JPH02226049A - Atomic absorption spectro photometer - Google Patents

Atomic absorption spectro photometer

Info

Publication number
JPH02226049A
JPH02226049A JP4813089A JP4813089A JPH02226049A JP H02226049 A JPH02226049 A JP H02226049A JP 4813089 A JP4813089 A JP 4813089A JP 4813089 A JP4813089 A JP 4813089A JP H02226049 A JPH02226049 A JP H02226049A
Authority
JP
Japan
Prior art keywords
line spectrum
reactor
atomic absorption
bright line
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4813089A
Other languages
Japanese (ja)
Other versions
JPH0762649B2 (en
Inventor
Tomohiro Nakano
中野 友裕
Kikuo Sasaki
佐々木 菊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1048130A priority Critical patent/JPH0762649B2/en
Publication of JPH02226049A publication Critical patent/JPH02226049A/en
Publication of JPH0762649B2 publication Critical patent/JPH0762649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a highly accurate analysis by using a lamp which is lit with small and large currents flowing alternately to a light source while either one window at an inlet or outlet of bright line spectrum is made detachable at an atomizer. CONSTITUTION:Luminous flux from a light source holocathode lamp 1 is incident into a window plate 3 and enters a spectroscope 6 via a mobile window plate 4 passing through an atomizer 2. The luminous flux passing through the atomizing furnace 2 absorbs a bright line spectrum intensely in a selective manner while the bright line spectrum is analyzed with a spectroscope 6 to be detected as electrical signal with a detector 7. A difference in absorbance of the bright line spectrum between the moments of large and small currents is determined with a signal processing section 8. The results are shown on a display section through a control section 9 as value proportional to a concentration of a desired element.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大気汚染、水質汚濁などの環境分析、医薬品
、食品中などの重金属の分析、金属材料分析、生体中微
量金属の分析などに用いる原子吸光分光光度計に関し、
特に試料が固体である場合に好適な原子吸光分光光度計
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to environmental analysis such as air pollution and water pollution, analysis of heavy metals in pharmaceuticals and foods, analysis of metal materials, analysis of trace metals in living organisms, etc. Regarding the atomic absorption spectrophotometer used,
The present invention relates to an atomic absorption spectrophotometer suitable particularly when the sample is a solid.

[従来の技術] 従来の原子吸光分光光度計においては、固体試料中の金
属元素を分析(定量)しようとする場合、一般的には固
体試料を溶解し、特に組成が複雑なしの或いは微量元素
の分析のときには、必要に応じて溶媒抽出操作により得
られる溶液をフレーム或いはフレームレス原子吸光分光
光度計に注入して分析するようにしている。
[Prior art] In conventional atomic absorption spectrophotometers, when attempting to analyze (quantitate) metal elements in a solid sample, the solid sample is generally dissolved, and especially if the composition is not complex or trace elements are analyzed, the solid sample is dissolved. When performing this analysis, the solution obtained by solvent extraction is injected into a flame or flameless atomic absorption spectrophotometer for analysis, if necessary.

他方、固体試料を前処理なしに直接分析することもおこ
なわれているが、この場合には原子化部を固体熱分解グ
ラファイト管(炉)で構成するようにしている(Mえば
、特開昭59−94043号公報参照)、このとき、試
料の導入は端面の開口部からボート(試料皿)により挿
入する方法をとっている。
On the other hand, solid samples are also analyzed directly without pretreatment, but in this case the atomization section is constructed with a solid pyrolytic graphite tube (furnace) (for example, 59-94043), at this time, the sample is introduced through an opening in the end face using a boat (sample dish).

また、固体試料を直接分析する場合には、試料処理が全
く施されておらず、バックグラウンドが非常に大きいた
め、−a的にバックグラウンド補正に関し精度の高いゼ
ーマン法を採用した固体試料分析用原子吸光分光光度計
も実用化されている。
In addition, when directly analyzing a solid sample, no sample processing is performed and the background is extremely large. Atomic absorption spectrophotometers have also been put into practical use.

[発明が解決しようとする課M1 従来の原子吸光分光光度計にあっては、固体試料を溶液
試料とする場合は、前処理の操作に多大の時間と労力を
要するため、迅速な分析が達成できないという問題点が
あった。また、前処理において試料ロス、コンタミネー
ション、希釈誤差等を生じるおそれがあるという問題点
もあった。
[Problem to be solved by the invention M1 In conventional atomic absorption spectrophotometers, when a solid sample is used as a solution sample, pretreatment operations require a lot of time and effort, so rapid analysis cannot be achieved. The problem was that it couldn't be done. Further, there is a problem that sample loss, contamination, dilution error, etc. may occur during pretreatment.

他方、固体試料を前処理なしに直接分析する場合は、大
口径グラファイト管(炉)を用いると、その発光強度が
大きくなり、相対的に光源強度が低くなって、ベースラ
インノイズの増大、ピーク値のバラツキが大きくなるた
め、大口径グラファイト管を採用することができず、原
子化炉への試料導入が困難であるという問題点があった
On the other hand, when directly analyzing a solid sample without pretreatment, using a large-diameter graphite tube (furnace) increases the emission intensity and relatively lowers the light source intensity, increasing baseline noise and peak Because of the large variation in values, it was not possible to use a large-diameter graphite tube, and there was a problem in that it was difficult to introduce the sample into the nuclear reactor.

才な、ゼーマン原子吸光分光光度計の場合は、もともと
偏光子による光量ロスがあるため、固体試料からのバッ
クグラウンドによる光量ロスとも相俟ってかなりのエネ
ルギーロスがおこり、SZN比が著しく低下するという
問題点があった。
In the case of the Zeeman atomic absorption spectrophotometer, there is originally a loss of light amount due to the polarizer, and this together with the loss of light amount due to the background from the solid sample causes a considerable energy loss, resulting in a significant drop in the SZN ratio. There was a problem.

本発明は、固体試料を前処理なしに直接分析する方式で
、試料導入を容易にするため原子化炉を大口径化しても
ノイズの増大、ピーク値のバラツキが大きくならず、高
精度の分析ができる原子吸光分光光度計を得ることを目
的としている。
The present invention is a method that directly analyzes solid samples without pretreatment, and in order to facilitate sample introduction, even if the diameter of the nuclear reactor is increased, noise increases and peak value variations do not become large, and high-precision analysis can be achieved. The aim is to obtain an atomic absorption spectrophotometer that can perform

「課題を解決するための手段] 上記目的を達成するために、本発明の原子吸光分光光度
計においては、小電流と大電流を交互に流して点灯され
るランプを光源に用いると共に、通過する輝線スペクト
ルの原子化炉の入口または出口の窓のうち少なくとも一
方を着脱可能に構成したものである。原子化炉には、円
筒状等のグラファイト炉を用いる。
"Means for Solving the Problems" In order to achieve the above object, the atomic absorption spectrophotometer of the present invention uses a lamp that is lit by alternately passing a small current and a large current as a light source. At least one of the entrance and exit windows of the atomization reactor for bright line spectra is configured to be removable.A cylindrical graphite furnace is used as the atomization reactor.

また、原子化炉内に導入するインナーガスや加熱中に試
料から発生するガスを炉外に排出するため、原子化炉の
外壁または窓にガス噴出口を設けるのが効果的である。
Furthermore, in order to discharge the inner gas introduced into the reactor and the gas generated from the sample during heating to the outside of the reactor, it is effective to provide a gas outlet in the outer wall or window of the reactor.

さらに、原子化炉の着脱可能に構成した窓は、原子化炉
内への試料の挿入後に、例えば原子化炉の昇温プログラ
ム(乾燥、灰化、原子化)と連動して駆動させるとよい
Furthermore, the removable window of the nuclear reactor is preferably driven after the sample is inserted into the reactor, for example in conjunction with the temperature increase program (drying, ashing, atomization) of the reactor. .

[作 用] 上記のように構成された原子吸光分光光度計の光源を点
灯すると、周知のとおり、ランプの輝線スペクトルは大
電流時にはバックグラウンド吸収を受ける中心が凹んだ
形となり、他方小電流時にはバックグラウンド吸収と原
子吸光の双方の吸収を受ける一本のピークとなるので、
両者の吸光度の策よりバックグラウンド吸収の補正され
た原子吸光が測定できるが、このような点灯手法の光源
は光量ロスがなく光強度が強いため、原子化炉の大口径
化にともなう原子化炉と光源との発光強度の相対的な低
下を緩和し、原子化炉の大口径を可能にする。
[Function] When the light source of an atomic absorption spectrophotometer configured as described above is turned on, as is well known, the emission line spectrum of the lamp becomes concave at the center where background absorption occurs at high currents, while at low currents the light source of the lamp becomes concave. Since it becomes a single peak that absorbs both background absorption and atomic absorption,
Using both absorbance measures, it is possible to measure atomic absorption with background absorption corrected.However, the light source using this lighting method has no loss of light quantity and has a strong light intensity, so it is possible to measure the atomic absorption with the background absorption corrected. This alleviates the relative decrease in emission intensity between the light source and the light source, and enables a large diameter nuclear reactor.

また、原子化炉の外壁または窓に設けたガス噴出口は、
特に乾燥、灰化時に試料から発生する煙を、炉内に導入
する不活性なインナーガスの作用により炉外に排出する
のに役立ち、バックグラウンドの影響を受けにくくする
。なお、試料から発生する煙は原子化炉の両端の入口及
び出口を開口端とすることにより効果的に拡散するが、
反面、炉外の空気が炉内に流入することにより原子化炉
(グラファイト炉)の寿命を縮め、原子化時には原子化
元素の拡散をもたらし、感度の低下をきたすことになる
In addition, the gas outlet installed on the outer wall or window of the nuclear reactor is
In particular, the inert inner gas introduced into the furnace helps to discharge smoke generated from the sample during drying and ashing to the outside of the furnace, making it less susceptible to background effects. Note that the smoke generated from the sample can be effectively diffused by making the inlet and outlet at both ends of the reactor open.
On the other hand, air from outside the reactor flows into the reactor, shortening the life of the atomization reactor (graphite reactor), causing diffusion of atomized elements during atomization, and reducing sensitivity.

このような理由から、原子化炉の着脱可能に構成した窓
を原子化炉の昇温プログラムと連動して駆動し、例えば
特に煙が多量に発生する固体試料の場合には乾燥、灰化
時には窓を開成状態に維持して煙の拡散を効果的におこ
ない、原子化時に開成して感度の低下を回避するのが好
ましい、もちろん、煙の発生がさほど多くない試料の場
合には、炉内への試料の導入後から窓を開成状態に維持
し、煙を炉壁または窓のガス噴出口より排出すればよい [実施例] 実施例について図面を参照して説明すると、第1図にお
いて、光源1はホロカソードランプで、小電流、大電流
及び予備点灯(ベース)もしくは電流オフの3状悪を1
サイクルとして高速周波数(100Hz)点灯する。こ
のような点灯手法のランプは原子化炉の発光ノイズの影
響を受けず、光量ロスがなく、大電流時の光強度は小電
流時の100倍以上になる。ホロカソードランプ1に小
電流と大電流を交互に流すと、ランプの輝線スペクトル
は大電流時には中心が凹んだ形となり、主にバックグラ
ウンド吸収を受け、他方小電流時には一本のピークとな
り、バックグラウンド吸収と原子吸光の双方の吸収を受
けるので、したがって両者の吸光度の差を求めれば、バ
ックグラウンド吸収の補正された真の原子吸光が測定で
きる。
For this reason, the removable window of the reactor is operated in conjunction with the reactor's temperature increase program, for example, for drying solid samples that generate a lot of smoke, and for ashing. It is preferable to keep the window open to effectively diffuse smoke, and open it during atomization to avoid a decrease in sensitivity. Of course, if the sample does not generate much smoke, After introducing the sample into the chamber, the window may be kept open and the smoke may be discharged from the furnace wall or the gas outlet of the window [Example] An example will be described with reference to the drawings. Light source 1 is a hollow cathode lamp, which can handle three conditions: small current, large current, preliminary lighting (base), or current off.
Lights up at high speed frequency (100Hz) as a cycle. Lamps using this lighting method are not affected by the light emission noise of the nuclear reactor, there is no loss of light quantity, and the light intensity at high current is more than 100 times that at low current. When a small current and a large current are applied alternately to the hollow cathode lamp 1, the emission line spectrum of the lamp becomes concave at the center at high currents and is mainly subject to background absorption, while at small currents it becomes a single peak with no background absorption. Since it receives both ground absorption and atomic absorption, by finding the difference between the two absorbances, it is possible to measure the true atomic absorption with background absorption corrected.

光源1からの光束は窓板3から入射し、原子化炉2を通
過して分光器6に入る。原子化炉2はグラファイト炉で
、周知のとおり、供給する電流をル制御することにより
炉内の設定加熱温度、すなわち乾燥、灰化及び原子化の
各段階に応じた温度に制御する。原子化炉2内にはイン
ナーガスとして不活性ガスを導入し、炉外壁に開口した
ガス噴出口5または/及び窓板3.4に設けたガス噴出
口5 (第2図参照)より乾燥、灰化時に試料より発生
する煙を炉外に排出する0通常は、試料をボート(試料
皿)に載せて原子化炉2内に挿入した後に可動窓板4を
閉成するが、試料によって多量に煙が発生する場合、可
動窓板4を、好ましくは固定窓板3も可動として両窓板
を乾燥、灰化時には開成させるのがよい、原子化時には
、窓板4はm成し、不活性ガスの炉内への導入も停止す
る。
A light beam from a light source 1 enters through a window plate 3, passes through an atomization reactor 2, and enters a spectrometer 6. The atomization reactor 2 is a graphite reactor, and as is well known, by controlling the supplied current, the atomization reactor 2 is controlled to a set heating temperature in the reactor, that is, a temperature corresponding to each stage of drying, ashing, and atomization. An inert gas is introduced into the reactor 2 as an inner gas, and the gas is dried through the gas outlet 5 opened in the outer wall of the reactor or/and the gas outlet 5 provided in the window plate 3.4 (see Fig. 2). Normally, the movable window plate 4 is closed after the sample is placed on a boat (sample tray) and inserted into the reactor 2, but smoke generated by the sample during ashing is discharged outside the reactor. When smoke is generated, it is better to make the movable window plate 4, preferably also the fixed window plate 3, movable and open both window plates when drying and ashing.When atomizing, the window plate 4 becomes m-formed and non-formed. The introduction of active gas into the furnace is also stopped.

原子化された目的元素が拡散し、感度が低下するのを防
止するためである。
This is to prevent the atomized target element from diffusing and reducing sensitivity.

可動窓板4の駆動は適宜の手段によっておこなうことが
できるが、そのタイミングは上述の点を考慮すれば、原
子化炉2の昇温プログラムと連動しておこなうのがよい
が、分析開始のための押しボタンの操作と連動させるこ
とも可能である。
The movable window plate 4 can be driven by any appropriate means, but considering the above-mentioned points, it is best to do it in conjunction with the temperature increase program of the nuclear reactor 2, It is also possible to link this to the operation of the push button.

原子化炉2を通過した光束は、輝線スペクトルを選択的
に強く吸収し、分光器6でこの輝線スペクトルを分光し
て、検出器7で電気信号として検出する。前述したよう
に、大電流時の輝線スペクトルと小電流時の輝線スペク
トルの吸光度の差が信号処理部8で求められ、これを目
的元素の濃度に比例した値として制御部9を通じて表示
部11に指示する。これら信号処理系は周知のとおりで
ある。なお、10はキーボード等の操作部である。
The luminous flux that has passed through the atomization reactor 2 selectively and strongly absorbs the bright line spectrum, the spectrometer 6 separates the bright line spectrum, and the detector 7 detects the bright line spectrum as an electric signal. As mentioned above, the difference in absorbance between the bright line spectrum at a large current and the bright line spectrum at a small current is determined by the signal processing section 8, and is displayed on the display section 11 through the control section 9 as a value proportional to the concentration of the target element. Instruct. These signal processing systems are well known. Note that 10 is an operation unit such as a keyboard.

[発明の効果] 本発明は、以上説明したように構成されているので、原
子化炉を大形化(大口径)することができ、固体試料の
原子化炉内への導入が容易となり、そして原子化炉内の
煙を効果的に拡散させることができ、固体試料を高感度
で、かつ高精度に直接分析することができる。
[Effects of the Invention] Since the present invention is configured as described above, the nuclear reactor can be made larger (large diameter), and solid samples can be easily introduced into the reactor. The smoke inside the nuclear reactor can be effectively diffused, and solid samples can be directly analyzed with high sensitivity and precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子吸光分光光度計のシステムブロッ
ク図で、第2図は窓板の形状を示す図である。 1・・・光源、2・・・原子化炉、3.4・・・窓板5
.5−・・・ガス噴出口、6−・・分光器、7・・・検
出器、8・・・信号処理部 特許出願人 株式会社島津制作所
FIG. 1 is a system block diagram of the atomic absorption spectrophotometer of the present invention, and FIG. 2 is a diagram showing the shape of the window plate. 1... Light source, 2... Nuclear reactor, 3.4... Window plate 5
.. 5-...Gas outlet, 6-...Spectrometer, 7...Detector, 8...Signal processing unit Patent applicant Shimadzu Corporation

Claims (1)

【特許請求の範囲】 1、光源からの放射輝線スペクトルを、試料中に含まれ
る目的元素を原子化する原子化炉を通過させ、分光器で
目的元素の輝線のみ選択し、これを検出器で検出する原
子吸光分光光度計において、 前記光源に小電流と大電流を交互に流して 点灯されるランプを用いると共に、前記原子化炉の前記
輝線スペクトルの入口又は出口の窓のうち少なくとも一
方を着脱可能に構成したことを特徴とする原子吸光分光
光度計。
[Claims] 1. The emission line spectrum from the light source is passed through an atomization reactor that atomizes the target element contained in the sample, only the emission line of the target element is selected by the spectrometer, and this is detected by the detector. In the atomic absorption spectrophotometer for detection, a lamp is used that is lit by alternately passing a small current and a large current through the light source, and at least one of the windows at the entrance or exit of the bright line spectrum of the atomization reactor is attached or detached. An atomic absorption spectrophotometer characterized in that the atomic absorption spectrophotometer is configured to enable
JP1048130A 1989-02-27 1989-02-27 Atomic absorption spectrophotometer Expired - Lifetime JPH0762649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048130A JPH0762649B2 (en) 1989-02-27 1989-02-27 Atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048130A JPH0762649B2 (en) 1989-02-27 1989-02-27 Atomic absorption spectrophotometer

Publications (2)

Publication Number Publication Date
JPH02226049A true JPH02226049A (en) 1990-09-07
JPH0762649B2 JPH0762649B2 (en) 1995-07-05

Family

ID=12794747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048130A Expired - Lifetime JPH0762649B2 (en) 1989-02-27 1989-02-27 Atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0762649B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694607A (en) * 1992-09-11 1994-04-08 Shimadzu Corp Flameless atomic absorption spectro photometer
CN111307733A (en) * 2018-11-27 2020-06-19 株式会社岛津制作所 Atomic absorption spectrophotometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134687A (en) * 1975-05-16 1976-11-22 Jeol Ltd Atomic extinction analysis method
JPS6126919U (en) * 1984-07-25 1986-02-18 株式会社ノーリツ oil vaporization burner
JPS6145478U (en) * 1984-08-24 1986-03-26 鹿島建設株式会社 drain for sanitary appliances

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134687A (en) * 1975-05-16 1976-11-22 Jeol Ltd Atomic extinction analysis method
JPS6126919U (en) * 1984-07-25 1986-02-18 株式会社ノーリツ oil vaporization burner
JPS6145478U (en) * 1984-08-24 1986-03-26 鹿島建設株式会社 drain for sanitary appliances

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694607A (en) * 1992-09-11 1994-04-08 Shimadzu Corp Flameless atomic absorption spectro photometer
CN111307733A (en) * 2018-11-27 2020-06-19 株式会社岛津制作所 Atomic absorption spectrophotometer
CN111307733B (en) * 2018-11-27 2023-06-09 株式会社岛津制作所 Atomic absorption spectrophotometer

Also Published As

Publication number Publication date
JPH0762649B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
Sanford et al. Portable, battery-powered, tungsten coil atomic absorption spectrometer for lead determinations
Salin et al. Signal-to-noise ratio performance characteristics of an inductively coupled plasma
O'Haver Continuum-source atomic-absorption spectrometry: past, present and future prospects. Plenary lecture
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Machado et al. Modular design of a trap-and-atomizer device with a gold absorber for selenium collection after hydride generation
Sullivan et al. The application of resonance lamps as monochromators in atomic absorption spectroscopy
JPS6057018B2 (en) Atomic absorption spectrometer
JPH02226049A (en) Atomic absorption spectro photometer
D'ulivo et al. A simultaneous multielement non-dispersive atomic-fluorescence spectrometer using modulated sources and frequency discrimination of fluorescence signals
JP3508722B2 (en) Atomic absorption photometer
Rains et al. Automatic correction system for light scatter in atomic fluorescence spectrometry
CN111257257A (en) Analysis device and method for simultaneously measuring tungsten filament electric heating atomic absorption/emission spectrum
Dittrich et al. Laser-excited atomic fluorescence spectrometry as a practical analytical method. Part I. Design of a graphite tube atomiser for the determination of trace amounts of lead
Warr Use of a filter in atomic-fluorescence spectroscopy
West Atomic-fluorescence and atomic-absorption spectrometry for chemical analysis
WO2019043858A1 (en) Atomic absorption spectrophotometer and atomic absorption measurement method
Salin et al. Design and Performance of a Time Multiplex Multiple Slit Multielement Flameless Atomic Absorption Spectrometer
Littlejohn et al. Communications. Automatic graphite probe sample introduction for electrothermal atomic-absorption spectrometry
JP4151192B2 (en) Flame atomic absorption spectrophotometer
JPH05312720A (en) Atomic absorption spectrophotometer
Shimizu et al. Determination of phosphorescence quantum yield of singlet oxygen O2 (1Δg) photosensitized by phenalenone in air-saturated carbon tetrachloride
Doolan et al. On-line dual-wavelenth instrumentation for antomatic correction of light scattering interference in dispersive atomic fluorescence spectrometry
Downey et al. Intracavity atomic absorption with an inductively coupled plasma atomizer
CN212059893U (en) Analysis device for simultaneously measuring tungsten filament electric heating atomic absorption/emission spectrum
FI110342B (en) Method and apparatus for analyzing substances by atomic absorption spectroscopy