JPH0222384A - Continuous production of molded coke - Google Patents

Continuous production of molded coke

Info

Publication number
JPH0222384A
JPH0222384A JP17339788A JP17339788A JPH0222384A JP H0222384 A JPH0222384 A JP H0222384A JP 17339788 A JP17339788 A JP 17339788A JP 17339788 A JP17339788 A JP 17339788A JP H0222384 A JPH0222384 A JP H0222384A
Authority
JP
Japan
Prior art keywords
furnace
gas
oven
shaft
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17339788A
Other languages
Japanese (ja)
Inventor
Koji Takatani
幸司 高谷
Yuji Iwanaga
祐治 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17339788A priority Critical patent/JPH0222384A/en
Publication of JPH0222384A publication Critical patent/JPH0222384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To prevent heat-cracking of a charged molding coal in upper part of an oven by taking out a part of high-temperature gas blown from lower part of the shaft oven and controlling heat pattern in upper part of the oven. CONSTITUTION:A briquette as raw material changed into the shaft oven 1 is heated by hot air blown from a tuyere 6 and carbonized with lowering in the oven. A part of rising gas of volatile component is taken out from a gas- taking out port 8 at intermediate part of the oven. Heat pattern in the upper part of the oven is controlled to prevent drastic heating of the raw material briquette by controlling the amount of said taken out gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、ブリケット等の成型炭からコークスを製造
する方法に係り、より詳しくは高炉用コークス、あるい
は溶融還元炉における還元用炭材等の冶金用、ざらには
化学用等のコークスをシャフト型内熱式乾留炉により連
続的に製造する方法に関する。
[Industrial Field of Application] The present invention relates to a method for producing coke from briquettes or other briquettes, and more specifically to coke for blast furnaces or metallurgical applications such as reduced carbon materials in smelting reduction furnaces, and more particularly to chemical applications. This invention relates to a method for continuously producing coke for use in a shaft-type internal heating carbonization furnace.

【従来の技術】[Conventional technology]

高炉用コークス、あるいは冶金用コークス等は、周知の
通り外熱式の室炉式コークス炉で製造されるのが一般的
であるが、近年、シャフト型内熱式乾留炉を用いてブリ
ケット等の成型炭からコークスを連続的に製造する技術
が開発されている(例えば特公昭54−17322号公
報)。 シャフト型内熱式乾留炉はガスと成型炭との向流式であ
り、シャフト炉の頂部から成型炭を装入し、この装入成
型炭が炉内を降下する間に炉下部より吹込まれる加熱用
高温ガスにより乾留され、成型コークスとなって炉下部
より切出される方式
Blast furnace coke, metallurgical coke, etc. are generally produced in an external heating indoor furnace coke oven, but in recent years, shaft type internal heating carbonization furnaces have been used to produce briquettes, etc. A technique for continuously producing coke from briquette coal has been developed (for example, Japanese Patent Publication No. 17322/1983). The shaft-type internal heating type carbonization furnace is a counter-current type of gas and briquette coal, and the briquette coal is charged from the top of the shaft furnace, and while the charged briquette is descending inside the furnace, it is injected from the bottom of the furnace. A method in which coke is carbonized using high-temperature heating gas and cut out from the bottom of the furnace as shaped coke.

【発明が解決しようとする課題】[Problem to be solved by the invention]

現行の外熱式室炉法においては、■原料炭として強粘結
炭を多量に使用する、■生産性が悪い、■熱効率が悪い
(R近では乾式消火設僅により熱回収を行なっている)
、■コークス排出、冷却時における粉塵、防臭対策が困
難である等の問題がある。 シャフト型内熱式乾留炉による方法は、この外熱式室炉
法の欠点を克服すべく開発されたものであり、コークス
を連続的に製造することができるので生産性が高く、ま
たコークス排出・冷却時における粉塵・防臭対策等を必
要としない点で優れている。 しかし、シャフト炉上部より装入された成型炭(ブリケ
ット)が炉内を降下する間に炉下部より上昇する高温ガ
スにより乾留される際、乾留速度のコントロールが悪く
、急激な加熱を受けると炉上部において装入原料が割れ
てブリケットの原形率が低下し、粉の発生により製品歩
留が悪化するという問題がおる。 第3図は実際の内熱式乾留炉を用いて成形コークスを製
造した際の、炉高方向位置における炉壁温度とガス原単
位の関係を例示したものである。 この図より明らかなように、ガス原単位を低下させても
、炉上部における急激な温度上昇は避けることができず
、急激な加熱による装入原料の割れによる原形率の低下
を余儀なくされる。 この発明は、従来の技術のこのような問題点にかんがみ
なされたものであり、その目的とするところはシャフト
型内熱式乾留炉における装入成型炭の急速加熱による割
れを防止し、製品歩留を向上させる方法を提案しようと
するものである。 [課題を解決するための手段] この発明は、シャフト型内熱式乾留炉の炉下部より吹込
まれる加熱用高温ガスの一部を、該炉壁温度に基づいて
炉中間部より汰出し、炉上部のヒー1へパターンを制御
することによって、炉上部における装入成型炭の熱割れ
を防止する方法を要旨とするものである。 [作  用] シャフト型内熱式乾留炉は、実質的に円筒状を成してお
り、炉頂部に原料装入口と乾留ガス排出口を、乾留ガス
排出口の下に乾沼ガス後出し口を、炉下部に加熱用高温
ガス供給羽口を有し、炉頂部の原料装入口から装入され
た原料が炉内を降下していく過程で、炉下部の羽口より
供給される高温ガスにより乾留されて、炉下部切出しフ
ィーダより切出される。 乾留ガスは炉中間部の扱出し口よりその一部が央出され
、炉上部の乾留ガス排出口より排出する乾留ガスと共に
処理される。 炉中間部より央出す乾留ガスの量は、炉壁部の温度に応
じて流量調節する。 炉中間部における乾留ガスの汰出し量を調節することに
より、容易に炉上部のヒートパターンを制御することが
可能となり、炉上部に装入された成型炭が急激な加熱を
受けることがなくなる。 第1図はこの発明方法を実施するためのシャフト型内熱
式乾留炉を示す模式図であり、(1)はシャフト炉、(
2)はフィードホッパー、(3)は上部ホッパ、(4)
は下部ホッパー、(5)は切出しフィーダー(6)は羽
口、(7)はガス排出口、(8)はガス後出し口、(9
)は熱雷対、(10)は温度検出制御器、(11)は流
量制御弁、(12)はガス処理設備、(13〉は燃焼室
、(14)(15)はブロア、■1〜V3はシール弁を
それぞれ示す。 上部ホッパー(3)にはシール弁V+を通して装入され
た原料ブリケットが貯蔵されており、シール弁V2を通
してフィードホッパー(2)に原料ブリケットが装入さ
れ、シャフト炉(1)内に順次装入される。その時の装
入速度は、切出しフィーダー(5)の回転数制御により
決定される。 シャフト炉(1)内に装入された原料ブリケラl−は、
羽口(6)より吹込まれる熱風により昇温加熱され、炉
内を降下しながら乾留される。この時、揮発分が原料ブ
リケットより放出され、ガスの上昇量が増加する。 この上昇ガスは、シャフト炉中間部に設けたガス後出し
口(8)よりその一部が扱出される。このガス後出し量
は、炉壁に埋設した熱電対(9)により測定される温度
に基づいて温度検出制御器(10)により流量制御弁(
11)を制御して調節する。 この炉中間部より扱出すガス量を調節することによって
、炉上部(ガス後出し口〜装入レベルまでの領M)のヒ
ートパターンを制御する。つまり、炉上部において原料
ブリケットが急激な加熱を受けないようにヒートパター
ンを制御する。 炉中間部のガス後出し口(8)より投出されたガスと、
炉上部のガス排出口(7)より排出されたガスは、ガス
処理設備(12)を経て、一部は排出され、残りは熱風
ガスとして使用するために循環され、ブロア(14)に
て昇圧され、ブロア(15)より送風される空気と混合
されて燃焼至(13)で燃焼され、昇温される。 一方、乾留されつつ降下するブリケットは、成型コーク
スとなり、切出しフィーダー(5)より下部ホッパー(
4)に切出され、定期的にシール弁V3より後出され、
製品コークスとして使用される。 [実 施 例] 実施例1 第1図に示すシャフト型内熱式乾留炉とほぼ同じ構成で
、羽口(6)からガス後出し口(8)までの高さが2.
1m、炉径750 mmφ、ガス後出し口(8)から装
入レベルまでの高さが1.Om 、短糸700 mmφ
の実験用シャフト炉を使って、コークスを製造した際の
ヒートパターンを第2図に、物流バランスを第1表に、
得られたコークスの粉率、原形率および性状を第2表に
それぞれ示す。 第2図より明らかなごとく、炉内のヒートパターンは第
3図に示す従来のヒートパターンに比べ、炉頂部から羽
口にかけての炉壁温度の上昇が平準化されている。 また、第2表より、粉率、原形率および性状は、ガスの
扱き出しを行なうことにより向上することがわかる。 以下余白 第  1 表 第  2 表 以下余白 注1)ドラム強度:初期粒径50mm以上のコークスを
ドラム内で30回転させた後の粒径15間以上の重量割
合(指数) 以下余白 実施例2 実施例1と同様のシャフト炉を使ってコークスを製造し
、下部ホッパーにおいて製品コークスの有する顕熱を回
収した場合の物流バランスを第3表に、粉率、原形率お
よび性状を第4表にそれぞれ示す。 本実施例においても、第4表より明らかなごとく、粉率
、原形率および性状共に、ガス恢き打しを行なわない場
合に比べて良好であることがわかる。 以下余白 第 表 以 下 余 白 第  4  表 [発明の効果] 以上説明したごとく、この発明は乾留炉の中間部より乾
留ガスの一部を扱出し炉上部のヒートパターンを制御し
、炉上部における装入原料の急激な加熱を抑制する方法
であるから、装入原料の割れを防止することができ、製
品コークスの粉率、原形率および性状を向上できるとい
う大なる効果を秦するものである。
In the current external heating indoor furnace method, ■ a large amount of highly coking coal is used as coking coal, ■ poor productivity, and ■ poor thermal efficiency (in the R neighborhood, heat is recovered using a dry fire extinguishing system). )
, ■There are problems such as coke discharge, dust during cooling, and difficulty in deodorizing measures. The method using a shaft-type internal heating carbonization furnace was developed to overcome the drawbacks of this external heating chamber furnace method.・It is excellent in that it does not require measures to prevent dust and odor during cooling. However, when the briquettes charged from the upper part of the shaft furnace are carbonized by high-temperature gas rising from the lower part of the furnace while descending in the furnace, the carbonization rate is poorly controlled and the furnace is heated rapidly. There is a problem in that the charged raw material cracks in the upper part, which reduces the original shape of the briquettes, and the product yield deteriorates due to the generation of powder. FIG. 3 illustrates the relationship between furnace wall temperature and gas consumption rate at a position in the furnace height direction when molded coke is produced using an actual internal heating type carbonization furnace. As is clear from this figure, even if the gas consumption rate is lowered, a rapid temperature rise in the upper part of the furnace cannot be avoided, and the initial form ratio is forced to decrease due to cracking of the charged raw material due to rapid heating. This invention was made in consideration of the problems of the conventional technology, and its purpose is to prevent cracking of charged briquettes caused by rapid heating in a shaft-type internal heat carbonization furnace, and to improve product quality. This paper attempts to propose ways to improve retention. [Means for Solving the Problems] The present invention provides a method for directing a part of the high-temperature heating gas blown into the lower part of the furnace of a shaft-type internal heat carbonization furnace from the middle part of the furnace based on the temperature of the furnace wall. The gist of the present invention is a method for preventing thermal cracking of charged briquette coal in the upper part of the furnace by controlling the pattern of the heat 1 in the upper part of the furnace. [Function] The shaft-type internal heat carbonization furnace has a substantially cylindrical shape, and has a raw material charging inlet and a carbonization gas outlet at the top of the furnace, and a dry marsh gas outlet below the carbonization gas outlet. The furnace has high-temperature gas supply tuyere for heating in the lower part of the furnace, and as the raw material charged from the raw material charging port at the top of the furnace descends in the furnace, the high-temperature gas is supplied from the tuyere in the lower part of the furnace. It is carbonized and cut out from a cutting feeder in the lower part of the furnace. A portion of the carbonization gas is centrally discharged from the outlet in the middle of the furnace, and is processed together with the carbonization gas discharged from the carbonization gas outlet at the top of the furnace. The amount of carbonization gas discharged from the middle of the furnace is adjusted according to the temperature of the furnace wall. By adjusting the amount of carbonized gas pumped out in the middle part of the furnace, it becomes possible to easily control the heat pattern in the upper part of the furnace, and the briquette charged in the upper part of the furnace is not subjected to rapid heating. FIG. 1 is a schematic diagram showing a shaft-type internal heating carbonization furnace for carrying out the method of the present invention, (1) is a shaft furnace, (
2) is the feed hopper, (3) is the upper hopper, (4)
is the lower hopper, (5) is the cutting feeder, (6) is the tuyere, (7) is the gas outlet, (8) is the gas outlet, (9
) is the thermal lightning pair, (10) is the temperature detection controller, (11) is the flow rate control valve, (12) is the gas processing equipment, (13> is the combustion chamber, (14) and (15) are the blowers, ■1~ V3 indicates a seal valve. Raw material briquettes charged through the seal valve V+ are stored in the upper hopper (3), and raw material briquettes are charged into the feed hopper (2) through the seal valve V2, and the raw material briquettes are charged into the shaft furnace. (1).The charging speed at that time is determined by controlling the rotation speed of the cutting feeder (5).The raw material briquette l- charged into the shaft furnace (1) is
The temperature is raised by the hot air blown in from the tuyere (6), and it is carbonized while descending inside the furnace. At this time, volatile matter is released from the raw material briquettes and the amount of gas rise increases. A portion of this rising gas is discharged from a gas outlet (8) provided in the middle part of the shaft furnace. The amount of gas discharged is determined by the flow rate control valve (
11) to control and adjust. By adjusting the amount of gas handled from the middle part of the furnace, the heat pattern in the upper part of the furnace (region M from the gas outlet to the charging level) is controlled. That is, the heat pattern is controlled so that the raw material briquettes are not heated rapidly in the upper part of the furnace. The gas discharged from the gas outlet (8) in the middle part of the furnace,
The gas discharged from the gas discharge port (7) in the upper part of the furnace passes through the gas processing equipment (12), a part of which is discharged, and the rest is circulated for use as hot air gas, and the pressure is increased by the blower (14). The air is mixed with the air blown by the blower (15), and is combusted in the combustion stage (13) to raise the temperature. On the other hand, the briquettes that descend while being carbonized become molded coke and are transferred from the cutting feeder (5) to the lower hopper (
4) and periodically taken out after the seal valve V3,
Used as product coke. [Example] Example 1 The structure is almost the same as that of the shaft-type internal heat carbonization furnace shown in Fig. 1, and the height from the tuyere (6) to the gas outlet (8) is 2.5 mm.
1 m, furnace diameter 750 mmφ, height from gas outlet (8) to charging level 1. Om, short thread 700 mmφ
Figure 2 shows the heat pattern when producing coke using an experimental shaft furnace, and Table 1 shows the distribution balance.
The powder ratio, original form ratio, and properties of the obtained coke are shown in Table 2. As is clear from FIG. 2, the heat pattern inside the furnace is such that the rise in furnace wall temperature from the furnace top to the tuyere is leveled out compared to the conventional heat pattern shown in FIG. Moreover, from Table 2, it can be seen that the powder ratio, original form ratio, and properties are improved by discharging the gas. Margins below Table 1 Table 2 Margins below Note 1) Drum strength: Weight percentage (index) of particles with a particle size of 15 or more after rotating coke with an initial particle size of 50 mm or more in a drum 30 times (index) Margins below Example 2 Implementation Table 3 shows the distribution balance when coke is produced using the same shaft furnace as in Example 1, and the sensible heat of the product coke is recovered in the lower hopper, and Table 4 shows the powder ratio, original shape ratio, and properties. show. In this example as well, as is clear from Table 4, it can be seen that the powder rate, original shape rate, and properties are all better than in the case where gas pounding is not performed. Table 4 (Table 4) [Effects of the Invention] As explained above, this invention handles a part of the carbonization gas from the middle part of the carbonization furnace, controls the heat pattern in the upper part of the furnace, and charges the carbonization gas in the upper part of the furnace. Since this method suppresses rapid heating of the raw material, it can prevent cracking of the charged raw material, and has the great effect of improving the powder ratio, original shape ratio, and properties of the product coke.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を実施するためのシャフト型内熱
式乾留炉を示す模式図である。 第2図はこの発明の実施例1におけるヒートパターンを
示す図でおる。 第3図は従来のシャフト型内熱式乾留炉のヒートパター
ン例を示す図である。 1・・・シャフト炉     3・・・上部ホッパー4
・・・下部ホッパー    6・・・羽目7・・・ガス
排出口     8・・・ガス法用し口第1図 第2図 高さ方向値fil (m) 第3図 高さ方向位置(、l)
FIG. 1 is a schematic diagram showing a shaft-type internal heating type carbonization furnace for carrying out the method of the present invention. FIG. 2 is a diagram showing a heat pattern in Example 1 of the present invention. FIG. 3 is a diagram showing an example of a heat pattern of a conventional shaft-type internal heating carbonization furnace. 1...Shaft furnace 3...Upper hopper 4
...Lower hopper 6...Wall 7...Gas discharge port 8...Gas method port Fig. 1 Fig. 2 Height direction value fil (m) Fig. 3 Height direction position (, l )

Claims (1)

【特許請求の範囲】[Claims] シャフト型内熱式乾留炉を用い、成型炭からコークスを
連続的に製造する方法において、炉下部より吹込まれる
加熱用高温ガスの一部を、該炉壁温度に基づいて炉中間
部より抜出し、炉上部のヒートパターンを制御すること
を特徴とする連続成形コークス製造方法。
In a method of continuously producing coke from briquette coal using a shaft-type internal heating type carbonization furnace, a part of the high-temperature gas for heating that is blown into the lower part of the furnace is extracted from the middle part of the furnace based on the temperature of the furnace wall. , a continuous molding coke production method characterized by controlling the heat pattern in the upper part of the furnace.
JP17339788A 1988-07-12 1988-07-12 Continuous production of molded coke Pending JPH0222384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17339788A JPH0222384A (en) 1988-07-12 1988-07-12 Continuous production of molded coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17339788A JPH0222384A (en) 1988-07-12 1988-07-12 Continuous production of molded coke

Publications (1)

Publication Number Publication Date
JPH0222384A true JPH0222384A (en) 1990-01-25

Family

ID=15959653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17339788A Pending JPH0222384A (en) 1988-07-12 1988-07-12 Continuous production of molded coke

Country Status (1)

Country Link
JP (1) JPH0222384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378021A (en) * 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378021A (en) * 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus

Similar Documents

Publication Publication Date Title
CN1120872C (en) Method and apparatus for drying coal
EP0122768B1 (en) An electric arc fired cupola for remelting of metal chips
JPH03243709A (en) Method and device for direct reduction of metal oxide
CN207002588U (en) A kind of active powder lime two level suspension calcining device
GB2116957A (en) A process and apparatus for the production of sintered dolomite
EP0059757B1 (en) Apparatus for continuously burning particles in air stream in a vertical furnace
JPH0222384A (en) Continuous production of molded coke
CN202853264U (en) Ferrotitanium concentrate drying system device
CN113483554B (en) Drying device and drying method for lump ore for blast furnace concentrate
JPH0280491A (en) Operation of continuous formed coke oven
CN2818492Y (en) Producer for oxidation pelletizing
CN206469683U (en) A kind of double-layer heating and frequency modulation type rotary hearth furnace for being used to be reduced directly the mode of production
CN205990415U (en) A kind of monolayer for being reduced directly the mode of production heats and frequency modulation type rotary hearth furnace
KR20010024881A (en) Method for reducing iron oxides and installation therefor
JPS6023714A (en) Fusing method of industrial waste
CN114717372B (en) High-temperature cleaning method for ring formation of rotary kiln for direct reduction of iron ore
CN115261532B (en) Method for constructing initial airflow of large blast furnace
CN212451211U (en) External combustion type light-burned magnesia shaft kiln
CN209584013U (en) Energy-saving active lime terminal calcining kiln
RU2737795C1 (en) Shaft furnace for calcination of carbonate raw material on solid fuel
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
JP3618163B2 (en) Reduction melting treatment method
JPH07242876A (en) Method for feeding high-temperature dry distillation gas in dry distillation oven
CN1076919A (en) Pearlstone roasting method and equipment
JP5320831B2 (en) Vertical furnace operation method and furnace powdering prevention equipment