JPH02225369A - Highly corrosion resistant brick for ladle - Google Patents

Highly corrosion resistant brick for ladle

Info

Publication number
JPH02225369A
JPH02225369A JP1043932A JP4393289A JPH02225369A JP H02225369 A JPH02225369 A JP H02225369A JP 1043932 A JP1043932 A JP 1043932A JP 4393289 A JP4393289 A JP 4393289A JP H02225369 A JPH02225369 A JP H02225369A
Authority
JP
Japan
Prior art keywords
brick
slag
al2o3
ladle
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1043932A
Other languages
Japanese (ja)
Inventor
Tetsuo Sato
哲郎 佐藤
Kenji Yamamoto
憲治 山本
Jiro Tamura
田村 二郎
Yutaka Nakano
豊 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI TAIKA RENGA KK
Kobe Steel Ltd
Original Assignee
DAIICHI TAIKA RENGA KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI TAIKA RENGA KK, Kobe Steel Ltd filed Critical DAIICHI TAIKA RENGA KK
Priority to JP1043932A priority Critical patent/JPH02225369A/en
Publication of JPH02225369A publication Critical patent/JPH02225369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve corrosion resistance of a brick without impairing spalling resistance by blending Al2IO3, etc., with an electromelting Al2O3 contained in prescribed ratio and used as aggregate in the brick containing Al2O3 as a main component. CONSTITUTION:The highly corrosion resistant brick for ladle is formed by blending Al2O3 used as a main component with 25-75wt.% electromelting Al2O3 used as aggregate part of the above-mentioned Al2O3. In the above-mentioned brick, reaction of slag with fine powder and aggregate, production of low melt ing complex and outflow of low melting product are prevented by replacing bauxite by electromelting Al2O3. Consequently, slag resistance, corrosion resis tance and spalling resistance of the brick are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製鋼の二次精録、特に、取鍋精鐘用のワーク
煉瓦として使用される耐スラグ性、耐スポーリング性及
び耐摩耗性の優れた取鍋用高耐蝕性煉瓦に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to secondary steelmaking, particularly to improving slag resistance, spalling resistance and wear resistance used as work bricks for ladle finishing. This invention relates to highly corrosion-resistant bricks for use in ladles with excellent properties.

(従来技術) 従来、取鍋は転炉より造塊或いは連続鋳造機への搬送容
器にのみ使用され、又その内部構造は第4図の縦断面図
にある通り、取鍋(3)の底部に炉底スタンプ(1)に
囲まれた敷部煉瓦(21)、又側壁には−S壁部煉瓦(
22)、スラグライン部煉瓦(23)、フリーボード部
(24)等の各煉瓦(2)が配設され、それらの煉瓦(
2)は何れちろう石煉瓦、シャモット煉瓦が一般的に使
用されている。尚、符号(4)は出鋼孔である。
(Prior art) Conventionally, a ladle has been used only as a container for transporting from a converter to an ingot or a continuous casting machine, and its internal structure is as shown in the longitudinal cross-sectional view of Fig. 4, where the bottom of the ladle (3) There are flooring bricks (21) surrounded by hearth stamps (1), and -S wall bricks (21) on the side walls.
22), slag line part bricks (23), freeboard part (24), and other bricks (2) are arranged, and these bricks (
For 2), either chirolith brick or chamotte brick is generally used. In addition, the code|symbol (4) is a tapping hole.

そして、この種取鍋(3)における温調時間も10分〜
60分と短時間であった。
And the temperature control time in this seed ladle (3) is also 10 minutes ~
It was a short 60 minutes.

ところが、例えば、高酸素鋼等の鋼種を受鋼した場合に
は、取鍋(3)内の煉瓦(2)の溶…速度が大きく、こ
の為、一般壁部(22)には高アルミナ負煉瓦を、又ス
ラグライン部(23)にはマグネシアカーボン質煉瓦を
施工する等ゾーンドライニングを施していた。
However, for example, when receiving steel such as high oxygen steel, the melting rate of the brick (2) in the ladle (3) is high, and therefore the general wall part (22) has a high alumina burden. Zone drying was carried out by constructing bricks and magnesia carbon bricks for the slag line part (23).

(発明が解決しようとする課題) 鉄鋼製品は、最近高品質化になり、しかもユーザーから
の品質上の要求も厳しくなってきた。
(Problems to be Solved by the Invention) Steel products have recently become of higher quality, and the quality requirements from users have also become stricter.

この為、その製造工程が転炉→造塊、連鋳との製造工程
が転炉→取鍋精綽→造塊、連鋳との工程に変化している
For this reason, the manufacturing process has changed from converter → ingot making and continuous casting to converter → ladle casting → ingot making and continuous casting.

即ち、従来、取鍋(3)は造塊、連鋳工程への搬送容器
の機能を果たしていたに過ぎないが、昨今では精錬容器
と搬送容器との二つの機能を果たすようになっている。
That is, in the past, the ladle (3) only served as a transport container for the ingot making and continuous casting processes, but recently it has come to serve two functions: a refining container and a transport container.

ところが、取鍋(3)における精錬は、アーク加熱、溶
鋼攪拌、真空処理等を行っているが、この取鍋(3)内
に敷設された煉瓦には種々の影響を受けている。
However, although refining in the ladle (3) involves arc heating, stirring of molten steel, vacuum treatment, etc., the bricks placed in the ladle (3) are affected by various factors.

因みに、アーク加熱はフリーボード部(24)にホット
スポットを形成し、その部分の煉瓦(2)が局部的に溶
損する傾向が見られ、又精錬時のスラグの温度は溶鋼の
温度よりも高くなる為に、スラグライン部(23)の煉
瓦(2)のン容損も大きい。そして、取鍋(3)での溶
鋼攪拌は、−m壁部(22)の溶鋼摩耗と該壁部に付着
したスラグ層を除去する為に損耗が大きくなる。
Incidentally, arc heating forms a hot spot in the freeboard part (24), and the brick (2) in that part tends to melt locally, and the temperature of the slag during refining is higher than that of molten steel. Therefore, the capacity loss of the bricks (2) in the slag line part (23) is also large. Stirring the molten steel in the ladle (3) causes a large amount of wear due to the wear of the molten steel on the -m wall (22) and the removal of the slag layer attached to the wall.

更に、真空処理は精錬時における脱ガス時の溶滓、溶鋼
のスプラッシュが飛散し、それがフリーボード部(24
)に付着して該フリーボード部(24)を溶損させる。
Furthermore, during vacuum processing, slag and molten steel splashes are scattered during degassing during refining, which can cause damage to the freeboard area (24
) and melt and damage the freeboard portion (24).

従って、従来ではフリーボード部(24)、スラグライ
ン部(23)の煉瓦(2)は、耐スラグ性を考慮したマ
グネシア−カーボン竹製の煉瓦を使用していた。
Therefore, in the past, the bricks (2) of the freeboard part (24) and the slag line part (23) were made of magnesia-carbon bamboo in consideration of slag resistance.

一方、−fm壁部(22)の煉瓦(2)は耐スラグ性が
要求されると同時に耐スポーリング性も考慮する必要が
あるが、上記マグネシア−カーボン竹製の煉瓦(2)を
−m壁部(22)に施工するとスポーリングを生し、結
果として溶損速度も大きくなる。
On the other hand, the brick (2) of the -fm wall part (22) is required to have slag resistance, and it is also necessary to consider spalling resistance. If it is applied to the wall (22), spalling will occur, and as a result, the rate of erosion will increase.

他方、ハイアルミナ質煉瓦を適用した場合には耐蝕性が
劣る為にマグネシア−カーボン竹製の煉瓦と同様に溶損
速度が太き(なって、取鍋(3)寿命を律速する。
On the other hand, when high-alumina bricks are used, their corrosion resistance is poor, and as with magnesia-carbon bamboo bricks, the rate of erosion is high (which limits the life of the ladle (3)).

以上の事実に基づき一般壁部(22)の煉瓦(2)の1
負傷メカニズムを知る為に実鍋で使用した煉瓦(AI2
0+;76wt%、S + Oz ; 14 w t%
、C; 5wt%の組成の不焼成煉瓦)を回収し、稼働
面を切断、gF磨してその部分を顕微鏡で観察した結果
、第1図の通りの事実が知見された。即ち、同図の切断
面図に示す通り、原煉瓦の稼働面側MにはスラグSが約
31111程度付着し、原煉瓦側には約5111m程度
の変質層C1その内部に約3III11程度の脱炭層T
が存在する。
Based on the above facts, 1 of the bricks (2) of the general wall part (22)
Bricks used in a real pot to understand the injury mechanism (AI2
0+; 76wt%, S+Oz; 14wt%
, C; unfired bricks with a composition of 5 wt%) were collected, the working surface was cut, gF polished, and the part was observed under a microscope. As a result, the facts shown in Figure 1 were discovered. That is, as shown in the cross-sectional view of the same figure, about 31111 pieces of slag S adheres to the working side M of the original brick, and about 3III11 pieces of slag S adheres to the original brick side, and about 3III11 pieces of slag S is deposited inside the altered layer C1 of about 5111 m. Coal seam T
exists.

付着スラグS層は稼働面Mより原煉瓦に向かって炉内ス
ラグよりもCaO、AIzChが濃化しており、又スラ
グS層、変質層C,脱脱炭層円内マトリックス部内に空
隙が見られた。
In the adhered slag S layer, CaO and AIzCh were more concentrated than in the furnace slag from the operating surface M toward the raw brick, and voids were observed in the slag S layer, altered layer C, and matrix within the decarburized layer circle. .

このような観察結果を基礎にして煉瓦(2)の損傷メカ
ニズムを推定すれば次のことが考えられる。
If the damage mechanism of brick (2) is estimated based on such observation results, the following can be considered.

■原煉瓦背面より空気が浸透することに起因してマトリ
ックス部の黒鉛がC→l/202→COの反応によって
消失すること。
■ Graphite in the matrix disappears due to the reaction of C→l/202→CO due to air permeation from the back side of the raw brick.

■黒鉛消失に伴うマトリックス組織の弛緩及び空隙が発
生すること。
■ Relaxation of the matrix structure and generation of voids as graphite disappears.

■マトリックス組織l織の弛緩部分にスラグが浸潤する
こと。
■ Infiltration of slag into the relaxed parts of the matrix tissue.

■スラグと微粉、骨材の反応の結果、低融複化合物の生
成がなされること。
■As a result of the reaction between slag, fine powder, and aggregate, a low-melting complex compound is produced.

■低融物が流出すること。■Low melting material flows out.

以上の如く、この種取鍋の一般壁用に適した高耐蝕性及
び耐スポーリング性を有する煉瓦の開発が希求されてい
た。
As described above, there has been a desire to develop a brick with high corrosion resistance and spalling resistance suitable for general walls of this type of ladle.

本発明は上述の観点に鑑み発明されたものであって、耐
久ラグ性、耐蝕性及び耐スポーリング性の高い取鍋用高
耐蝕性煉瓦を提供することを目的とする。
The present invention was invented in view of the above-mentioned viewpoints, and an object of the present invention is to provide a highly corrosion-resistant brick for ladle use that has high durability, corrosion resistance, and spalling resistance.

(課題を解決するための手段) 本発明は、上述の目的を達成するための取鍋用煉瓦とし
て、^1□03を主要構成成分とする煉瓦において、骨
材部に電融A1.o、を25〜75wt%配合してなる
組成を採用したものである。
(Means for Solving the Problems) The present invention provides a ladle brick for achieving the above-mentioned object, in which electrified A1. A composition containing 25 to 75 wt% of O.

(作 用) 本発明は前述の通りの組成を有する取鍋用煉瓦としたが
、その理由は次の通りである。
(Function) The present invention provides a ladle brick having the composition as described above, and the reason is as follows.

黒鉛の酸化による組織弛緩の防止には、黒鉛の不使用、
酸化防止材の使用、低気孔率化が予測されるが、この種
煉瓦に黒鉛を使用するのは耐スポーリング性を向上させ
る目的であって、もし、黒鉛の使用を止めた場合には耐
スポーリング性は劣化する。
To prevent tissue relaxation due to graphite oxidation, graphite-free use,
The use of antioxidants and lower porosity are expected, but the purpose of using graphite in this type of brick is to improve the spalling resistance, and if the use of graphite is stopped, the resistance will decrease. Spalling performance deteriorates.

この耐スポーリング性の確保は他の手段で行う事が困難
であり、黒鉛の使用は避けられない。
It is difficult to ensure this spalling resistance by other means, so the use of graphite is unavoidable.

上述の酸化防止材としては、各種の金属、例えば、Si
、 Fe−5i 、 AIが考えられるが、これらの金
属は何れも酸素と反応し、低融点化合物を生成する為に
使用量が限定される。
As the above-mentioned antioxidant, various metals such as Si
, Fe-5i, and AI are conceivable, but since all of these metals react with oxygen and produce low-melting compounds, their usage is limited.

低気孔率化すれば、空気の侵入を少なくできる反面、耐
スポーリング性は劣化する。
Lowering the porosity can reduce air intrusion, but on the other hand, spalling resistance deteriorates.

しかし、耐久ポーリング性の向上の為に黒鉛の使用を増
量すれば、CO生成量が増加し、逆にマトリックスは弛
緩するばかりでなく、煉瓦製造時の低気孔率化は困難と
なる。
However, if the amount of graphite used is increased in order to improve the durable poling property, the amount of CO generated will increase, and the matrix will not only be loosened, but it will also be difficult to reduce the porosity during brick production.

そこで、使用後の煉瓦について再度具体的に調査したと
ころ、次のことが判明した。
Therefore, we specifically investigated the used bricks again and found the following.

即ち、煉瓦表面にはスラグが付着しており、そのスラグ
内にはスピネルの小粒子が存在し、CaO・6^+zo
s(cAi)の針状結晶が多数存在している。
That is, slag is attached to the surface of the brick, and small particles of spinel exist within the slag, and CaO・6^+zo
There are many needle-like crystals of s(cAi).

一方、煉瓦内のマトリックス部へのスラグの浸潤は殆ど
認められず、稼働面において骨材が直接スラグと接触し
、CA&を析出していると考えられる。
On the other hand, almost no infiltration of slag into the matrix within the brick was observed, and it is thought that the aggregate was in direct contact with the slag on the operating surface, precipitating CA&.

このような状況から骨材を強化すれば、耐蝕性が同上す
ると考えられた。
Under these circumstances, it was thought that if the aggregate was strengthened, the corrosion resistance would be the same as above.

そこで、ボーキサイトを電融AIzOaに1lltlA
することに着目したところ、耐スラグ性が向上すること
が判明した。
Therefore, the bauxite was converted to 1lltlA to electrofused AIzOa.
When we focused on this, we found that slag resistance improved.

ところが、ボーキサイトを電融AhOsに置換すると、
煉瓦のヤング率が増加し、その結果、煉瓦はスポーリン
グし易くなり、反対に耐用性が劣化する現象が見出せた
However, when bauxite is replaced with fused AhOs,
It was found that the Young's modulus of the brick increases, and as a result, the brick becomes more susceptible to spalling, and conversely, its durability deteriorates.

この事実に鑑み、ボーキサイトを電融A1□O8に置換
する場合に最適な置換率について吟味したところ、以下
のことが判明した。
In view of this fact, we examined the optimal substitution rate when replacing bauxite with electrofused A1□O8, and found the following.

即ち、電融A1□03の置換率(%)を、A;OlB;
15、C;25、D:50、E;75、F;90、G 
i 100 、の7種類の煉瓦を製作し、電融^l!0
.の置換率と、スラグの溶損指数及びヤング弾性率との
関係を調査したところ、第2図及び第3図のグラフに示
す通りの結果が得られた。
That is, the substitution rate (%) of Denfu A1□03 is A; OlB;
15, C; 25, D: 50, E; 75, F; 90, G
I made 7 types of bricks and melted them! 0
.. When the relationship between the substitution rate of slag and the erosion index and Young's modulus of slag was investigated, the results shown in the graphs of FIGS. 2 and 3 were obtained.

第2図で明らかな通り、置換率が25%未満では溶1貝
性は改善されていないことが窺われ、又弾性率について
も第3図にある通り、置換率が75%以上ででは耐スポ
ーリングが劣化し、実用に耐えられないとの問題点があ
り、結局、電融Alto3の置換率は25〜75%が最
適であるとの知見から、その範囲を選択した。
As is clear from Figure 2, it appears that when the substitution rate is less than 25%, the melt resistance is not improved, and as for the elastic modulus, as shown in Figure 3, when the substitution rate is 75% or more, the resistance is not improved. There was a problem that spalling deteriorated and it could not be put to practical use.In the end, based on the knowledge that the optimum substitution rate for electrofused Alto3 is 25 to 75%, this range was selected.

(実施例) 以下、本発明の実施例を記述するが、本実施例は、ン容
鋼鍋に煉瓦として前記7種類の煉瓦(2)のうち、電融
ALzO+の置換率50%のD材と100%のG材の2
種類を各々−殻壁(22)に全張りをして実鍋テストを
行い、各々80チヤージ使用して解体修理し、従来のベ
ース煉瓦の溶損指数を100とした場合の溶損指数を調
査したところ、 ベース煉瓦−一−−−−・wt00 本発明り煉瓦−・ 80 比較材   −−−−90 の結果が得られた。
(Example) Examples of the present invention will be described below. In this example, material D with a substitution rate of 50% of electrofused ALzO+ was used as a brick in a container steel pot among the seven types of bricks (2). and 2 of 100% G material
Each type was fully stretched on the shell wall (22), and an actual pot test was conducted, and each type was dismantled and repaired using 80 charges, and the erosion index was investigated when the erosion index of the conventional base brick was set at 100. As a result, the following results were obtained: Base brick - 1 - - - wt00 Inventive brick - 80 Comparative material -90.

そして、使用煉瓦を観察すれば、本発明G煉瓦は、目地
損傷が激しく、切断面の稼働面に平行な亀裂が存在して
いた。
When the bricks used were observed, it was found that the bricks of the present invention had severe damage to the joints and had cracks parallel to the working surface of the cut surface.

置換率が75%以上の場合では耐スポーリング性が劣化
し、尖塔では使用に問題があるの事実が見いだされた。
It has been found that when the substitution rate is 75% or more, the spalling resistance deteriorates and there are problems in using it in steeple formations.

従って、耐iV tN性と耐スポーリングを満足させる
為には、電融ALzOsの置換率は25〜75%とする
ことが望ましい。
Therefore, in order to satisfy iV tN resistance and spalling resistance, it is desirable that the substitution rate of fused ALzOs be 25 to 75%.

(発明の効果) 本発明の取鍋用煉瓦は、A1□0.を主要構成成分とす
る煉瓦において、骨材部に電融AlzOiを25〜75
wL%配合した組成にしたので、耐スポーリング性を…
なうことなく耐蝕性を向上させることができ、スラグと
微粉、骨材の反応、低融複化合物の生成及び低融物の流
出が阻止できるので、耐スラグ性、耐蝕性及び耐スポー
リング性が向上する等この種煉瓦として実用性の高いも
のである。
(Effect of the invention) The ladle brick of the present invention has A1□0. In the brick whose main constituent is
The composition contains wL%, so the spalling resistance is...
Corrosion resistance can be improved without sacrificing slag resistance, corrosion resistance, and spalling resistance, as reaction between slag, fine powder, and aggregate, generation of low-melting composite compounds, and outflow of low-melting substances can be prevented. It is highly practical for this type of brick, as it has improved properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は81i微鏡観察した一殻壁煉瓦の断面図、第2
図は電融AIzO3置換率と溶損指数との関係を示すグ
ラフ、第3図は電融A1□0.置換率とヤング率との関
係を示すグラフ、第4図は一般に使用されている取鍋の
縦断面図である。 符号の名称は以下の通りである。 (1)−炉底スタンプ、−(2)−煉瓦、(21)−敷
部煉瓦、(22)−wt’G壁部煉瓦、(23)−スラ
グライン部煉瓦フリーボード部煉瓦、(3) 取鍋、(4) 出 洞孔、 変質層、 煉瓦の稼働面、 スラ グ層、 脱炭層。
Figure 1 is a cross-sectional view of a single-shell wall brick observed under the 81i microscope, Figure 2
The figure is a graph showing the relationship between electric melting AIzO3 substitution rate and erosion index, and Figure 3 is electric melting A1□0. A graph showing the relationship between the substitution ratio and Young's modulus, and FIG. 4 is a longitudinal cross-sectional view of a commonly used ladle. The names of the codes are as follows. (1) - hearth bottom stamp, - (2) - brick, (21) - bedside brick, (22) - wt'G wall brick, (23) - slag line part brick, freeboard part brick, (3) Ladle, (4) Hole, altered layer, brick working surface, slag layer, decarburized layer.

Claims (1)

【特許請求の範囲】[Claims] Al_2O_3を主要構成成分とする煉瓦において、骨
材部に電融Al_2O_3を25〜75wt%配合して
なることを特徴とする取鍋用高耐蝕性煉瓦。
A highly corrosion-resistant brick for ladle use, characterized in that, in a brick containing Al_2O_3 as a main component, 25 to 75 wt% of fused Al_2O_3 is blended in the aggregate.
JP1043932A 1989-02-23 1989-02-23 Highly corrosion resistant brick for ladle Pending JPH02225369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043932A JPH02225369A (en) 1989-02-23 1989-02-23 Highly corrosion resistant brick for ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043932A JPH02225369A (en) 1989-02-23 1989-02-23 Highly corrosion resistant brick for ladle

Publications (1)

Publication Number Publication Date
JPH02225369A true JPH02225369A (en) 1990-09-07

Family

ID=12677462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043932A Pending JPH02225369A (en) 1989-02-23 1989-02-23 Highly corrosion resistant brick for ladle

Country Status (1)

Country Link
JP (1) JPH02225369A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118601A1 (en) * 1998-06-22 2001-07-25 Showa Denko Kabushiki Kaisha Refractory for casting rare earth alloy and method for producing the same and method for casting rare earth alloy
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
CN105665689A (en) * 2016-04-19 2016-06-15 共享铸钢有限公司 Steel ladle capable of preventing steel slag from entering casting mold during pouring
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118601A1 (en) * 1998-06-22 2001-07-25 Showa Denko Kabushiki Kaisha Refractory for casting rare earth alloy and method for producing the same and method for casting rare earth alloy
EP1118601A4 (en) * 1998-06-22 2005-01-26 Showa Denko Kk Refractory for casting rare earth alloy and method for producing the same and method for casting rare earth alloy
EP1659102A1 (en) * 1998-06-22 2006-05-24 Showa Denko Kabushiki Kaisha Refractory material for casting a rare-earth alloy and its production method as well as method for casting the rare-earth alloys
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
CN105665689A (en) * 2016-04-19 2016-06-15 共享铸钢有限公司 Steel ladle capable of preventing steel slag from entering casting mold during pouring

Similar Documents

Publication Publication Date Title
US6875716B2 (en) Carbonaceous refractory and method for preparing the same
JPH0243698B2 (en)
JPH02225369A (en) Highly corrosion resistant brick for ladle
JPH0753600B2 (en) Molten steel container
JPH0118030B2 (en)
JP4187183B2 (en) Magnesia-carbon brick
CA2310431C (en) Refractory batch, in particular for the production of a shaped body, and process for producing the shaped body
JP3726778B2 (en) Hot metal holding container
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP7481982B2 (en) Manufacturing method of magnesia-chrome bricks
CA1150323A (en) Fireproof material for steel-casting foundry equipment
JP4695354B2 (en) Carbon-containing refractory brick
JPH0677792B2 (en) Ultra low carbon steel casting powder
JP2022056100A (en) Method for producing magnesia-chrome brick
JP4471254B2 (en) Magnesia-carbon brick
JP3795933B2 (en) Magnesia-chromic fired brick
JP3336187B2 (en) MgO-CaO carbon-containing refractory
JP3121442B2 (en) Refractory
JPH0412065A (en) Double structure refractory
JPH01162714A (en) Converter
JP2022056098A (en) Method for producing magnesia-chrome brick
KR900007442B1 (en) Additive for absorbing a interposition of molten steel
JPH08157252A (en) Refractory for molten iron preliminary treating vessel
JPH06298564A (en) Carbonaceous magnesia fire brick
JPH10306308A (en) Carbon-containing refractory for tuyere in molten metal refining furnace