JPH02227664A - Chromato-separation - Google Patents

Chromato-separation

Info

Publication number
JPH02227664A
JPH02227664A JP1047443A JP4744389A JPH02227664A JP H02227664 A JPH02227664 A JP H02227664A JP 1047443 A JP1047443 A JP 1047443A JP 4744389 A JP4744389 A JP 4744389A JP H02227664 A JPH02227664 A JP H02227664A
Authority
JP
Japan
Prior art keywords
component
components
adsorption
chromatogram
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1047443A
Other languages
Japanese (ja)
Other versions
JP2698649B2 (en
Inventor
Kazuyuki Akita
秋田 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1047443A priority Critical patent/JP2698649B2/en
Publication of JPH02227664A publication Critical patent/JPH02227664A/en
Application granted granted Critical
Publication of JP2698649B2 publication Critical patent/JP2698649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To estimate the chromatogram obtd. by loading plural components by estimating the adsorption equil. relation of plural component systems based on the adsorption parameter obtd. from a single component and applying this relation to chromato-model equation. CONSTITUTION:The adsorption equil. equation of the plural components is obtd. by applying it to the chromato-model (theoretical step model or material balance model) in the sepn. and refining method using liquid chromatography by introducing a sample (mixture composed of inorg. or org. materials) consisting of the plural components together with an eluant into a column packed with a packing material and separating and acquiring the respective components. The function to indicate the change of the concn. of the respective components in the column outlet with time is determined. The adsorption parameter intrinsic to the respective components obtd. from the chromatogram of the single component and the parameter relating to diffusion and material transfer are applied thereto and the elution behaviors of the respective components in loading of the plural components with an actual device are predicted only from the actually measured values relating to the respective single components in the sample. The operating conditions are determined in accordance therewith and the respective components in the multi-component mixture are accurately separated.

Description

【発明の詳細な説明】 [1[業上の利用分野] 本発明は、複数成分からなる試料を、溶離液とともに充
填剤を充填したカラムに導き、各成分を分離取得する液
体クロマトグラフィーによる分離・精製法に関する。
Detailed Description of the Invention [1 [Field of Industrial Application] The present invention relates to separation by liquid chromatography, in which a sample consisting of multiple components is introduced into a column packed with a packing material together with an eluent, and each component is separated and obtained.・Regarding purification methods.

τ従来技術および発明が屏決しようとする問題点】 液体クロマトグラフィーによる工業的分離・精製法は、
物理的、化学的性質が似通7ていて、他の方法では分離
困難なケースや、熱的に不安定な物質を扱うため、他の
方法を採用できないケース等を中心に、近年非常に多く
用いられるようになった。また、ポンプ、検出器などの
機器の発達により、より分離能力や処理能力の高い高速
、高圧の液体クロマトグラフィーも工業化されている。
τProblems to be resolved by the prior art and the invention] The industrial separation and purification method using liquid chromatography is
In recent years, there have been a large number of cases in which separation is difficult due to similar physical and chemical properties, or where other methods cannot be used due to the handling of thermally unstable substances. came to be used. Furthermore, with the development of pumps, detectors, and other equipment, high-speed, high-pressure liquid chromatography, which has higher separation and processing capabilities, has become industrialized.

このような分離・精製においては、操作条件などの設計
が、一般に次のような手順で行われている。
In such separation and purification, the design of operating conditions etc. is generally carried out in the following steps.

(11)分析カラムにおいて、最適の分離モード、溶離
液組成を探索する。
(11) Search for the optimal separation mode and eluent composition for the analytical column.

(b)試験規模(セミ分取カラム)において、試料負荷
量、流速などの最適条件を決定する。
(b) Determine optimal conditions such as sample loading amount and flow rate on the test scale (semi-preparative column).

(cl実装置において、実際に試料を゛負荷して、操作
条件の微調整を行ない最終操作条件を決定する。
(In the actual CL device, the sample is actually loaded, the operating conditions are finely adjusted, and the final operating conditions are determined.

しかし、このような操作条件の設計法においては、最適
負荷量(所定の純度が得られる最大負荷翼)や実際の分
取における分画位置の決定の際に、その都度溶出液の詳
細な分画試験を行ない、分析カラムなどによって、それ
ぞれの画分の組成をチエツクしなければならない。なぜ
ならば、工業的分離・精製においては、精製の時間効率
および充填層の利用効率を上げて経済的に有利な条件に
するため、各成分のピークが重なるような状態において
操作するのが一般的であり、そのような場合は、得られ
たクロマトグラムからは直接側々の成分の溶出挙動を知
ることができないからである。
However, in this method of designing operating conditions, detailed fractionation of the eluate must be carried out each time when determining the optimal load amount (maximum load impeller that achieves the specified purity) and the fractionation position in actual preparative fractionation. The composition of each fraction must be checked using an analytical column or the like. This is because, in industrial separation and purification, it is common practice to operate under conditions where the peaks of each component overlap in order to increase the time efficiency of purification and the efficiency of packed bed utilization to create economically advantageous conditions. This is because, in such a case, it is not possible to directly know the elution behavior of the side components from the obtained chromatogram.

さらに、最適流速などの操作条件の決定にあたってはそ
れぞれの操作条件において最適負荷量を求めなければな
らず、最適条件の決定に至るまでに、多大の時間を要す
るだけでなく、実験のための労務費、材料費などのため
に、特に多品種少量生産のような場合、精製コストの上
昇を招く。
Furthermore, when determining operating conditions such as the optimum flow rate, it is necessary to find the optimum load amount for each operating condition, which not only takes a large amount of time but also requires labor and labor for the experiment. Due to costs such as costs and material costs, refining costs increase, especially in the case of high-mix, low-volume production.

このような問題点を解決するために、最近になって、負
荷量の増大によるカラム出口における溶出挙動の変化を
定量的にとらえる試みがなされている0例えば、ラング
ミュア式などの吸着平衡関係を理論段モデルなどのクロ
マトモデルに適用して溶出曲線の予測を行なった研究例
(化学工学協会第20回秋季大会研究発表講演要目集、
p、510あるいは化学工学協会第53年金研究発表講
演要旨集、p、8)などがある、これらの研究例は、す
べて単一成分に関する解析である。
In order to solve these problems, attempts have recently been made to quantitatively capture changes in elution behavior at the column outlet due to increased loading. Examples of research in which elution curves were predicted by applying chromatographic models such as the step model (Collection of abstracts of research presentations at the 20th Autumn Conference of the Society of Chemical Engineers,
p. 510 or the 53rd Annual Research Presentation Abstracts of the Society of Chemical Engineers, p. 8). All of these research examples are analyzes of single components.

しかしながら、実際に複数成分を負荷して得られるクロ
マトグラムは、分離モードによっては、各成分が互いに
充填剤への吸着(分配)を阻害し合うため、各酸分単独
で得られるクロマトグラムを単に合成した物とはかなり
異なることがある。従って、このような場合は、結局、
最適負荷量や実際の分取における分画位置の最終決定に
あたっては、溶出液の分画試験を行ない1分析カラムな
どによって、それぞれの画分の組成をチエツクする作業
が必要になり、上記問題点を充分解決するには至らない
However, depending on the separation mode, the chromatograms obtained when multiple components are actually loaded can be simply compared to the chromatograms obtained with each acid component alone, since each component inhibits each other's adsorption (distribution) to the packing material. It may be quite different from the synthesized product. Therefore, in such a case, after all,
In final determination of the optimal loading amount and fractionation position in actual preparative separation, it is necessary to perform a fractionation test on the eluate and check the composition of each fraction using one analytical column, etc., and the above problems can be solved. cannot be fully resolved.

1間尾点を解決する手段】 本発明者は、このような問題点を解決すべく、鋭意検討
を行なった結果、単一成分において求められた吸着パラ
メータをもとに、複数成分系の吸着平衡関係を推定し、
その関係をクロマトモデル式に適用することによって、
各単一成分の実測値のみから、複数成分を負資して得ら
れるクロマトグラムを精度良く推算できることを見出し
、本発明を完成するに至った。
[Means for solving the 1-point tail point] In order to solve these problems, the present inventor conducted intensive studies, and based on the adsorption parameters determined for a single component, the present inventors determined the adsorption method for a multi-component system. Estimate the equilibrium relationship,
By applying that relationship to the chromatographic model equation,
The inventors have discovered that it is possible to accurately estimate a chromatogram obtained by incorporating multiple components from only the measured values of each single component, and have completed the present invention.

即ち、複数成分からなる試料を、溶離液とともに充填剤
を充填したカラムに導き、各成分を分離取得する液体ク
ロマトグラフィーによる分離・精製法において、 (a)多成分系吸着平衡式をクロマトモデル(理論段モ
デルまたは物質収支モデル)に適用して求められる、カ
ラム出口における各成分の濃度の時間変化を表す関数 (b)単一成分のクロマトグラムより求めた各成分固有
の吸着パラメータおよび拡散・物質移動に関するパラメ
ータ 上記(a)に(b)を適用して、試料中の各単一成分に
関する実測値のみから実装置、複数成分負荷における各
成分の溶出挙動を予測し、これに基づき操作条件を決定
し多成分混合物の各成分を分離することを特徴とするク
ロマト分離法である。
In other words, in the separation and purification method using liquid chromatography, in which a sample consisting of multiple components is introduced into a column filled with a packing material along with an eluent to separate and acquire each component, (a) the multicomponent adsorption equilibrium equation is expressed as a chromatographic model ( (b) Adsorption parameters and diffusion/substance specific to each component determined from the chromatogram of a single component Parameters related to movement Applying (b) to (a) above, the elution behavior of each component in the actual device and multiple component loads is predicted from only the actual measured values for each single component in the sample, and the operating conditions are determined based on this. This is a chromatographic separation method characterized by determining and separating each component of a multicomponent mixture.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明における。1複数成分からなる試料とは、無機あ
るいは有機物質の混合物の事で、物質の種類は特に限定
される物ではなく、液体クロマトグラフィーにより分離
し得るもの全てが含まれる。むろん、幾何異性体同士の
混合物や光学異性体同士の混合物などの各種異性体同士
の混合物がこの中に含まれるのは、言うまでもないこと
である。また、有機物質と無機物質の混合物がこの中に
含まれるのも言うまでもないことである。
In the present invention. A sample consisting of one or more components is a mixture of inorganic or organic substances, and the types of substances are not particularly limited, and include all substances that can be separated by liquid chromatography. Needless to say, this includes mixtures of various isomers, such as mixtures of geometric isomers and mixtures of optical isomers. It goes without saying that this also includes a mixture of organic and inorganic substances.

本発明法による分離・精製において使用される充填剤と
しては、主にシリカ、ODS、  ポーラスポリマー 
イオン交換用充填剤、光学分割用充填剤などが挙げられ
るが、必ずしもこれらの充填剤に限定されるものではな
く、本発明の効果が発現する液体クロマトグラフィー用
充填剤である限り、何であっても構わない。また、使用
される溶離液に関しても、充填剤や分離対象となる試料
によって決定される分離特性、あるいはクロマト分離後
の目的成分の溶離液からの分離のしやすさ等を考慮する
ことによって、最もふされしいものを自由に選択できる
The fillers used in separation and purification by the method of the present invention are mainly silica, ODS, and porous polymers.
Examples include ion exchange fillers and optical resolution fillers, but they are not necessarily limited to these fillers, and any filler may be used as long as it is a liquid chromatography filler that exhibits the effects of the present invention. I don't mind. In addition, regarding the eluent to be used, the most suitable one is determined by considering the separation characteristics determined by the packing material and the sample to be separated, or the ease of separating the target component from the eluent after chromatographic separation. You can freely choose what is appropriate.

以下、本発明のクロマト分離法を具体的に説明する。The chromatographic separation method of the present invention will be specifically explained below.

まず、各成分について、実際の分離操作を行なう場合の
負荷量に比較的近いと目される負荷量において単一成分
のクロマトグラムを取得する。次に、各成分固有の吸着
パラメータおよび拡散・物質移動に関するパラメータを
決定する。
First, for each component, a chromatogram of a single component is obtained at a load amount that is considered to be relatively close to the load amount when performing an actual separation operation. Next, adsorption parameters specific to each component and parameters related to diffusion and mass transfer are determined.

これらのパラメータは、一般的には、適当な吸着平衡式
及びクロマトモデルから計算によって求められるクロマ
トグラムが、実験により得られたクロマトグラムと同一
になるようにカーブフィッティングを行って定める。こ
こで言う吸着平衡式とは、ラングミュア式 QニドQω・C/ (1+ トC)・・・(1)但 し
、 q: 吸着量(mg/鳳l−充填剤) qω: 飽和吸着量(mg/s+1−充填剤)C: 移
動相における濃度(sg/m1)K: 吸着平衡定数(
ml/mg) であることが多いが、必ずしも全ての場合がラングミュ
ア式に当てはまるとは限らない。また、クロマトモデル
としては、理論段モデルC−−−+ −C−e = (
dC−e/ dθ十トdqss/dθ)/N、   ・
・・(2) dq、、/dθ=  (6q、e/6C,e)  ・(
dc、s/dθ)・ (3) 但し、 θ=t−v/v・ t: 溶離時間(sec) マ: 移動相流量(ml/5ec) ve二  カラム空隙部の体積(―l)+1=(1−ε
)/ε ε: カラム空隙率 九: カラム理論段数 添字npまたはnp−1:  理論段番号あるいは、物
質収支モデル 6C/ 8L÷u−IC/ D+ トaq、/ 6t=
 Da・6”C/ ex”・q/ at= [@ay 
(q@−q) −’−(s)但し、 U: 移動相線速度(cm/5ec) 2: カラム入口からの距離(cm) De=  軸方向混合拡散係数(am”/5ee)K 
* lLv :  吸着相基準総括物質移動係数(5e
c−’ ) q”:  cと平衡である q(−g/ml−充填剤)
などの公知のモデルが挙げられる。但し、物質収支モデ
ルによる計算は、Deが無視できない場合は計算が煩雑
になることが多いので、そのような場合は、理論段モデ
ルを使用することが望ましい。
These parameters are generally determined by performing curve fitting so that the chromatogram calculated from an appropriate adsorption equilibrium equation and chromatography model is the same as the chromatogram obtained experimentally. The adsorption equilibrium equation referred to here is the Langmuir equation QnidQω・C/ (1+ToC)...(1) where q: adsorption amount (mg/Otori-filler) qω: saturated adsorption amount ( mg/s+1-filling agent) C: Concentration in mobile phase (sg/ml) K: Adsorption equilibrium constant (
ml/mg), but the Langmuir equation does not necessarily apply in all cases. In addition, as a chromatographic model, the theoretical plate model C----+ -C-e = (
dC-e/ dθ dqss/dθ)/N, ・
...(2) dq,, /dθ= (6q, e/6C, e) ・(
dc, s/dθ)・ (3) However, θ=t-v/v・t: Elution time (sec) Ma: Mobile phase flow rate (ml/5ec) ve2 Volume of column void (-l) + 1= (1-ε
)/ε ε: Column porosity 9: Column theoretical plate number subscript np or np-1: Theoretical plate number or mass balance model 6C/ 8L÷u-IC/ D+ aq, / 6t=
Da・6”C/ ex”・q/ at= [@ay
(q@−q) −′−(s) However, U: Mobile phase linear velocity (cm/5ec) 2: Distance from column inlet (cm) De= Axial mixing diffusion coefficient (am”/5ee) K
*lLv: Adsorption phase standard overall mass transfer coefficient (5e
c-') q'': q (-g/ml-filler) in equilibrium with c
Examples of well-known models include: However, calculations using a material balance model are often complicated when De cannot be ignored, so in such cases, it is desirable to use a theoretical plate model.

しかしながら、以上に述べたようなパラメータ決定法に
おいては、フィッティングするべきパラメータの数が多
くなってしまうという欠点がある。従つて、吸着パラメ
ータの算出に際しては、平衡論モデルから導かれる式 %式%) +4=  試料打ち込みに要する時間(aec)添字l
: クロマトグラム頂点 を利用すれば良い。この式によれば、クロマトグラムの
頂点における溶離時間から吸着パラメータを推算できる
。例えば、吸着平衡式がラングミュア式の場合、負荷量
を変化させた2点のクロマトグラムの頂点における溶離
時間から、2つのパラメータ、qco およびKを求め
ることができる。そうすれば、クロマトモデルとして理
論段モデルを用いた場合、あとは拡散・物質移動に関す
るパラメータに相当するパラメータ、腫、のみをフィッ
ティングで求めるだけで良い。
However, the parameter determination method described above has a drawback in that the number of parameters to be fitted increases. Therefore, when calculating the adsorption parameter, the formula derived from the equilibrium theory model (% formula %) + 4 = time required for sample injection (aec) subscript l
: Just use the chromatogram peak. According to this formula, the adsorption parameter can be estimated from the elution time at the peak of the chromatogram. For example, when the adsorption equilibrium equation is the Langmuir equation, two parameters, qco and K, can be determined from the elution time at the peak of the chromatogram at two points with varying loading amounts. In this way, when a theoretical plate model is used as a chromatography model, it is only necessary to find by fitting only the parameters corresponding to the parameters related to diffusion and mass transfer.

次に、このようにして求めた吸着パラメータをもとに複
数成分が混在するときの吸着平衡式を構築する。一般的
には、n成分系の場合、ある成分lについての吸着平衡
式は、全成分の液相濃度の関数、即ち、 ql = f+ (C+I  ・”l  C4@  H
+・、  、C,) ・(?)但し、 添字 1. 1.、−、 n:  成分番号で表される
。この関数形は、単一成分系における、各成分の吸着パ
ラメータをそのまま用いて表すことができることが多く
、その場合には、本発明の方法壱適用することができる
。例えば、用いる吸着平衡式が、ラングミュア型の場合
は、複数成分系における吸着平衡式は、n成分系におけ
る1成分について、以下に示す拡張ラングミュア式で表
すことができる。
Next, based on the adsorption parameters obtained in this way, an adsorption equilibrium equation is constructed when a plurality of components coexist. Generally, in the case of an n-component system, the adsorption equilibrium equation for a certain component l is a function of the liquid phase concentration of all components, that is, ql = f+ (C+I ・"l C4@H
+・、 、C、) ・(?) However, subscript 1. 1. , -, n: Represented by component number. This functional form can often be expressed using the adsorption parameters of each component as they are in a single component system, and in that case, method 1 of the present invention can be applied. For example, when the adsorption equilibrium equation to be used is a Langmuir type, the adsorption equilibrium equation in a multi-component system can be expressed by the extended Langmuir equation shown below for one component in an n-component system.

q+  = 11.qoo  +  −C+/  (1
+  7−   (L−C+)   )但 し、 添字t、  j:  成分番号(J= 1.・・・、i
、・・・、n)最後に、こ・のようにして求めた吸着平
衡式を前述のクロマトモデルに適用する。n成分系、理
論段モデルに関しては、 α−+@#−C+ 、11@’: k+・(dc+ 、
−m/ ’θ十1dq+ +ms/dθ)/Net  
・・・(9) dq+、as/dθ=Σ(JQ++se/ac++ae
) H<ac++*e/dθ)     ・−(1G) α11@−一、’X、’ C+ 、中1円国)/に+・
・・(111但 し、 k+”Me・/II−t に、・:  Net、・・・1M1.の最小公倍数1+
:  ((n、−1)  sod  L)  +1添字
 1.j:  成分番号 (J=1.・・・、五、・”to) n、および 添字+IP+  1ip−11−kI÷1
= 理論段番号 また、物質収支モデルを使用する場合は、前述の(4)
、(5)式および(7)式を各成分について適用すれば
よい。
q+ = 11. qoo + -C+/ (1
+ 7- (L-C+)) However, subscripts t, j: component number (J= 1...., i
,..., n) Finally, the adsorption equilibrium equation obtained in this way is applied to the chromatography model described above. Regarding the n-component system and theoretical plate model, α-+@#-C+, 11@': k+・(dc+,
-m/'θ11dq+ +ms/dθ)/Net
...(9) dq+, as/dθ=Σ(JQ++se/ac++ae
) H<ac++*e/dθ) ・-(1G) α11@-1,'X,' C+, middle 1 yen country)/to +・
...(111However, k+"Me・/II-t, ...: Net, ...1M1. Least common multiple 1+
: ((n, -1) sod L) +1 subscript 1. j: Component number (J=1...., 5, ・"to) n, and subscript + IP + 1ip-11-kI÷1
= Theoretical plate number Also, when using a material balance model, see (4) above.
, (5) and (7) may be applied to each component.

この隙、拡散・物質移動に関するパラメータhあるいは
Ks&wは、大抵の場合、単一成分において求められた
ものをそのまま用いて良い。このようにして得られた式
より、複数成分における各成分の溶出挙動を分画試験を
行なう事なく計算により推定することができる。
In most cases, the parameters h or Ks&w regarding this gap, diffusion and mass transfer may be used as they are determined for a single component. From the equation thus obtained, the elution behavior of each component among multiple components can be estimated by calculation without performing a fractionation test.

次に、本発明の効果を示すため、X、  Y二成分系の
分離を行う場合を例に取る。第一図に、X、  Y成分
をそれぞれ単独で負荷したときのクロマトグラムを示す
、第二図には、第一図において負荷した量と同一の量の
X、  Yを混合して負葆した際に得られるクロマトグ
ラムを示す。
Next, in order to demonstrate the effects of the present invention, an example will be taken in which a two-component system of X and Y is separated. Figure 1 shows the chromatogram when the X and Y components were loaded individually, and Figure 2 shows the chromatogram when the same amounts of X and Y were mixed as those loaded in Figure 1. The resulting chromatogram is shown below.

本発明者が調べたところによると、驚くべき事には、第
二図に見られるように、二成分の混合物を負荷した場合
、第一図におけるX、Y各成分のクロマトグラムを単純
に合成して予測される分離状態よりも分離状態はかなり
良くなっているというケースが非常に多いことが判明し
た。
According to research conducted by the present inventor, surprisingly, as shown in Figure 2, when a mixture of two components is loaded, the chromatograms of the X and Y components in Figure 1 can be simply synthesized. It was found that in many cases, the separation state was much better than that predicted by the method.

このような場合、従来の技術では、分画試験による負荷
量決定をせずに、単一成分のデータのみで、負荷量決定
をしようとすると、かかる方法で決定された負荷量は、
実際負荷し得る量よりもかなり少ない量になってしまう
。従って、従来の技術においては、複数成分のクロマト
分離操作における負荷量決定ならびに実際の分取におけ
る分■位置の最終決定にあたフて、多数回の分画試験が
必要であったわけである。しかし、本発明者が、複数成
分系吸着平衡式をクロマトモデルに適用して、各成分の
溶出挙動を単−成分系のデータのみから推算する方法を
見出したことによって、試験回数を大幅に減少させ、分
離設計にかかるコストを低減することが可能になった番 以下に本発明を具体的な実施例を挙げて説明するが、熱
論、本発明は、以下の実施例に限定されるものではない
In such a case, with conventional techniques, when trying to determine the loading amount using only data of a single component without determining the loading amount using a fractionation test, the loading amount determined by such a method is
The amount will be much smaller than the amount that can actually be loaded. Therefore, in the conventional technology, a large number of fractionation tests were required to determine the loading amount in the chromatographic separation operation of multiple components and the final determination of the separation position in the actual fractionation. However, the inventor of the present invention applied a multi-component system adsorption equilibrium equation to a chromatography model and found a method to estimate the elution behavior of each component from only single-component system data, which significantly reduced the number of tests. The present invention will be described below with reference to specific examples, but the present invention is not limited to the following examples. do not have.

比」L廻」2 上下に分散板を有する内径10G閣、長さ500■烏の
ステンレス製カラムに粒径50μmの光学分割用充填剤
キラルセル・OBを充填し、ヘキサンと2−プロパツー
ルを容積比で9:1の割合で混合した液を溶離液として
、α−フェニルエチルアルコールのラセミ体を3体と8
体の各光学活性体に分離した。この分離に関する目標値
は、各成分の光学純度99%以上、口取率90%以上と
した。α−フェニルエチルアルコールのラセミ体を上記
W3Si液に0.2g/mlの濃度で溶解してサンプル
を作製した。上記溶離液を流量 245m1/sinで
過液し、徐々に負荷量を増加させて上記サンプルを注入
し、得られるクロマトグラムの変化を観察したところ、
12.5■l負荷した時点で8体と3体のピークが重な
り出すことが判明した。そこで、それ以降は、ピークの
重なる部分の溶出液は、分画試験を行なフて、各画分に
おける8体、R体各成分の純度を内径4.6鵬、 長さ
25cmのキラルセル・OB分析カラム(粒径lOμ暑
) によってモニターしながら負荷量を増加させて行っ
た。その結果、最適負荷量として、35.0mlの値を
得た。この際、15.0@l、  20.0ml、  
22.5ml、    25.0■l、    27.
5園1.   30.0■l、    32.5鋤1.
   35.0ml、  37.5−1と9段階の負荷
量について、分画試験を行なった。また、実際の分取に
おける分画位置を正確に決定するため、−回の分画試験
について、溶出液を15から20程度の画分に分画する
必要があった。
Ratio "L turn" 2 A stainless steel column with an inner diameter of 10G and a length of 500cm, which has dispersion plates on the top and bottom, is filled with Chiralcel/OB, a packing material for optical resolution with a particle size of 50μm, and hexane and 2-propanol are added by volume. Using a mixture at a ratio of 9:1 as an eluent, 3 and 8 racemic forms of α-phenylethyl alcohol were extracted.
The body was separated into each optically active form. The target values for this separation were an optical purity of 99% or more for each component and a yield rate of 90% or more. A sample was prepared by dissolving racemic α-phenylethyl alcohol in the above W3Si solution at a concentration of 0.2 g/ml. The eluent was filtered at a flow rate of 245 ml/sin, the sample was injected while gradually increasing the load amount, and changes in the resulting chromatogram were observed.
It was found that the peaks of 8 bodies and 3 bodies began to overlap when 12.5 μl was loaded. Therefore, from then on, the eluate in the area where the peaks overlap was subjected to a fractionation test, and the purity of the 8-body and R-body components in each fraction was determined using a chiral cell with an inner diameter of 4.6 mm and a length of 25 cm. The loading amount was increased while monitoring with an OB analytical column (particle size 10μ). As a result, a value of 35.0 ml was obtained as the optimum load amount. At this time, 15.0@l, 20.0ml,
22.5ml, 25.0■l, 27.
5 gardens 1. 30.0 ■l, 32.5 plow 1.
A fractionation test was conducted with nine loading levels: 35.0 ml and 37.5-1. Furthermore, in order to accurately determine the fractionation position in the actual fractionation, it was necessary to fractionate the eluate into about 15 to 20 fractions for the -th fractionation test.

L1五ユ 比較例1と同様のクロマト装置及び充填カラムを用いて
α−フェニルエチルアルコールのラセミ体の分離を、比
較例1と同様の目標値で試みた。まず、5ILR体それ
ぞれについて0.l。
Using the same chromatographic apparatus and packed column as in Comparative Example 1, separation of the racemic form of α-phenylethyl alcohol was attempted with the same target values as in Comparative Example 1. First, 0.0 for each of the 5 ILR bodies. l.

g/mlの濃度で上記溶離液に溶解してサンプルを作製
した。上記溶離液を流量245m1/sinで通液し、
それぞれのサンプルを6.25m1. 12.500■
l25.00m1. 37.50m1  (7)順でカ
ラムに負荷して、各成分、各負荷量における単一成分に
ついてのクロマトグラムを得た。次に、各クロマトグラ
ムの頂点の保持時間の測定値に前述の(6)式を適用し
て8体、R体各成分のラングミュア式の吸着パラメータ
を算出した。ざらに、これらの吸着パラメータと適当に
仮定したL  (本実施例においては、N、=500)
を前述の(2)、(3)式に適用して大型計算機による
数値計算壱行ない、実験により得られた各成分、各負荷
量におけるクロマトグラムと比較した。この際、計算に
より得られたクロマトグラムが実験により得られたもの
より幅が狭い場合には、より小なる)Ie’&、その逆
の場合には、より大なるIl、を仮定し直して計算な行
ない、この操作は、計算により得られたクロマトグラム
が実験によって得られたものとほぼ同一になるまで繰り
返した。このようにして、各成分についてのラングミュ
ア式の吸着パラメータと、各成分、各負荷量についての
N、の値を得た。得られた値を第−表に示す。これらの
値を前述の(8)−(11)式に適用して、ラセミ体を
負荷した場合 (2成分系)のクロマトグラムを大型計
算機による数値計算により推定した。比較例1と同様、
負荷するサンプルを0゜2g/mlのラセミ体とし、!
5.0■l、  20.0■1.22.5−!、   
25.0鳳1.    27.5−1.    30.
0■11  32.5■1.   35.0膳1. 3
7.5ml負荷した場合のクロマトグラムを数値計算に
より求めたところ、おおよそ37.5鳳lが限界負荷量
であることが推定できた。ちなみに8体、3体それぞれ
を単独で負荷して得られたクロマトグラムを単純に合成
して推算した限界負荷量は、わずか22.5mlである
。最終的には、実際に37.5mlカラムに負荷して、
比較例1と同様の分画試験を行なって、推算結果の確認
を行なった。第三図に実験により得られたクロマトグラ
ムと計算により得られたクロマトグラムとの比較を示す
。このケースにおいては、光学純度99%で各成分を回
収した場合、8体の回収率は、95.2%であったが、
R体の回収率が86.8%と目標値の回収率90%より
低いことが判明した。
A sample was prepared by dissolving it in the above eluent at a concentration of g/ml. The eluent is passed through at a flow rate of 245 m/sin,
Each sample was divided into 6.25 m1. 12.500■
l25.00m1. 37.50 ml (7) The column was loaded in this order to obtain a chromatogram for each component and a single component at each loading amount. Next, the above-mentioned equation (6) was applied to the measured value of the retention time at the top of each chromatogram to calculate Langmuir adsorption parameters for each of the 8-body and R-body components. Roughly, these adsorption parameters and appropriately assumed L (in this example, N = 500)
Numerical calculations were performed using a large-scale computer by applying the equations (2) and (3) above, and comparisons were made with the chromatograms for each component and each loading amount obtained through experiments. At this time, if the chromatogram obtained by calculation is narrower than the one obtained experimentally, reassume that Ie'& is smaller, and vice versa, Il is larger. Calculations were performed, and this operation was repeated until the chromatogram obtained by calculation was almost identical to the one obtained experimentally. In this way, the Langmuir adsorption parameter for each component and the value of N for each component and each loading amount were obtained. The values obtained are shown in Table 1. These values were applied to the above-mentioned equations (8) to (11), and the chromatogram when the racemate was loaded (two-component system) was estimated by numerical calculation using a large-scale computer. Similar to Comparative Example 1,
The sample to be loaded is a racemic body of 0゜2g/ml, and!
5.0■l, 20.0■1.22.5-! ,
25.0 Otori 1. 27.5-1. 30.
0■11 32.5■1. 35.0 meals 1. 3
When the chromatogram obtained when 7.5 ml was loaded was determined by numerical calculation, it was estimated that approximately 37.5 liters was the critical load amount. Incidentally, the limit load amount estimated by simply synthesizing the chromatograms obtained by loading 8 bodies and 3 bodies individually is only 22.5 ml. Finally, we actually loaded it onto a 37.5ml column,
A fractionation test similar to that in Comparative Example 1 was conducted to confirm the estimated results. Figure 3 shows a comparison between the chromatogram obtained by experiment and the chromatogram obtained by calculation. In this case, when each component was recovered with an optical purity of 99%, the recovery rate of 8 components was 95.2%, but
It was found that the recovery rate of the R form was 86.8%, which was lower than the target recovery rate of 90%.

そこで、負荷量を35.0■lとわずかに減少させて分
画試験を行ない、光学純度99%で8体の回収率96.
8%、R体の回収率90.8%の値を得たので35.0
■lを最適負荷量と判断した。本実施例においては、分
画試験は、わずかに2回行なうだけで済み、また、およ
その分画位置が計算によって推定されていたため分画は
その推定値付近のみで詳細に行なえばよく、 1回の分
画試験につき5つの両分に分画するだけで実際の分取に
おける分画位置を決定する事ができた。
Therefore, we conducted a fractionation test by slightly reducing the loading amount to 35.0 l, and the recovery rate of 8 bodies was 96.9% with an optical purity of 99%.
8%, and the recovery rate of R-isomer was 90.8%, so it was 35.0.
■L was determined to be the optimal load amount. In this example, the fractionation test only needs to be performed twice, and since the approximate fractionation position has been estimated by calculation, the fractionation only needs to be performed in detail around the estimated value. It was possible to determine the fraction position in the actual fractionation by simply fractionating into five fractions for each fractionation test.

1口し 上下に分散板を有する内径50■、長さ500■■のス
テンレス製カラムに粒径40μ■のキラルセル・OBを
充填し、ヘキサンと2−プロパツールを容積比で9=1
の割合で混合した液を溶離液として、フェニルエチレン
グリコールのラセミ体を(÷)体とく−)体の各光学活
性体への分離を試みた。この分離に関する目標値は、各
成分の光学純度99%以上、回収率90%以上とした。
A stainless steel column with an inner diameter of 50 mm and a length of 500 mm, which has dispersion plates on the top and bottom, was filled with Chiralcell OB with a particle size of 40 μ■, and hexane and 2-propanol were mixed in a volume ratio of 9 = 1.
An attempt was made to separate the racemic form of phenylethylene glycol into its optically active forms (÷) form and -) form using a mixture of these as an eluent. The target values for this separation were an optical purity of 99% or more for each component and a recovery rate of 90% or more.

フェニルエチレングリコールのラセミ体を上記溶離液に
0.0215g/mlの濃度で溶解してサンプルを作製
した。上記溶離液を流160.0■1/sinで通液し
、徐々に負荷量を増加させて上記サンプルを注入した。
A sample was prepared by dissolving racemic phenylethylene glycol in the above eluent at a concentration of 0.0215 g/ml. The eluent was passed through the tube at a flow rate of 160.0 1/sin, and the sample was injected while gradually increasing the load amount.

このサンプルに関しては、負荷量が5.Oslと非常に
少量でもややピークが重なっていたため、ピークの重な
る部分の溶出液は、分画試験を行なって、各−分におけ
る(÷)体、(−)偉容成分の純度を内径4.6閣、長
さ25c鳳のキラルセル・OB分析カラム(粒径10μ
■) によってモニターしながら負荷量を増加させて行
った。その結果、負荷量が25.0■lまでは、所定の
光学純度で分取した場合の回収率にほとんど変化がない
ことが判明した。そこで、さらに負荷量を増加させて分
画試験を行なって、最適負荷量として、 37,5鳳l
の値を得た。 この際、  5 、0 ml、  ? 
、 5■l、10.0 ml、   15.0■l、 
   20.0膳1.   25.0謳1.   30
.0■1、  32.5■l、  35.0■l、  
37゜5 ml、  40 、0 m lと11段階の
負荷量について、分画試験を行なった。また、実際の分
取における分画位置を正確に決定するため、−回の分画
試験について、溶出液を15から20程度の画分に分画
する必要があった。
For this sample, the loading amount is 5. Since the peaks overlapped slightly with Osl even in a very small amount, the eluate in the area where the peaks overlapped was subjected to a fractionation test, and the purity of (÷) body and (-) major components at each - minute was determined to be an inner diameter of 4.6. Kaku, length 25c Otori chiral cell OB analysis column (particle size 10μ
■) The load amount was increased while being monitored. As a result, it was found that there was almost no change in the recovery rate when the sample was fractionated at a predetermined optical purity until the loading amount was 25.0 μl. Therefore, we further increased the loading amount and conducted a fractionation test, and found that the optimal loading amount was 37.5 liters.
obtained the value of At this time, 5, 0 ml, ?
, 5■l, 10.0ml, 15.0■l,
20.0 meals 1. 25.0 songs 1. 30
.. 0■1, 32.5■l, 35.0■l,
A fractionation test was conducted for 11 loading levels: 37°5 ml, 40°, and 0 ml. Furthermore, in order to accurately determine the fractionation position in the actual fractionation, it was necessary to fractionate the eluate into about 15 to 20 fractions for the -th fractionation test.

11旦ユ 比較例2と同様のクロマト装置及び充填カラムを用いて
フェニルエチレングリコールのラセミ体の分離を、比較
例2と同様の目標値で試みた。まず、 (÷)体、(−
)体それぞれについて0.01075g/■lの濃度で
上記溶離液に溶解してサンプルを作製した。上記溶離液
を流員60.Oml/@inで通液し、それぞれのサン
プルを20.0■l。
11 Using the same chromatographic apparatus and packed column as in Comparative Example 2, separation of the racemic form of phenylethylene glycol was attempted with the same target values as in Comparative Example 2. First, (÷) body, (−
) was dissolved in the above eluent at a concentration of 0.01075 g/l to prepare samples. The above eluent was flowed to a flow rate of 60. Pour 20.0 ml of each sample at 0ml/@in.

30.0腸1. 35.0麿1. 4G、0■l、  
45.0■lの順でカラムに負荷して、各成分、各負荷
量における単一成分についてのクロマトグラムを得た1
次に、各クロマトグラムの頂点の保持時間の測定値に前
述の(6)式を適用してDl、  (−)偉容成分のラ
ングミュア式の吸着パラメータを算出した。さらに、こ
れらの吸着パラメータと適当に仮定したに*&w (本
実施例においては、Kaav”0−6)を前述の(41
,(53式に適用して大型計算機による数値計算を行な
い、実験により得られた各成分、各負荷量におけるクロ
マトグラムと比較した。
30.0 intestine 1. 35.0maro1. 4G, 0■l,
45.0 liters were loaded onto the column in order, and a chromatogram was obtained for each component and a single component at each loading amount.
Next, the above-mentioned equation (6) was applied to the measured value of the retention time at the top of each chromatogram to calculate Dl, the Langmuir adsorption parameter for the (-) weight component. Furthermore, assuming these adsorption parameters appropriately, *&w (in this example, Kaav"0-6) is changed to the above-mentioned (41
, (Numerical calculations were performed using a large-scale computer by applying Equation 53, and comparisons were made with the chromatograms for each component and each loading amount obtained from experiments.

この際、計算により得られたクロマトグラムが実験によ
り得られたものより幅が狭い場合には、より小なるに&
vを、その逆の場合には、より大なるKslLvを仮定
し直して計算を行ない、この操作は、計算により得られ
たクロマトグラムが実験によって得られたものとほぼ同
一になるまで繰り返した8、この上うにして、各成分に
ついてのラングミュア式の吸着パラメータと、各成分、
各負荷量についてのi:@ayの値を得た。得られた値
を第二表に示す、これらの値を前述の (4)、(5)
、(8)式に適用して、ラセミ体を負荷した場合(2次
分系)のクロマトグラムを大型計算機による数値計算に
より推定した。比較例2と同様、負荷するサンプルを0
.0215g/mlのラセミ体と し、  IL5ml
、   25.0m1%  2?、5■l、   30
.0■l、  32,5I1. 35 、0 ml、3
7.6m1140.0■l、  負荷した場合のクロマ
トグラムを数値計算により求めたところ、i3およそ3
5.0鵬lが限界負荷量であることが推定できた。ちな
みに(◆)体、(−)体それぞれを単独で負荷して得ら
れたクロマトグラムを単純に合成して推算した限界負荷
量は、わずか24.0mlである。最終的には、実際に
35.0mlカラムに負荷して、比較例2と同様の分画
試験を行なって、推算結果の確認を行なった。第四図に
実験により得られたクロマトグラムと計算により得られ
たクロマトグラムとの比較を示す。このケースにおいて
は、光学純度99%で各成分を回収した場合、(÷)体
の回収率が97.5%、 (−)体の回収率が92.4
%と目標値の回収率90%より高いことが判明した。そ
こで、負荷量を37.5mlとわずかに増加させて分画
試験を行ない、光学純度99%で(◆)体の回収率が9
6.3%、 (−)体の回収率90.3%の値を得たの
で37.5mlを最適負荷量と判断した。本実施例にお
いては、分画試験は、わずかに2回行なうだけで済み、
また、およその分画位置が計算によって推定されていた
ため分画はその推定値付近のみで詳細に行なえばよく、
 1回の分画試験につき5つの画分に分画するだけで実
際の分取における分画位置を決定する事ができた。
At this time, if the chromatogram obtained by calculation is narrower than the one obtained experimentally,
In the opposite case, the calculation was performed by assuming a larger KslLv, and this operation was repeated until the chromatogram obtained by calculation was almost the same as the one obtained by experiment. , In this way, the adsorption parameters of the Langmuir equation for each component and each component,
The value of i:@ay for each load amount was obtained. The obtained values are shown in Table 2.
, (8), and the chromatogram when the racemate was loaded (second-order fractionation system) was estimated by numerical calculation using a large-scale computer. As in Comparative Example 2, the sample to be loaded is 0.
.. 0215g/ml racemic, IL5ml
, 25.0m1% 2? , 5■l, 30
.. 0■l, 32,5I1. 35, 0 ml, 3
7.6m1140.0■l, when the chromatogram was obtained by numerical calculation when loaded, i3 approximately 3
It was estimated that 5.0 liters was the critical load amount. Incidentally, the limit load amount estimated by simply synthesizing the chromatograms obtained by loading each of the (◆) and (-) bodies alone is only 24.0 ml. Finally, a 35.0 ml column was actually loaded and a fractionation test similar to that in Comparative Example 2 was conducted to confirm the estimated results. FIG. 4 shows a comparison between the chromatogram obtained by experiment and the chromatogram obtained by calculation. In this case, when each component is recovered with an optical purity of 99%, the recovery rate for the (÷) body is 97.5%, and the recovery rate for the (-) body is 92.4.
It was found that the recovery rate was higher than the target value of 90%. Therefore, we conducted a fractionation test by slightly increasing the loading volume to 37.5 ml, and the recovery rate of the body was 99% with an optical purity of 99% (◆).
6.3%, and the recovery rate of (-) bodies was 90.3%, so 37.5 ml was determined to be the optimal loading amount. In this example, the fractionation test only needs to be performed twice,
In addition, since the approximate fractionation position was estimated by calculation, fractionation only needs to be performed in detail around the estimated value.
It was possible to determine the fraction position in the actual fractionation by simply fractionating into five fractions for one fractionation test.

凰二二表 凰≦2表凰二二表 凰≦2 tables

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は、X、Y2成分系において、X、  Y成分を
それぞれ単独で負荷したときの典型的なりロマトグラム
をまとめて示したものである。 第二図は、第一図において負荷した量と同一の量のX、
  Yを混合して負荷した隙に得られる典型的なりロマ
トグラムを示したものである。 第三図は、実施例1において、負荷量が37.5−1の
場合の実験により得られたクロマトグラムと計算により
得られたクロマトグラムとの比較である。図中の実線は
実験値を、・印は計算値を示す。 第四図は、実施例2において、負荷量が37.5mlの
場合の実験により得られたクロマトグラムと計算により
得られたクロマトグラムとの比較である0図中の実線は
実験値を、・印は計算値を示す。 O許出願人 1Mセル化学工m株式会社第三− 第四面 溶出時間 第一図 第二図 溶出時間 手続補正書 (方式) 事件の表示 平成1年特許願第47443号 2゜ 発明の名称 クロマト分離法 3゜ 補正をする者 事件との関係  特許出願人 住 所   大阪府堺市鉄砲町1番地 名 称 (290)ダイセル化学工業株式会社5゜ 6゜ 補正の対象 補正の内容 平成1年 5月30日 図面 別紙の通り 第−図 溶出時間 溶出時間 第三図 溶出時間 溶出時間
Figure 1 shows a typical chromatogram when each of the X and Y components is loaded individually in a two-component system. The second figure shows the same amount of X loaded in the first figure,
This figure shows a typical chromatogram obtained when Y was mixed and loaded. The third figure is a comparison between the chromatogram obtained by experiment and the chromatogram obtained by calculation in Example 1 when the load amount was 37.5-1. The solid line in the figure shows the experimental value, and the * mark shows the calculated value. Figure 4 shows a comparison between the chromatogram obtained by experiment and the chromatogram obtained by calculation in Example 2 when the load amount was 37.5 ml. The mark indicates the calculated value. O Applicant: 1M Cell Kagaku Kogyo Co., Ltd. Third-Fourth Surface Elution Time Figure 1 Figure 2 Elution Time Procedure Amendment (Method) Case Description 1999 Patent Application No. 47443 2゜ Title of Invention Chromato Relationship with Separation Law 3゜Amendment Person Case Patent Applicant Address 1 Teppo-cho, Sakai City, Osaka Prefecture Name (290) Daicel Chemical Industries, Ltd. 5゜6゜ Contents of Amendment Subject to Amendment May 1999 30 days As shown in the attached drawing, Figure - Elution time Elution time Figure 3 Elution time Elution time

Claims (1)

【特許請求の範囲】[Claims] (1)複数成分からなる試料を、溶離液とともに充填剤
を充填したカラムに導き、各成分を分離取得する液体ク
ロマトグラフィーによる分離・精製法において、 (a)複数成分系吸着平衡式をクロマトモデル(理論段
モデルまたは物質収支モデル)に適用して求められる、
カラム出口における各成分の濃度の時間変化を表す関数 (b)単一成分のクロマトグラムより求めた各成分固有
の吸着パラメータおよび拡散・物質移動に関するパラメ
ータ 上記(a)に(b)を適用して、試料中の各単一成分に
関する実測値のみから実装置、複数成分負荷における各
成分の溶出挙動を予測し、これに基づき操作条件を決定
し多成分混合物の各成分を分離することを特徴とするク
ロマト分離法。
(1) In a separation and purification method using liquid chromatography, in which a sample consisting of multiple components is introduced into a column filled with a packing material along with an eluent to separate and acquire each component, (a) The adsorption equilibrium equation for a multiple component system is used as a chromatographic model. (theoretical plate model or material balance model).
Function (b) representing the time change in the concentration of each component at the column outlet. Adsorption parameters specific to each component and parameters related to diffusion and mass transfer determined from the chromatogram of a single component. Applying (b) to (a) above. , is characterized by predicting the elution behavior of each component in an actual device and loading multiple components from only the actual measured values for each single component in the sample, determining operating conditions based on this, and separating each component of a multicomponent mixture. Chromatographic separation method.
JP1047443A 1989-02-28 1989-02-28 Chromatographic separation method Expired - Fee Related JP2698649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1047443A JP2698649B2 (en) 1989-02-28 1989-02-28 Chromatographic separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1047443A JP2698649B2 (en) 1989-02-28 1989-02-28 Chromatographic separation method

Publications (2)

Publication Number Publication Date
JPH02227664A true JPH02227664A (en) 1990-09-10
JP2698649B2 JP2698649B2 (en) 1998-01-19

Family

ID=12775286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1047443A Expired - Fee Related JP2698649B2 (en) 1989-02-28 1989-02-28 Chromatographic separation method

Country Status (1)

Country Link
JP (1) JP2698649B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821023A (en) * 1996-05-27 1998-10-13 Fuji Xerox Co., Ltd. Developer of electrostatic latent image, carrier therefor, method for forming image and image forming apparatus thereby
JP2007163153A (en) * 2005-12-09 2007-06-28 Yamazen Corp Condition determination support device of liquid chromatography, liquid chromatograph, and condition determination support program of liquid chromatography
JP2009204618A (en) * 1997-05-16 2009-09-10 Pe Corp (Ny) Method for measuring one or more specific parameter value of chromatographic system
JP2013213777A (en) * 2012-04-03 2013-10-17 Yamazen Corp Injector and condition determination support device of liquid chromatography

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196665A (en) * 1984-03-21 1985-10-05 Hitachi Ltd Chromatogram analytical apparatus
JPH01250060A (en) * 1988-03-30 1989-10-05 Shimadzu Corp Condition setter for chromatograph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196665A (en) * 1984-03-21 1985-10-05 Hitachi Ltd Chromatogram analytical apparatus
JPH01250060A (en) * 1988-03-30 1989-10-05 Shimadzu Corp Condition setter for chromatograph

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821023A (en) * 1996-05-27 1998-10-13 Fuji Xerox Co., Ltd. Developer of electrostatic latent image, carrier therefor, method for forming image and image forming apparatus thereby
JP2009204618A (en) * 1997-05-16 2009-09-10 Pe Corp (Ny) Method for measuring one or more specific parameter value of chromatographic system
JP2007163153A (en) * 2005-12-09 2007-06-28 Yamazen Corp Condition determination support device of liquid chromatography, liquid chromatograph, and condition determination support program of liquid chromatography
JP2013213777A (en) * 2012-04-03 2013-10-17 Yamazen Corp Injector and condition determination support device of liquid chromatography

Also Published As

Publication number Publication date
JP2698649B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
Zhang Methods for determiningn-octanol-water partition constants
Valko et al. Relationships between the chromatographic hydrophobicity indices and solute descriptors obtained by using several reversed-phase, diol, nitrile, cyclodextrin and immobilised artificial membrane-bonded high-performance liquid chromatography columns
Kazakevich et al. HPLC for pharmaceutical scientists
Felinger et al. Determination of the single component and competitive adsorption isotherms of the 1-indanol enantiomers by the inverse method
Kormány et al. Exploring better column selectivity choices in ultra-high performance liquid chromatography using Quality by Design principles
CN101180113B (en) Elements for separating substances by distributing between a stationary and a mobile phase, and method for the production of a separating device
Tao et al. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics
Kostanyan On influence of sample loading conditions on peak shape and separation efficiency in preparative isocratic counter-current chromatography
Baghdady et al. Online comprehensive high pH reversed phase× low pH reversed phase approach for two-dimensional separations of intact proteins in top-down proteomics
Katti et al. Quantitative comparison between the experimental band profiles of binary mixtures in overloaded elution chromatography and their profiles predicted by the semi-ideal model
Hearn Ion-pair chromatography on normal-and reversed-phase systems
Jacobson et al. Isotherm selection for band profile simulations in preparative chromatography
Kormány et al. A workflow for column interchangeability in liquid chromatography using modeling software and quality-by-design principles
Rudraraju et al. Determination of log P values of new cyclen based antimalarial drug leads using RP-HPLC
Arafah et al. Separation of nadolol stereoisomers using Chiralpak IA chiral stationary phase
Dorsey et al. Liquid chromatography: theory and methodology
Sun et al. Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular imprinting
JPH02227664A (en) Chromato-separation
Vervoort et al. Selection of stationary phases for the liquid chromatographic analysis of basic compounds using chemometric methods
Euerby et al. Retention modelling in ternary solvent-strength gradient elution reversed-phase chromatography using 30 mm columns
Khattabi et al. Study of the adsorption behavior of the enantiomers of 1-phenyl-1-propanol on a cellulose-based chiral stationary phase
Stoll et al. But My Peaks Are Not Gaussian! Part III: Physicochemical Causes of Peak Tailing
Molnár et al. Separation of amino acids with simulated moving bed chromatography
Ahmad et al. Generic reversed‐phase ultra‐high‐pressure liquid chromatography methodology developed by using computer‐assisted modeling for streamlined performance evaluation of a wide range of stationary phase columns
McClain Milestones in supercritical fluid chromatography: a historical view of the modernization and development of supercritical fluid chromatography

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees