JPH0222632Y2 - - Google Patents

Info

Publication number
JPH0222632Y2
JPH0222632Y2 JP11212284U JP11212284U JPH0222632Y2 JP H0222632 Y2 JPH0222632 Y2 JP H0222632Y2 JP 11212284 U JP11212284 U JP 11212284U JP 11212284 U JP11212284 U JP 11212284U JP H0222632 Y2 JPH0222632 Y2 JP H0222632Y2
Authority
JP
Japan
Prior art keywords
heat
furnace core
core tube
cylindrical body
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11212284U
Other languages
Japanese (ja)
Other versions
JPS6127094U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11212284U priority Critical patent/JPS6127094U/en
Publication of JPS6127094U publication Critical patent/JPS6127094U/en
Application granted granted Critical
Publication of JPH0222632Y2 publication Critical patent/JPH0222632Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、特に高温度で使用するロータリーキ
ルンの改良された構造に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved structure of a rotary kiln, especially for use at high temperatures.

〔従来の技術〕[Conventional technology]

従来のこの種ロータリーキルンは、耐熱性の鋼
管で一体的に作られた炉芯管の中間部外側を、こ
れと同心の比較的短い箱形の温度制御し得る電熱
式加熱炉で囲んだ外部加熱型のものが多く、前記
炉芯管における加熱炉の両側に嵌装された炉芯管
支持用タイヤを、それぞれ同一線上に複数組連設
された2個1組の支持輪上に載置し、一方の支持
輪の軸に取りつけられたスプロケツトを、チエー
ン及び減速機を介して減速機付きモータで駆動す
るようになつているものが普通である。
Conventional rotary kilns of this type have an external heating system in which the outside of the middle part of the furnace core tube, which is made integrally with a heat-resistant steel tube, is surrounded by a relatively short box-shaped electric heating furnace that is concentric with the core tube and can control the temperature. In most cases, the furnace core tube supporting tires fitted on both sides of the heating furnace in the furnace core tube are placed on two or more sets of support wheels connected in series on the same line. Generally, a sprocket attached to the shaft of one of the support wheels is driven by a motor with a speed reducer via a chain and a speed reducer.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところが、近時、酸化鉄粉末、フエライト粒子
粉末等の磁性粉末その他1000度C以上もの高温度
で加熱する必要のある製品が現れ、通常の鋼管で
は、加熱時に前記炉芯管に変形あるいは高温腐蝕
等が生じるためロータリーキルンを、この種製品
の熱処理に用いることはできなかつた。
However, recently, products such as magnetic powders such as iron oxide powder and ferrite particle powder have appeared that need to be heated at temperatures as high as 1,000 degrees C or more, and with ordinary steel pipes, the furnace core tube may be deformed or undergo high-temperature corrosion during heating. Rotary kilns could not be used for heat treatment of this type of product because of the following.

この為、アルミナ、炭化けい素又は炭化けい素
70〜80%と窒化けい素20〜30%あるいは酸化チタ
ン45%とアルミナ45%等を含むセラミツク製パイ
プを利用してロータリーキルンを製造することが
考えられるが、これらのセラミツクパイプは、寸
法精度、真円度等の関係でその長さが限定される
ことが多く、現在では耐熱性の大きい材料では、
2メートル以下のものが普通である。
For this reason, alumina, silicon carbide or silicon carbide
It is conceivable to manufacture rotary kilns using ceramic pipes containing 70-80% silicon nitride, 20-30% silicon nitride, or 45% titanium oxide and 45% alumina, but these ceramic pipes have poor dimensional accuracy, The length is often limited due to roundness, etc., and currently, with materials with high heat resistance,
Usually less than 2 meters long.

しかも、セラミツクパイプは、溶接が困難であ
り接着強度が乏しいだけでなく高価であるため長
さ方向に接続して用いることは好ましくない。
Moreover, ceramic pipes are difficult to weld, have poor adhesive strength, and are expensive, so it is not preferable to connect them in the longitudinal direction.

そこで、比較的低温度で使用され、駆動機構、
材料の装入、排出及び移送機構等の複雑な構造を
有する入口炉芯管及び出口炉芯管等は従来どうり
ステンレス鋼鋼管で作り、中間の加熱部分のみを
前記のセラミツクパイプのような耐熱性パイプで
作つて両者を接続して用いることが考えられる。
Therefore, it is used at relatively low temperatures, and the drive mechanism,
The inlet and outlet furnace core tubes, which have a complicated structure for charging, discharging, and transferring materials, are made of stainless steel pipes as before, and only the intermediate heating section is made of heat-resistant material such as the ceramic pipe mentioned above. It is conceivable that the two could be made from a plastic pipe and used by connecting the two.

しかし、耐熱性パイプは、一般に引張強さや衝
撃力が小さく、かたさが大である上にその寸法精
度や真円度がステンレス鋼鋼管に比べて劣り、加
工が困難で熱膨張係数が極めて小である。
However, heat-resistant pipes generally have low tensile strength and impact force, are large in hardness, and have inferior dimensional accuracy and roundness compared to stainless steel pipes, are difficult to process, and have an extremely small coefficient of thermal expansion. be.

従つて、この種装置に用いられる溶接あるいは
フランジ継手その他通常の接合手段は、ステンレ
ス鋼鋼管と耐熱性パイプとの接続には利用できな
い。
Therefore, welding, flange joints, and other conventional joining means used in this type of equipment cannot be used to connect stainless steel tubes and heat-resistant pipes.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、考案者は、第1〜4図に示すように、
炉芯管のうち加熱炉1Aを貫通する耐熱円筒胴部
を単純な円筒形とし、これと同一軸線上に配置
された金属製の入口及び出口炉芯管,とを、
上水道用配管その他の配管に通常用いられている
弾力性に富むリングパツキンと押輪を利用するテ
レスコープ形伸縮継手のような可撓性の継手を介
して熱膨張が許されるように接続し、前記の各炉
芯管,をそれぞれセメント製造用その他長尺
ロータリーキルンに利用されている同期駆動手段
を介して接続することによつて、三分割された軸
心の一致し難い炉芯管を高温ガスが漏洩しないよ
うに、しかも耐熱円筒胴部及び継手が破損しな
いように接続することができ、比較的短いものし
か得られない耐熱性パイプをロータリーキルンの
加熱帯として有効に活用し得るものである。
Therefore, the inventor, as shown in Figures 1 to 4,
The heat-resistant cylindrical body part of the furnace core tube that passes through the heating furnace 1A is made into a simple cylinder, and the metal inlet and outlet furnace core tubes are arranged on the same axis as this,
Connected to allow thermal expansion through a flexible joint such as a telescope type expansion joint that uses highly elastic ring packing and push ring commonly used for water supply piping and other piping, and By connecting each furnace core tube through a synchronous drive means used in other long rotary kilns for cement production, high-temperature gas can It is possible to connect the heat-resistant cylindrical body and the joint in a manner that prevents leakage and damage, and allows a heat-resistant pipe, which can only be obtained in a relatively short length, to be effectively utilized as a heating zone of a rotary kiln.

すなわち、本考案は、性質の異なる耐熱パイプ
と通常のステンレス鋼鋼管とを連結して、ロータ
リーキルンのように回転する特別な装置を構成す
るために、従来公知の伸縮管継手を改良した可撓
性管継手と同期回転手段とを巧みに組み合わせる
ことによつて所期の目的を達成しようとしたもの
である。
That is, the present invention is a flexible, improved version of the conventionally known expansion pipe joint, in order to connect heat-resistant pipes with different properties and ordinary stainless steel pipes to construct a special device that rotates like a rotary kiln. The objective was to be achieved by skillfully combining a pipe joint and a synchronous rotation means.

〔作用〕[Effect]

このように、耐熱円筒胴部を単純な円筒形と
し、これを両側から金属製の入口炉芯管及び出
口炉芯管で軸方向に僅かに重なるように挾み、
少なくともその一方の端部に固着されたスリー
ブの内側に嵌装された可撓性リングを介して
前記耐熱円筒胴部を、可撓的にしかも気密に支
持するようにしてあるため耐熱円筒胴部及びこ
れに続く炉芯管,の端部が加熱によつて熱
膨張し、その長さ及び直径方向に寸法差が生じて
も前記可撓性リングが僅かに変形するのみで各
炉芯管,,は自由に伸びることができる。
又可撓性リングは、石綿板その他弾力性に富む
気密な耐熱性の材料で作られているため、このよ
うに僅かな変形では耐熱円筒胴部とスリーブ
の間にガスの漏洩する隙間を生じることはなく、
両者間で膨張して気密性を維持することができ
る。
In this way, the heat-resistant cylindrical body is made into a simple cylindrical shape, which is sandwiched from both sides by metal inlet and outlet hearth tubes so as to slightly overlap in the axial direction.
The heat-resistant cylindrical body is flexibly and airtightly supported via a flexible ring fitted inside a sleeve fixed to at least one end thereof. Even if the end portions of the furnace core tubes that follow the furnace core tubes expand thermally due to heating and a dimensional difference occurs in the length and diameter direction, the flexible ring is only slightly deformed and each furnace core tube, , can be extended freely.
Also, since the flexible ring is made of asbestos board or other highly elastic, airtight, heat-resistant material, such slight deformation will create a gap between the heat-resistant cylindrical body and the sleeve, allowing gas to leak. Without a doubt,
It is possible to maintain airtightness by expanding between the two.

又、各炉芯管,と耐熱円筒胴部との軸心
が完全に一致していなくても、これらが回転する
場合には、変形抵抗の少ない可撓性リングが弾
性変形するため耐熱円筒胴部に無理が生ずるこ
とはない。さらに、その長さが比較的短くて軽い
耐熱円筒胴部は、両端部を前記可撓性リング
によつて把持され、その摩擦力によつて両側から
同一速度で駆動されるため殆どねじりモーメント
を受けることがなく又該円筒胴部と可撓性リン
グとの間に滑りが生じることもない。これは、
一方の炉芯管又はにおけるスリーブを省略
し、耐熱円筒胴部の一端を炉芯管又はで支
持せしめるようにした場合でも同様である。
In addition, even if the axes of each furnace core tube and the heat-resistant cylindrical body do not perfectly match, when these rotate, the flexible ring with low deformation resistance deforms elastically, so the heat-resistant cylindrical body There will be no strain on the department. Furthermore, the heat-resistant cylindrical body, which is relatively short and light in length, is held at both ends by the flexible rings, and is driven at the same speed from both sides by the frictional force, so that almost no torsional moment is generated. There is no slippage between the cylindrical body and the flexible ring. this is,
The same applies even if the sleeve in one of the furnace core tubes is omitted and one end of the heat-resistant cylindrical body is supported by the furnace core tube.

さらに、比較的温度の低い入口炉芯管及び出
口炉芯管は、従来どうりステンレス鋼鋼管その
他の金属で作り、高温度に加熱される中間部のみ
を耐熱性パイプで作つて、これを前記炉芯管及
びに接続したため耐熱円筒胴部は、その大部
分を加熱帯として有効に活用することができる。
Furthermore, the inlet and outlet furnace core tubes, which have relatively low temperatures, are made of stainless steel tubes and other metals as before, and only the middle section, which is heated to a high temperature, is made of heat-resistant pipes. Since it is connected to the furnace core tube, most of the heat-resistant cylindrical body can be effectively used as a heating zone.

〔実施例〕〔Example〕

第2図に例示したように、長さ1700mm、巾780
mm、高さ880mmの箱型に作られ、その内部に温度
制御し得る40kWの電熱式加熱手段を備えた加
熱炉1Aの中央部に、長さ1900mm、内径145mm、
厚さ4.5mmのアルミナ製の耐熱円筒胴部が貫通
し、これと略同一軸線上に該耐熱円筒胴部を挾
んで、その両側の軸方向に僅かに重なる位置に外
形139.8mm、厚さ5.5mmのボイラ・熱交換器用ステ
ンレス鋼鋼管JISG 3463のSUS304TBで作られた
入口炉芯管及び外形165.2mm、厚さ3.4mmの配管
用ステンレス鋼鋼管(JIS G 3459の
SUS304TP)で作られた出口炉芯管が配置さ
れている。各炉芯管,の前記耐熱円筒胴部
寄りの端部には、第1図及び第4図に示したよ
うに炉芯管又はよりは若干大きく、その一端
にフランジ6Aを、他端には炉芯管又はの外
径に嵌合する孔6Bを有する端板6Cを備え、そ
の中間に該端板6Cと同径の孔を有するストツパ
ーリング6D(この部分は、第1図に示した炉芯
管のスリーブの構造を示す。)を備えたステ
ンレス鋼鋳鋼(JIS G 5121のSCS1)製のスリ
ーブが溶接されている。該スリーブを含む入
口炉芯管の全長は、1150mm、出口炉芯管の全
長は、750mmである。入口炉芯管及び出口炉芯
管には、それぞれステンレス鋼鋳鋼(SCS1)
製のタイヤが取りつけられている。入口炉芯管
では、1本のタイヤ7−1が端板6Cの外側に
スリーブと一体鋳造され、他方のタイヤはフラ
ンジ6Aの外周がこれを兼用している。
As illustrated in Figure 2, length 1700mm, width 780mm
In the center of the heating furnace 1A, which is made into a box shape with a height of 880 mm and a 40 kW electric heating means that can control the temperature, there is a
A heat-resistant cylindrical body made of alumina with a thickness of 4.5 mm passes through the body, and a heat-resistant cylindrical body with an outer diameter of 139.8 mm and a thickness of 5.5 Inlet furnace core tube made of SUS304TB of JIS G 3463 stainless steel pipe for boilers and heat exchangers of mm, and stainless steel pipe for piping with external diameter of 165.2 mm and thickness of 3.4 mm (JIS G 3459)
An outlet furnace core tube made of SUS304TP is installed. As shown in FIGS. 1 and 4, the end of each furnace core tube near the heat-resistant cylindrical body is slightly larger than the furnace core tube, and has a flange 6A at one end and a flange 6A at the other end. It is equipped with an end plate 6C having a hole 6B that fits into the outer diameter of the furnace core tube, and a stopper ring 6D having a hole with the same diameter as the end plate 6C in the middle (this part is shown in FIG. 1). A sleeve made of cast stainless steel (SCS1 of JIS G 5121) is welded. The total length of the inlet core tube including the sleeve is 1150 mm, and the total length of the outlet core tube is 750 mm. The inlet furnace core tube and outlet furnace core tube are each made of cast stainless steel (SCS1).
tires are installed. In the inlet furnace core tube, one tire 7-1 is integrally cast with the sleeve on the outside of the end plate 6C, and the outer periphery of the flange 6A serves as the other tire.

各タイヤ7,7A,6Aは、第2図に示すよう
に、それぞれ同一線上に複数組連設された2個1
組の支持輪7B上に載置され、一方の支持輪7B
−1の軸7B−2にはスプロケツト7Cが取りつ
けられ、中間部7D−1に取りつけられたスプロ
ケツトとチエーンからなる減速機7Dを介して出
力0.75kWの減速機付きモータ7Eで駆動される。
As shown in FIG.
It is placed on a pair of support wheels 7B, and one support wheel 7B
A sprocket 7C is attached to the shaft 7B-2 of the shaft 7B-1, and is driven by a reducer-equipped motor 7E with an output of 0.75 kW via a reducer 7D consisting of a sprocket and a chain attached to the intermediate portion 7D-1.

前記中間軸7D−1は、耐熱円筒胴部に沿つ
て延長された他方の減速機7D−2に連結されて
いるため、タイヤ7と同径のタイヤ7−1は、同
期速度で回転し、従つて入口炉芯管と出口炉芯
管は常に同一回転数で回転することとなる。
Since the intermediate shaft 7D-1 is connected to the other reducer 7D-2 extending along the heat-resistant cylindrical body, the tire 7-1 having the same diameter as the tire 7 rotates at a synchronous speed. Therefore, the inlet furnace core tube and the outlet furnace core tube always rotate at the same rotation speed.

又、出口炉芯管のスリーブ6−2は、第4図
に示すようにタイヤ7−1とストツパーリング6
Dを備えていない点ならびにその大きさが異るの
みで第1図にしめしたスリーブと大差はない
が、フランジ6Aと端板6Cの中間には、炉芯管
が長さ方向に自由に伸縮し得るように該炉芯管
の外径に遊嵌し得る孔6−Eを備えたパツキン
グ エンドリング6D−2が形成されている。入
口炉芯管及び出口炉芯管のスリーブ及び6
−2は、それぞれその内側にこれと同心に軸方向
に摺動し得るフランジ8A付きの押輪を備えて
おり、該押輪とスリーブ,6−2及びこれと
対向する入口炉芯管又は出口炉芯管との間に
石綿板を環状に切抜いた複数枚の可撓性リング
が装填されている。該可撓性リングは、スリー
ブ,6−2のフランジ6Aと押輪のフランジ
8Aに等ピツチに穿設された複数個の孔に挿入さ
れたボルト8Bおよびナツト8Cを締めることに
よつて、押輪が耐熱円筒胴の方へ押し込まれ
ると軸方向に膨出し、上記円筒胴の外周に密着
する。
Further, the sleeve 6-2 of the outlet furnace core tube is connected to the tire 7-1 and the stopper ring 6 as shown in FIG.
It is not much different from the sleeve shown in Fig. 1 except that it does not have D and its size, but between the flange 6A and the end plate 6C, there is a furnace core tube that can freely expand and contract in the length direction. A packing end ring 6D-2 is formed with a hole 6-E that can loosely fit into the outer diameter of the furnace core tube. Sleeves and 6 of the inlet and outlet core tubes
-2 is equipped with a push ring with a flange 8A that can slide concentrically in the axial direction on the inside thereof, and the push ring and sleeve, 6-2, and an inlet furnace core tube or an outlet furnace core opposite thereto. A plurality of flexible rings made by cutting out asbestos plates in an annular shape are loaded between the pipe and the tube. The flexible ring is constructed by tightening bolts 8B and nuts 8C inserted into a plurality of holes equally spaced in the flange 6A of the sleeve 6-2 and the flange 8A of the push ring. When pushed toward the heat-resistant cylindrical body, it expands in the axial direction and comes into close contact with the outer periphery of the cylindrical body.

このように構成したロータリーキルンの入口炉
芯管に、その一端から炭酸バリウムと酸化鉄の
混合物を毎時25Kgづゝ均等に給送しながら、モー
タ7Eにより入口炉芯管、耐熱円筒胴部及び
出口炉芯管を一体として回転させると、上記原
料は、入口炉芯管内において図示されていない
加熱手段によつて約300度Cまで予熱された後、
耐熱円筒胴部内へ送り込まれ、加熱手段によ
り1200度Cまで加熱される。加熱された前記原料
は、出口炉芯管へ送り出され、同炉芯管内で
徐冷されて所望の品質を備えたバリウムフエライ
トとなり、その一端から炉外へ排出される。原料
の炉芯管〜内における処理時間は、約20分で
あるが、炉内滞留時間は、炉芯管,,据付
時の勾配と製品銘柄に応じて速度制御されるモー
タ7Eの回転数によつて5〜30分の間で加減する
ことができる。加熱炉および予熱手段も、製品
銘柄に応じてその温度を1100〜1300度Cに制御し
得るようになつている。
While evenly feeding a mixture of barium carbonate and iron oxide at a rate of 25 kg/hour from one end to the inlet core tube of the rotary kiln configured as described above, the motor 7E is used to move the inlet core tube, heat-resistant cylindrical body, and outlet furnace. When the core tube is rotated as a unit, the raw material is preheated to about 300 degrees Celsius by a heating means (not shown) in the inlet furnace core tube, and then
It is fed into the heat-resistant cylindrical body and heated to 1200 degrees Celsius by heating means. The heated raw material is sent to the outlet furnace core tube, where it is slowly cooled to become barium ferrite having the desired quality, and is discharged from one end of the barium ferrite to the outside of the furnace. The processing time for raw materials in the furnace core tube is about 20 minutes, but the residence time in the furnace depends on the rotation speed of the motor 7E, which is controlled according to the slope at the time of installation and the product brand. Therefore, the time can be adjusted between 5 and 30 minutes. The temperature of the heating furnace and preheating means can also be controlled at 1100 to 1300 degrees Celsius depending on the product brand.

スリーブ、押輪及び可撓性リング等は、
必ずしも入口炉芯管と出口炉芯管の両方に設
ける必要はなく、耐熱円筒胴部が比較的短くて
軽く、その中に滞留する被処理材の重量が小さい
場合で、排ガスの僅かな漏洩が問題にならなけれ
ば、その一方を省略することができる。第5図に
従つてその一例を示すと、厚さ10.0mmのアルミナ
管で作られた耐熱円筒胴部の尾端は、内径170
mm、厚さ15mm、長さ150mmの炭化けい素管4Aを
介して外径216.3mm、厚さ4mmの配管用ステンレ
ス鋼鋼管製出口炉芯管の内側に挿入支持されて
いる。該炉芯管の外側には、ステンレス鋼鋳鋼
製のタイヤが直接冷し嵌めされ、図示されてい
ないコツタで回り止めが施されているが、これ以
外の部分は、前述の実施例と同様である。
Sleeves, push rings, flexible rings, etc.
It is not necessarily necessary to provide it in both the inlet and outlet furnace core tubes, and if the heat-resistant cylindrical body is relatively short and light and the weight of the material to be treated that remains inside is small, it is possible to prevent a slight leakage of exhaust gas. If it is not a problem, you can omit one of them. An example is shown in Fig. 5. The tail end of a heat-resistant cylindrical body made of an alumina tube with a thickness of 10.0 mm has an inner diameter of 170 mm.
It is inserted and supported inside an outlet furnace core tube made of stainless steel pipe for piping with an outer diameter of 216.3 mm and a thickness of 4 mm via a silicon carbide tube 4A having a diameter of 15 mm, a thickness of 15 mm, and a length of 150 mm. A tire made of stainless steel cast steel is directly cold-fitted onto the outside of the furnace core tube, and is prevented from rotating with a not-shown clasp, but other parts are the same as in the previous embodiment. be.

又、耐熱円筒胴部の材料として何を用いるか
は、その大きさと被処理材の加熱条件、処理量そ
の他を考慮して定めなければならないが、アルミ
ナ、炭化けい素又は炭化けい素70〜80%と窒化け
い素20〜30%あるいは酸化チタン45%とアルミナ
45%等を含むセラミツクの外、特殊耐熱合金管や
石英管等耐熱性と所定の強さを有するものであれ
ば良い。
The material to be used for the heat-resistant cylindrical body must be determined by considering its size, heating conditions of the material to be treated, amount of treatment, etc., but alumina, silicon carbide, or silicon carbide 70 to 80 % and silicon nitride 20-30% or titanium oxide 45% and alumina
In addition to ceramics containing 45% or the like, any material having heat resistance and specified strength, such as a special heat-resistant alloy tube or quartz tube, may be used.

さらに可撓性リングとしては、石綿板の外、ア
ルミナフエルトを用いることもできる。
Furthermore, as the flexible ring, in addition to asbestos board, alumina felt can also be used.

なお、同期駆動手段としては、前記実施例に示
した摩擦車の外、共通軸を介して連結された複数
組の同径ガースギヤとピニオンや同期回転するよ
うに制御された複数個の直流モータを用いても良
い。
In addition to the friction wheels shown in the above embodiments, the synchronous drive means may include multiple sets of girth gears and pinions of the same diameter connected via a common shaft, or multiple DC motors controlled to rotate synchronously. May be used.

〔考案の効果〕[Effect of idea]

以上、詳細に説明したような構成のロータリー
キルンとすれば、被処理材を1000度C以上の高温
度に加熱する場合にも、耐熱円筒胴部又はその
継手が破損することは無く、高温ガスの漏洩が殆
んど無いために、装置の故障により処理プラント
を休止せしめるような事故を未然に防止すること
ができる。このため、装置の稼動率を向上せしめ
ることが可能となる上に、高価で長いものが得難
い耐熱性パイプの大部分を加熱帯として有効に利
用することができるので工業上極めて有益であ
る。
If the rotary kiln has the configuration described above in detail, the heat-resistant cylindrical body or its joints will not be damaged even when the material to be processed is heated to a high temperature of 1000 degrees C or more, and the high-temperature gas will not be damaged. Since there is almost no leakage, it is possible to prevent accidents that would cause the processing plant to be shut down due to equipment failure. Therefore, it is possible to improve the operating rate of the device, and most of the heat-resistant pipes, which are expensive and difficult to obtain in long lengths, can be effectively used as a heating zone, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案ロータリーキルンの特徴を最
もよく表す部分の断面図、第2図は本考案の一実
施例を示す縦断面図、第3図は第2図の−線
に沿う横断面図で、−線は第2図に示した位
置を表す。第4図は、出口炉芯管のスリーブ6
−2を示す縦断面図、第5図は出口炉芯管の端
部の異なる実施例を示す縦断面図である。
Fig. 1 is a cross-sectional view of a portion that best represents the features of the rotary kiln of the present invention, Fig. 2 is a longitudinal cross-sectional view showing an embodiment of the present invention, and Fig. 3 is a cross-sectional view taken along the - line in Fig. 2. The - line represents the position shown in FIG. Figure 4 shows the sleeve 6 of the outlet furnace tube.
Fig. 5 is a longitudinal sectional view showing a different embodiment of the end of the outlet furnace core tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 横向きに配置され、その外側に加熱手段を備
えた耐熱円筒胴部、該耐熱円筒胴部と同一軸
線上にこれを挾んでその両側の軸方向に僅かに重
なる位置に配置された金属製の入口炉芯管と出
口炉芯管、該両炉芯管,の内の少なくとも
一方の炉芯管における前記耐熱円筒胴部寄りの
端部に固着されたスリーブ及び前記の入口炉
芯管と出口炉芯管のそれぞれに取りつけられ
た同期回転する駆動手段とからなり、前記スリ
ーブの内側にこれと同心にその軸方向に摺動し
得るように付設された押輪、該押輪と前記ス
リーブの内側及びこれと対向する前記耐熱円筒
胴部の間に嵌装され前記押輪を軸方向に押し
込むことによつて輻方向に膨出し前記耐熱円筒胴
部に密着する耐熱性で気密な可撓性リングと
を備えてなることを特徴とするロータリーキル
ン。
A heat-resistant cylindrical body disposed horizontally and equipped with a heating means on the outside thereof, and a metal inlet disposed on the same axis as the heat-resistant cylindrical body, sandwiching it and slightly overlapping in the axial direction on both sides thereof. A furnace core tube and an outlet furnace core tube, a sleeve fixed to an end of at least one of the furnace core tubes closer to the heat-resistant cylindrical body, and the inlet furnace core tube and the outlet furnace core. synchronously rotating driving means attached to each of the tubes, a press ring attached to the inside of the sleeve so as to be able to slide in the axial direction concentrically therewith, the press ring and the inside of the sleeve, and a heat-resistant, airtight flexible ring that is fitted between the opposing heat-resistant cylindrical bodies and bulges in the radial direction when the press ring is pushed in the axial direction, and is in close contact with the heat-resistant cylindrical bodies; A rotary kiln characterized by:
JP11212284U 1984-07-23 1984-07-23 rotary kiln Granted JPS6127094U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212284U JPS6127094U (en) 1984-07-23 1984-07-23 rotary kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212284U JPS6127094U (en) 1984-07-23 1984-07-23 rotary kiln

Publications (2)

Publication Number Publication Date
JPS6127094U JPS6127094U (en) 1986-02-18
JPH0222632Y2 true JPH0222632Y2 (en) 1990-06-19

Family

ID=30671189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212284U Granted JPS6127094U (en) 1984-07-23 1984-07-23 rotary kiln

Country Status (1)

Country Link
JP (1) JPS6127094U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695348B2 (en) * 2009-09-14 2015-04-01 高砂工業株式会社 Rotary kiln

Also Published As

Publication number Publication date
JPS6127094U (en) 1986-02-18

Similar Documents

Publication Publication Date Title
JP2001082880A (en) Rotary tubular furnace made of graphite
JPH06504358A (en) Rotary tube heat treatment equipment, in particular rotary tube furnaces with indirect heat introduction or heat extraction
JPH0222632Y2 (en)
JPH1129826A (en) Heat-insulating roll
US3860387A (en) Roller for supporting a workpiece in a furnace or the like
AU2006231231B2 (en) Cooled roller for handling steel products
CN201053815Y (en) Rolling friction transmission and rotary type high temperature-sintering device
US3058731A (en) Internally cooled conveyor roll
JP3300207B2 (en) Heated object transport roller in heat treatment furnace
CN207163136U (en) A kind of rotary reactor of dry fine coal
TWI725989B (en) Conveyor roll assembly for use at high temperature and process for making the same
KR100758993B1 (en) A rotary kiln furnace
JP2881537B2 (en) Rotary kiln
US1849287A (en) Conveying elements for heat treating furnaces
JP2541032Y2 (en) Hearth roller for continuous furnace
US3978914A (en) Rotary ceramic heat exchanger mounting
JP3652773B2 (en) elbow
JP3136747B2 (en) Roll for furnace transfer
US3464683A (en) Rotary retort furnace
JPS6244984Y2 (en)
JPH10148469A (en) Externally heated rotary kirn and production of powdery/granular high purity material
JPH10300357A (en) Method of supporting core tube in rotary furnace
US1081063A (en) Mechanism for nodulizing materials.
EP4325152A1 (en) Calcined clay cooler
JPH0317200Y2 (en)