through the gas flow path 3, it is gradually consumed from the upstream side of the flow path 3 due to a chemical reaction, so the reaction gas pressure decreases along the gas flow path, and the gas flow rate increases along the gas flow path. This has the drawback that the power generation reaction is uniform over the entire reaction surface of the electrode.

かかる欠点を解消するものとして、出口側に行
ほど流路断面積を小さくしたガス流路を備えた燃
料電池が、特開昭57−208077号公報に開示されて
いるが、流路断面積の調整では均一な発電反応を
得るのに十分ではないという問題があつた。
To overcome this drawback, Japanese Patent Laid-Open No. 57-208077 discloses a fuel cell equipped with a gas flow passage whose cross-sectional area becomes smaller toward the outlet side. There was a problem that the adjustment was not sufficient to obtain a uniform power generation response.

この考案は。上記のような従来のものの欠点を
除去するためにあされたもので、反応ガス流路の
数をガスお流れ方向に沿つて定められた割合で減
少させることにより、ガス流路にわたつて均一な
ガス圧力およびガス流速を確保するようにしたも
ので、反応面全体にわたり均一な発電反応を行な
うことができる燃料電池のガス流通装置を提供す
ることを目的とするものである。
This idea is. This was developed in order to eliminate the drawbacks of the conventional method as described above, and by reducing the number of reaction gas flow paths at a fixed rate along the gas flow direction, it can be made uniform across the gas flow path. The object of the present invention is to provide a gas flow device for a fuel cell that can ensure a uniform gas pressure and gas flow rate, and can perform a uniform power generation reaction over the entire reaction surface.

以下、この考案の一実施例を図面について説明
する。第3図においてセパレータ板4に、主流路
3aと複数個の主流路3aを連通させる副流路3
bを主流路3aと直角方向に設ける。反応ガス5
は、それぞれガス入口マニホールド6a,6bか
ら流入しガス出口マニホールド7a,7bから流
出する。
An embodiment of this invention will be described below with reference to the drawings. In FIG. 3, a sub-channel 3 that communicates a main channel 3a with a plurality of main channels 3a is provided in a separator plate 4.
b is provided in a direction perpendicular to the main flow path 3a. Reaction gas 5
flows in from gas inlet manifolds 6a, 6b and flows out from gas outlet manifolds 7a, 7b, respectively.

セパレータ板4に設けられた主流路3aの数は
ガスの流れ方向に沿つて次第に減少するように、
副流路3bによつて順次下流へ合流するように構
成されており、このような2つの同一の流路パタ
ーン13a,13bを互いに逆向きに同一平面上
に形成してなるものである。
The number of main channels 3a provided in the separator plate 4 is arranged such that the number gradually decreases along the gas flow direction.
They are configured to sequentially merge downstream via the sub-flow path 3b, and are formed by forming two identical flow path patterns 13a and 13b in opposite directions on the same plane.

次に作用、効果について説明する。第3図に示
すように反応ガス5はガス入口マニホールド6
a,6bよりセパレータ板4の主流路3a、副流
路3bにそれぞれ供給される。反応ガスはこれら
の流路3a,3bを通過するうちに、電極および
電解質マトリクス(図示せず)を介して酸化剤ガ
スと燃料ガスとが化学反応を起こし、これにより
電極部から電気出力が取出される。そうして化学
反応に消費されるガスの量だけ流路3a,3bを
流れるガス量は順次減少する。ところで、主流路
3aの数はガスの流れ方向に沿つて、上記ガス量
の変化に応じて一定の割合で減少するように構成
されているので、ガスの圧力および流速を変化さ
せることなく、反応後のガスはガス出口マニホー
ルド7a,7bよりそれぞれ排出される。また、
このような2つの流路パターン13a,13bを
互いに逆向きに同一面内に形成しているので、反
応ガス5の流路入口部分の流路断面積は第2図に
示す単なる複数等間隔流路の場合に比べて大きく
することができ、この分だけ流路入口部分の流速
を下げることができ、ガスの圧力損失を低減でき
る。したがつて、反応面内のガス圧の変化量を少
なくでき、反応ガス間の差圧を均一化することが
できる。
Next, the action and effect will be explained. As shown in FIG.
It is supplied to the main flow path 3a and the sub flow path 3b of the separator plate 4 from a and 6b, respectively. While the reactant gas passes through these channels 3a and 3b, a chemical reaction occurs between the oxidant gas and the fuel gas through the electrodes and the electrolyte matrix (not shown), and as a result, electrical output is extracted from the electrode section. be done. In this way, the amount of gas flowing through the channels 3a and 3b is sequentially reduced by the amount of gas consumed in the chemical reaction. Incidentally, since the number of main channels 3a is configured to decrease at a constant rate along the gas flow direction according to the change in the gas amount, the reaction can be carried out without changing the gas pressure and flow rate. The latter gases are discharged from gas outlet manifolds 7a and 7b, respectively. Also,
Since these two flow path patterns 13a and 13b are formed in opposite directions in the same plane, the cross-sectional area of the flow path inlet portion of the reaction gas 5 is reduced to a simple plurality of equally spaced flows as shown in FIG. It can be made larger than in the case of a channel, and the flow velocity at the inlet portion of the channel can be reduced by that amount, thereby reducing gas pressure loss. Therefore, the amount of change in gas pressure within the reaction surface can be reduced, and the differential pressure between the reaction gases can be made uniform.

なお上記実施例では、ガスの流路を主流路3a
と副流路3bが直交するものについて示したが、
第4図に示すように主流路3aに対して副流路3
bを斜交させ、主流路3aが流れ方向に沿つて斜
め方向に分岐して減少する構成としてもよく、上
記実施例と同様の効果を奏する。また、上記実施
例ではセパレータ板4にガス流路を設けたものに
ついて示したが、ここのガス流路は電極2a,2
b自体の電解質マトリクス1に接していない背面
に形成してもよい。この場合セパレータ板4に流
路は不要となり、単なる平板セパレータ板で足り
る。
In the above embodiment, the gas flow path is the main flow path 3a.
Although the sub-channel 3b is orthogonal to the sub-channel 3b,
As shown in FIG. 4, the auxiliary flow path 3 is
b may be obliquely intersecting, and the main flow path 3a may be configured to branch diagonally and decrease along the flow direction, and the same effect as in the above embodiment can be achieved. Further, in the above embodiment, the separator plate 4 is provided with a gas flow path, but the gas flow path here is
It may be formed on the back surface of b itself that is not in contact with the electrolyte matrix 1. In this case, there is no need for a flow path in the separator plate 4, and a simple flat separator plate is sufficient.

以上のように、この考案によれば、反応ガスの
流路の数がガスの流れ方向に沿つて定められた割
合で減少する流路パターンを同一面内で互いに逆
向きに配置したので、反応ガスの圧力、流速およ
び反応ガス間の差圧が反応面全体にわたり均一に
なり、発電効率の高い燃料電池が得られる効果が
ある。
As described above, according to this invention, the flow path patterns in which the number of reaction gas flow paths decreases at a predetermined rate along the gas flow direction are arranged in opposite directions within the same plane. The pressure and flow rate of the gas and the differential pressure between the reactant gases are made uniform over the entire reaction surface, which has the effect of providing a fuel cell with high power generation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池の単位電池を示す分解
斜視図、第2図はそのガス流路を示す平面略図、
第3図はこの考案の一実施例の要部平面略図、第
4図はこの考案の他の実施例の要部平面略図であ
る。 1……電解質マトリクス、2a,2b……電
極、3a……主流路、3b……副流路、4……セ
パレータ板、5……反応ガス、6a,6b……ガ
ス入口マニホールド、7a,7b……ガス出口マ
ニホールド、13a,13b……流路パターン。
なお、各図中、同一符号は同一又は相当部分を示
す。
Fig. 1 is an exploded perspective view showing a unit cell of a conventional fuel cell, Fig. 2 is a schematic plan view showing its gas flow path,
FIG. 3 is a schematic plan view of a main part of one embodiment of this invention, and FIG. 4 is a schematic plan view of a main part of another embodiment of this invention. DESCRIPTION OF SYMBOLS 1... Electrolyte matrix, 2a, 2b... Electrode, 3a... Main channel, 3b... Sub-channel, 4... Separator plate, 5... Reaction gas, 6a, 6b... Gas inlet manifold, 7a, 7b ...Gas outlet manifold, 13a, 13b...Flow path pattern.
In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 電解質マトリクスを挟む1対の電極を、セパ
レータ板を介挿して複数段積層し、前記電極と
前記セパレータ板の接触面に沿つて酸化剤ガス
および燃料ガスの複数の流路を形成し、この流
路の前後に前記酸化剤ガスおよび前後燃料ガス
を供給、排出するためのガス入口マニホールド
およびガス出口マニホールドを配設してなる燃
料電池のガス流通装置において、ガスの流れ方
向の主流路とこの主流路に交差して前記主流路
の数をガスの流れ方向に沿つて一定の割合で減
少させる副流路からなる互いに同一の2つの流
路パターンが互いに逆向きに同一面内に形成さ
れてなることを特徴とする燃料電池のガス流通
装置。 (2) 流路パターンをセパレータ板に形成した実用
新案登録請求の範囲第1項記載の燃料電池のガ
ス流通装置。 (3) 流路パターンを電極に形成した実用新案登録
請求の範囲第1項記載の燃料電池のガス流通装
置。 (4) 主流路に直交する副流路を備えた実用新案登
録請求の範囲第1項記載の燃料電池のガス流通
装置。 (5) 主流路に斜交する副流路を備えた実用新案登
録請求の範囲第1項記載の燃料電池のガス流通
装置。
[Claims for Utility Model Registration] (1) A pair of electrodes sandwiching an electrolyte matrix are stacked in multiple stages with separator plates interposed, and oxidizing gas and fuel gas are distributed along the contact surface between the electrodes and the separator plate. In a gas distribution device for a fuel cell, the gas distribution device includes a gas inlet manifold and a gas outlet manifold for supplying and discharging the oxidizing gas and the fuel gas before and after the flow paths. , two mutually identical flow path patterns each consisting of a main flow path in the gas flow direction and a sub flow path that intersects this main flow path and reduces the number of the main flow paths at a constant rate along the gas flow direction. A gas distribution device for a fuel cell characterized by being formed in opposite directions in the same plane. (2) A gas distribution device for a fuel cell according to claim 1, wherein a flow path pattern is formed on a separator plate. (3) A gas distribution device for a fuel cell according to claim 1, wherein a flow path pattern is formed on an electrode. (4) A gas distribution device for a fuel cell according to claim 1, which is provided with a sub-flow path orthogonal to the main flow path. (5) A gas distribution device for a fuel cell according to claim 1, which is provided with a sub-flow path obliquely intersecting the main flow path.
JP1983084748U 1983-06-01 1983-06-01 Fuel cell gas distribution equipment Granted JPS59188680U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983084748U JPS59188680U (en) 1983-06-01 1983-06-01 Fuel cell gas distribution equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983084748U JPS59188680U (en) 1983-06-01 1983-06-01 Fuel cell gas distribution equipment

Publications (2)

Publication Number Publication Date
JPS59188680U JPS59188680U (en) 1984-12-14
JPH0222934Y2 true JPH0222934Y2 (en) 1990-06-21

Family

ID=30214717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983084748U Granted JPS59188680U (en) 1983-06-01 1983-06-01 Fuel cell gas distribution equipment

Country Status (1)

Country Link
JP (1) JPS59188680U (en)

Also Published As

Publication number Publication date
JPS59188680U (en) 1984-12-14

Similar Documents

Publication Publication Date Title
JP4700910B2 (en) Fuel cell flow field plate
US5998055A (en) Gas-passage plates of a fuel cell
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2000231929A (en) Fuel cell
US4686159A (en) Laminated layer type fuel cell
US6048634A (en) Fuel cell using water-soluble fuel
CA2403342C (en) Fuel cell stack
JPH1126007A (en) Fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JP2570771B2 (en) Fuel cell cooling method
JPH0992322A (en) Fuel cell stack
JPH0222934Y2 (en)
JP4717439B2 (en) Fuel cell
JPH0142935Y2 (en)
JPS6039773A (en) Layer-built fuel cell
JPS5830074A (en) Fuel cell
JPH09161828A (en) Fuel cell
WO2021014677A1 (en) Fuel cell stack
JP2982559B2 (en) Fuel cell
JPS6352751B2 (en)
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
JPH0238376Y2 (en)
JP2773134B2 (en) Fuel cell
JP2000164240A (en) Fuel cell
JPH0782874B2 (en) Fuel cell