JPH02221621A - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device

Info

Publication number
JPH02221621A
JPH02221621A JP1042866A JP4286689A JPH02221621A JP H02221621 A JPH02221621 A JP H02221621A JP 1042866 A JP1042866 A JP 1042866A JP 4286689 A JP4286689 A JP 4286689A JP H02221621 A JPH02221621 A JP H02221621A
Authority
JP
Japan
Prior art keywords
catalyst support
catalyst carrier
heater
exhaust gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1042866A
Other languages
Japanese (ja)
Other versions
JP2812699B2 (en
Inventor
Yoshimi Ohashi
大橋 義美
Tomoharu Higashimatsu
東松 智春
Hidetoshi Yamauchi
山内 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP4286689A priority Critical patent/JP2812699B2/en
Publication of JPH02221621A publication Critical patent/JPH02221621A/en
Application granted granted Critical
Publication of JP2812699B2 publication Critical patent/JP2812699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To carry out complete regeneration of a catalyst support and also surely prevent the catalyst support from being broken by arranging the catalyst support within a passage communicated with the exhaust side of an internal combustion engine in a casing, and also arranging a heater on the outer periphery of the catalyst support. CONSTITUTION:An exhaust gas purifying device 1 comprises the passage 2a of a casing 2 which is connected to the exhaust pipe line Ea of an internal combustion engine E, and also a catalyst support 3 which is arranged inside the passage 2a. The catalyst support 3 is formed into a honeycomb shape by use of a porous silicon carbide sintered body of high fusion point. Besides, the catalyst support 3 has a number of gas passing holes each extending in its axial direction bored therethrough. A code of regenerating heater 6 made of ceramics and the like is wound round the outer periphery of the catalyst support 3 by plural turns. A heat insulating material 7 for covering the heater 6 is attached on the inner wall of the passage 2a. Heat loss with heat transmission of the catalyst support 3 during regenerating treatment is thus prevented for carrying out complete regenerating treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はディーゼルエンジン等の内燃機関における排
気ガスを浄化処理する排気ガス浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas purification device for purifying exhaust gas in an internal combustion engine such as a diesel engine.

[従来の技術] 従来、例えばディーゼルエンジンの排気ガスを浄化する
場合には、コージェライトによってハニカム状に形成し
た触媒担体と、その触媒担体に担持された触媒成分とを
有するフィルターをディーゼルエンジンの排気側に接続
し、このフィルターによって前記排気ガス中のカーボン
、NOx及びHC等を酸化分解するようになっている。
[Prior Art] Conventionally, when purifying the exhaust gas of a diesel engine, for example, a filter having a catalyst carrier formed in a honeycomb shape of cordierite and a catalyst component supported on the catalyst carrier is used to purify the exhaust gas of the diesel engine. This filter oxidizes and decomposes carbon, NOx, HC, etc. in the exhaust gas.

[発明が解決しようとする課題] ところが、上記のフィルターにおける触媒担体は融点(
1200〜1300℃)の低し、1コージエライトによ
って形成されているため、触媒担体内に滞留したカーボ
ンを除去するための再生処理に際して、触媒担体の一端
にてカーボンに着火した後、その触媒担体に着火位置側
からエアを供給すると、排気ガスの不均一な燃焼が生じ
て、局部的な温度上昇が生じ、再生処理を繰り返し行う
と、触媒担体が溶損して再利用が不可能になるという問
題があった。
[Problem to be solved by the invention] However, the catalyst carrier in the above filter has a melting point (
1,200 to 1,300℃), and is made of cordierite, so during the regeneration process to remove the carbon accumulated in the catalyst carrier, after the carbon is ignited at one end of the catalyst carrier, the catalyst carrier is heated. If air is supplied from the ignition position side, the exhaust gas will burn unevenly, causing a localized temperature rise, and if the regeneration process is repeated, the catalyst carrier will melt and become impossible to reuse. was there.

上記の問題を解決するため、触媒担体として耐熱性及び
熱伝導性に優れた炭化珪素焼結体を使用することがすで
に提案されている。ところが、この場合には、材料の熱
伝導性が高すぎるため、従来から利用されている熱源と
して、例えば、エンジンからの排ガスの熱風又は、電気
ヒーターがあるが、これらの熱源を使用した場合、前記
炭化珪素焼結体製担体を十分に高温に加熱することがで
きず、再生処理が不可能となったり、不完全になったり
した。従って、再生を完全に行うためには、より大容量
の熱源が必要となり、電気ヒーターの場合には大形のヒ
ーターを利用するか、あるいは、長時間の通電が必要と
なる。この場合、ヒーター用バッテリの寿命が短くなっ
たり、コストアップを招くという問題があった。
In order to solve the above problems, it has already been proposed to use a silicon carbide sintered body having excellent heat resistance and thermal conductivity as a catalyst carrier. However, in this case, the thermal conductivity of the material is too high, so conventionally used heat sources include hot air from the exhaust gas from the engine or electric heaters, but when these heat sources are used, The silicon carbide sintered body carrier could not be heated to a sufficiently high temperature, and the regeneration treatment became impossible or incomplete. Therefore, in order to perform complete regeneration, a heat source with a larger capacity is required, and in the case of an electric heater, it is necessary to use a large heater or to apply electricity for a long time. In this case, there are problems in that the life of the heater battery is shortened and the cost is increased.

又、大容量の熱源を用いて再生処理を行うと、触媒担体
が炭化珪素焼結体製であっても、温度分布が生じ易く、
そのため再生処理を繰り返し行う内に、触媒担体にクラ
ックが発生し、そのクラックから触媒担体全体が破損し
て、上記の問題を解決するには至らなかった。
In addition, when regeneration treatment is performed using a large-capacity heat source, temperature distribution tends to occur even if the catalyst carrier is made of sintered silicon carbide.
Therefore, as the regeneration process was repeated, cracks occurred in the catalyst carrier, and the entire catalyst carrier was damaged from the cracks, so that the above problem could not be solved.

そこで、本発明者らは、再生処理における炭化珪素焼結
体製触媒担体の熱収支を検討したところ、前記触媒担体
の場合には担体自体を加熱するのに必要な熱量と、担体
を通過する排気ガスに失う熱量とが比較的少なく、相当
の熱量が触媒担体の径方向、すなわち、担体の外周にあ
るケーシングに伝わっていることが解明された。
Therefore, the present inventors investigated the heat balance of the catalyst carrier made of sintered silicon carbide in the regeneration process, and found that in the case of the catalyst carrier, the amount of heat required to heat the carrier itself and the amount of heat that passes through the carrier. It has been found that the amount of heat lost to the exhaust gas is relatively small, and a considerable amount of heat is transmitted in the radial direction of the catalyst carrier, that is, to the casing on the outer periphery of the carrier.

こめ発明は上記の事情を考慮してなされたものであって
、その目的は再生処理中における触媒担体からの熱伝導
に伴う熱損失を防止し、安定した完全な再生を行い、か
つ、担体の所定部分間の温度差を少なくして、クシツク
の発生に起因する触媒担体の破損を確実に防止すること
ができ、耐久性を向上させることが可能な排気ガス浄化
装置を提供することにある。
The present invention was made in consideration of the above circumstances, and its purpose is to prevent heat loss due to heat conduction from the catalyst carrier during regeneration treatment, to perform stable and complete regeneration, and to improve the efficiency of the support. To provide an exhaust gas purifying device which can reduce the temperature difference between predetermined parts, reliably prevent damage to a catalyst carrier due to the occurrence of oxidation, and improve durability.

[課題を解決するための手段] 上記の目的を達成するため、この発明では、内燃機関の
排気側に連通ずる通路を備えたケーシングと、多孔質炭
化珪素焼結体によってハニカム状に形成されると共に前
記通路内に配設された触媒担体と、前記触媒担体の外周
に配設されたヒーターとを設けている。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a casing provided with a passage communicating with the exhaust side of an internal combustion engine, and a porous silicon carbide sintered body formed in a honeycomb shape. Additionally, a catalyst carrier disposed within the passage and a heater disposed around the outer periphery of the catalyst carrier are provided.

し作用] 触媒担体の再生処理に際してヒーターを動作させれば、
触媒担体が外周側から中心へ向って加熱され、触媒担体
が迅速かつ均一に加熱される。そのため、再生処理を極
めて短時間に行うことができ、触媒担体の両端部分間の
温度差を少なくして、クラックの発生を防止できる。
effect] If the heater is operated during the regeneration process of the catalyst carrier,
The catalyst carrier is heated from the outer circumference toward the center, and the catalyst carrier is heated quickly and uniformly. Therefore, the regeneration process can be performed in an extremely short time, and the temperature difference between both end portions of the catalyst carrier can be reduced, thereby preventing the occurrence of cracks.

[実施例] 以下、この発明を具体化した一実施例を図面に従って詳
細に説明する。第1図に示すように、排気ガス浄化装置
1は金属パイプ製のケーシング2を備え、そのケーシン
グ2の通路2aが内燃機関Eの排気管路Eaに接続され
ている。このゲージング2内には排気ガスを浄化するた
めの触媒担体3が配設されている。
[Example] Hereinafter, an example embodying the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the exhaust gas purification device 1 includes a casing 2 made of a metal pipe, and a passage 2a of the casing 2 is connected to an exhaust pipe Ea of an internal combustion engine E. A catalyst carrier 3 for purifying exhaust gas is disposed within the gauging 2.

触媒担体3は、第2図及び第3図に示すように、高い融
点(〜3000℃)を有する多孔質炭化珪素焼結体によ
ってハニカム状に形成されると共に、全体として円柱状
をなしている。そして、この触媒担体3には軸線方向に
平行に延びる多数のガス通過孔4が形成され、各ガス通
過孔4の供給側及び排出側のいずれか一端が炭化珪素質
の小片5によって交互に封止されている。更に、触媒担
体3の各ガス通過孔4の内壁面にはシリカ膜が形成され
、そのシリカ膜に白金族元素やその他の金属元素及びそ
の酸化物等からなる酸化触媒が担持されている。
As shown in FIGS. 2 and 3, the catalyst carrier 3 is formed into a honeycomb shape by a porous silicon carbide sintered body having a high melting point (~3000° C.), and has a cylindrical shape as a whole. . A large number of gas passage holes 4 extending parallel to the axial direction are formed in this catalyst carrier 3, and one end of each gas passage hole 4 on the supply side or the discharge side is alternately sealed with small pieces 5 made of silicon carbide. It has been stopped. Furthermore, a silica film is formed on the inner wall surface of each gas passage hole 4 of the catalyst carrier 3, and an oxidation catalyst made of platinum group elements, other metal elements, their oxides, etc. is supported on the silica film.

前記触媒担体3の外周にはセラミックヒータ−よりなる
−本の再生用ヒーター6が複数回にわたって巻回され、
排気ガス供給側から排出側に近づくに従って、各巻回部
分の間隔が密にされている。
A regeneration heater 6 made of a ceramic heater is wound around the outer periphery of the catalyst carrier 3 a plurality of times.
The intervals between the winding portions become closer as the exhaust gas supply side approaches the exhaust side.

又、ケーシング2の通路2a内壁には前記ヒーター6を
被覆する断熱材7が装着されている。
Further, a heat insulating material 7 covering the heater 6 is attached to the inner wall of the passage 2a of the casing 2.

尚、前記断熱材の種類としては、アルミナ−シリケート
セラミックファイバー、アルミナファイバー、ジルコニ
アファイバー、シリカファイバーロックウール、石綿等
の無機質ファイバー、ナイロン、ケブラー等の有機質フ
ァイバー、ウレタン等の発泡体の成形体、又は、これら
の組合せを利用することができる。好ましくは、無機質
ファイバーを一部、又は、全体に利用する。
The types of heat insulating materials include alumina-silicate ceramic fibers, alumina fibers, zirconia fibers, silica fiber rock wool, inorganic fibers such as asbestos, organic fibers such as nylon and Kevlar, and molded bodies of foams such as urethane. Or a combination of these can be used. Preferably, inorganic fibers are used in part or in whole.

又、断熱材7の使用に代えて、触媒担体3とケーシング
2との間に触媒担体3のほぼ全周に及ぶ空間を形成し、
その空間内の空気によって両者3゜2間の断熱を行うよ
うにしてもよい。
Also, instead of using the heat insulating material 7, a space extending almost all around the catalyst carrier 3 is formed between the catalyst carrier 3 and the casing 2,
The air in the space may provide insulation between the two by 3°2.

さて、第1図及び第2図に矢印で示すように、内燃機関
Eの排気ガスがケーシング2の供給側から触媒担体3に
導入されると、ガス通過孔4の壁部によって、排気ガス
中のカーボン(すす)やHC等が濾過されると共に、酸
化触媒により酸化される。そして、浄化された排気ガス
が触媒担体3から排出される。
Now, as shown by arrows in FIGS. 1 and 2, when the exhaust gas of the internal combustion engine E is introduced into the catalyst carrier 3 from the supply side of the casing 2, the wall of the gas passage hole 4 causes the exhaust gas to Carbon (soot), HC, etc. are filtered out and oxidized by the oxidation catalyst. The purified exhaust gas is then discharged from the catalyst carrier 3.

上記のように使用された触媒担体3の再生処理を行う場
合には、触媒担体3に所定量のカーボンを滞留させた状
態で、ヒーター6による触媒担体3の加熱を開始する。
When regenerating the catalyst carrier 3 used as described above, heating of the catalyst carrier 3 by the heater 6 is started with a predetermined amount of carbon retained in the catalyst carrier 3.

そして、触媒担体3の排気ガス排出側端部の温度が所定
温度(300〜800℃)に達した時、ケーシング2に
燃焼促進用の二次エアの供給を開始する。上記の処理を
継続することにより、触媒担体3内のカーボンが燃焼さ
れ、触媒担体3が再生される。
Then, when the temperature of the exhaust gas discharge side end of the catalyst carrier 3 reaches a predetermined temperature (300 to 800°C), supply of secondary air for combustion promotion to the casing 2 is started. By continuing the above process, the carbon in the catalyst carrier 3 is burned and the catalyst carrier 3 is regenerated.

そして、この発明では、触媒担体3の外周にヒーター6
を装着すると共に、触媒担体3とケーシング2の内壁と
の間にヒーター6を覆う断熱材7を装着したため、触媒
担体3の周縁部からの放熱が抑制され、触媒担体3を再
生温度まで加熱するのに要する時間を極めて短くできる
。従って、再生温度に昇温するための熱エネルギーもi
l+することができる。又、触媒担体3全体が均一に加
熱されるため、触媒担体3の両端部分間の温度差が少な
く保持される。従って、部分的な温度差に起因して触媒
担体3にクラックが発生ずる割合を少なくでき、再生処
理回数を増加させて、耐久性を向上させることができる
In this invention, a heater 6 is provided on the outer periphery of the catalyst carrier 3.
At the same time, a heat insulating material 7 covering the heater 6 is installed between the catalyst carrier 3 and the inner wall of the casing 2, so that heat radiation from the periphery of the catalyst carrier 3 is suppressed and the catalyst carrier 3 is heated to the regeneration temperature. The time required for this can be extremely shortened. Therefore, the thermal energy required to raise the temperature to the regeneration temperature is also i
It is possible to do l+. Furthermore, since the entire catalyst carrier 3 is heated uniformly, the temperature difference between both end portions of the catalyst carrier 3 is kept small. Therefore, the rate at which cracks occur in the catalyst carrier 3 due to local temperature differences can be reduced, the number of regeneration treatments can be increased, and durability can be improved.

[実施例] 触媒担体3として、直径144ta、長さ152n、熱
伝導率40〜70にcal/m、hr、 ’C、比熱0
゜23 Kcal/kg、 ”Cのものを使用した。又
、この触媒担体3における各ガス通過孔4間の隔壁の厚
みは0.43n+で、各ガス通過孔4は1平方in当た
り、170個形成されている。断熱材7として、0゜2
 Kcal/m、hr、 ”cの熱伝導率を有し、厚さ
が6Onのセラミックファイバーを使用した。再生処理
用セラミックスヒーターは12V−2,5に−のもので
あって、第1図及び第2図に示すように、排気ガス取入
れ側よりも排気ガス排出側の方が密になるように触媒担
体3の外周に巻回した。
[Example] The catalyst carrier 3 has a diameter of 144 ta, a length of 152 n, a thermal conductivity of 40 to 70, cal/m, hr, 'C, and a specific heat of 0.
゜23 Kcal/kg, "C" was used. Also, the thickness of the partition wall between each gas passage hole 4 in this catalyst carrier 3 was 0.43n+, and each gas passage hole 4 was 170 pieces per 1 square inch. As the heat insulating material 7, the temperature is 0°2.
Ceramic fibers with a thermal conductivity of Kcal/m, hr, ``c'' and a thickness of 6 On were used.The ceramic heater for recycling was 12V-2,5- and was as shown in Figs. As shown in FIG. 2, the catalyst carrier 3 was wound around the outer periphery of the catalyst carrier 3 so that the exhaust gas discharge side was denser than the exhaust gas intake side.

第1図に示すように、上記の排気ガス浄化装置1を内燃
機関Eに接続して、内燃機関Eを作動させ、排気ガス中
のカーボンを捕集した。この捕集動作中には、排気管路
Ea内の圧力を圧力センサPs及び圧電変換素子Peを
介して制御装置Cによって監視し、その圧力が一定値(
0,17Kg/−)に到達するまで、捕集動作を継続し
た。この時、排気ガスの流量は5 Q 17secであ
り、前記−定圧力までの到達時間は約40分となった。
As shown in FIG. 1, the above exhaust gas purification device 1 was connected to an internal combustion engine E, and the internal combustion engine E was operated to collect carbon in the exhaust gas. During this collection operation, the pressure in the exhaust pipe Ea is monitored by the control device C via the pressure sensor Ps and the piezoelectric transducer Pe, and the pressure is kept at a constant value (
The collection operation was continued until reaching 0.17 Kg/-). At this time, the flow rate of the exhaust gas was 5 Q 17 seconds, and the time required to reach the constant pressure was about 40 minutes.

この間に捕集されたカーボン量の算出に際し、触媒担体
3の容積をガス通過孔部分の総量とし、カーボン捕集量
は捕集処理の前後における重量変化に基づいて求めた。
When calculating the amount of carbon collected during this time, the volume of the catalyst carrier 3 was taken as the total amount of the gas passage hole portion, and the amount of carbon collected was determined based on the weight change before and after the collection treatment.

その結果、カーボン捕集量は15g/lとなった。As a result, the amount of carbon collected was 15 g/l.

次に、前記制御装置CによってスイッチSを閉成させ、
ヒーター6への通電を開始した。それから10分後には
コンプレッサCOを動作させ、エア供給管Caから触媒
担体3に二次エアを50f/minの割合で供給した。
Next, the control device C closes the switch S,
Power supply to the heater 6 was started. After 10 minutes, the compressor CO was operated to supply secondary air to the catalyst carrier 3 from the air supply pipe Ca at a rate of 50 f/min.

そして、熱電対を使用することにより、触媒担体3の中
心軸線上においてヒーター6からガス排出側(第1図の
右側)へ1.4間した位置P1及びガス取入れ側端部P
2の温度Tl、T2をそれぞれ監視した。
By using a thermocouple, a position P1 located 1.4 mm away from the heater 6 toward the gas discharge side (right side in FIG. 1) on the central axis of the catalyst carrier 3 and a gas intake side end P
2 temperatures Tl and T2 were monitored, respectively.

二次エアの供給開始時において、位置P1の温度T1は
約750℃であった。又、ガス取入れ側端部P2の温度
T2はカーボンの燃焼終了時に急激に降下するため、ヒ
ーター6への通電開始時から温度降下時点までの時間を
再生時間とした。その結果、再生時間は7分であった。
At the start of supply of secondary air, the temperature T1 at position P1 was approximately 750°C. Furthermore, since the temperature T2 at the gas intake side end P2 drops rapidly when the combustion of carbon ends, the time from the start of energization to the heater 6 to the time when the temperature drops was defined as the regeneration time. As a result, the playback time was 7 minutes.

更に、触媒担体3が破損するまで、上記の再生処理を繰
り返した。それらの結果を表1に示す。
Furthermore, the above regeneration process was repeated until the catalyst carrier 3 was damaged. The results are shown in Table 1.

又、触媒担体3両端の各位置PL、P2における最大温
度差を併せて示す。
Further, the maximum temperature difference at each position PL and P2 on both ends of the catalyst carrier 3 is also shown.

[実施例2] 第4図に示すように、実施例1と同一サイズの多孔質炭
化珪素製触媒担体の外周に、再生処理用セラミックスヒ
ーター(12V−2,5KW)を、等間隔に巻回した排
気ガス処理装置において、実施例1と同様の再生処理を
行った。その結果を表1に示す。
[Example 2] As shown in Fig. 4, ceramic heaters for regeneration treatment (12V-2,5KW) were wound at equal intervals around the outer circumference of a porous silicon carbide catalyst carrier of the same size as in Example 1. The same regeneration treatment as in Example 1 was carried out in the exhaust gas treatment device prepared in this manner. The results are shown in Table 1.

[比較例] 再生処理用セラミックスヒーターを触媒担体のガス排出
側端面に装着した状態で、上記各実施例と同様の再生処
理を行った。その結果を表1に示す。
[Comparative Example] The same regeneration treatment as in each of the above Examples was performed with a ceramic heater for regeneration treatment attached to the end face of the catalyst carrier on the gas discharge side. The results are shown in Table 1.

鼾 実施例1 実施例2 比較例 ヒーター 通電時間(分)     10    10    1
0カーボン 捕集量(g/ l )     15    15  
  15再生処理時間(分)    7    7  
  10再生処理回数(回)20以上  20以上  
8最大塩度差(’C)    200   250  
 320表1の結果から明らかなように、比較例の触媒
担体では、各実施例1,2の触媒担体よりも再生処理に
多くの時間を要している。従って、各実施例1,2では
カーボンが効率的に燃焼していることがわかる。又、各
実施例1,2の触媒担体では、最大温度差が比較例のも
のに比べて低い値を示し、その温度差に起因するクラン
クの発生頻度が少なくなって耐久性が向上していること
がわかる。
Snoring Example 1 Example 2 Comparative example Heater energization time (minutes) 10 10 1
0 Carbon collection amount (g/l) 15 15
15 Regeneration processing time (minutes) 7 7
10 Reproduction processing times (times) 20 or more 20 or more
8 Maximum salinity difference ('C) 200 250
320 As is clear from the results in Table 1, the catalyst carrier of the comparative example requires more time for regeneration than the catalyst carriers of Examples 1 and 2. Therefore, it can be seen that in each of Examples 1 and 2, carbon was burned efficiently. In addition, the catalyst carriers of Examples 1 and 2 showed a lower maximum temperature difference than those of the comparative examples, and the frequency of cranking caused by the temperature difference was reduced, resulting in improved durability. I understand that.

[発明の効果] 以上詳述したように、この発明は再生処理中における触
媒担体からの熱伝導に伴う熱損失を防止して安定した゛
完全な再生を行い、かつ、触媒担体の所定部分間の温度
差を少なくして、クラックの発生に起因する触媒担体の
破損を確実に防止することができ、よって耐久性を向上
させることができるという優れた効果を発揮する。
[Effects of the Invention] As described in detail above, the present invention prevents heat loss due to heat conduction from the catalyst carrier during regeneration treatment, performs stable and complete regeneration, and improves the stability between predetermined portions of the catalyst carrier. It is possible to reliably prevent damage to the catalyst carrier due to the occurrence of cracks by reducing the temperature difference between the two, thereby exhibiting an excellent effect of improving durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は排気ガス浄化装置を内燃機関に、接続した状態
を示す断面図、第2図は実施例1における触媒担体の断
面図、第3図は同じく正面図である。 第4図は実施例2における触媒担体の断面図である。 2・・・ケーシング、2a・・・通路、3・・・触媒担
体、6・・・ヒーター、7・・・断熱材、E・・・内燃
機関。
FIG. 1 is a sectional view showing a state in which the exhaust gas purification device is connected to an internal combustion engine, FIG. 2 is a sectional view of a catalyst carrier in Example 1, and FIG. 3 is a front view. FIG. 4 is a sectional view of the catalyst carrier in Example 2. 2... Casing, 2a... Passage, 3... Catalyst carrier, 6... Heater, 7... Heat insulating material, E... Internal combustion engine.

Claims (1)

【特許請求の範囲】 1 内燃機関(E)の排気側に連通する通路(2a)を
備えたケーシング(2)と、 多孔質炭化珪素焼結体によってハニカム状に形成される
と共に前記通路(2a)内に配設された触媒担体(3)
と、 前記触媒担体(3)の外周に配設されたヒーター(6)
と を設けたことを特徴とする排気ガス浄化装置。
[Scope of Claims] 1. A casing (2) having a passageway (2a) communicating with the exhaust side of the internal combustion engine (E); ) Catalyst carrier (3) disposed within
and a heater (6) disposed around the outer periphery of the catalyst carrier (3).
An exhaust gas purification device characterized by being provided with.
JP4286689A 1989-02-22 1989-02-22 Exhaust gas purification device Expired - Lifetime JP2812699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286689A JP2812699B2 (en) 1989-02-22 1989-02-22 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286689A JP2812699B2 (en) 1989-02-22 1989-02-22 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH02221621A true JPH02221621A (en) 1990-09-04
JP2812699B2 JP2812699B2 (en) 1998-10-22

Family

ID=12647957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286689A Expired - Lifetime JP2812699B2 (en) 1989-02-22 1989-02-22 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP2812699B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527216U (en) * 1991-09-17 1993-04-09 イビデン株式会社 Exhaust gas purification device
JPH0527217U (en) * 1991-09-19 1993-04-09 イビデン株式会社 Exhaust gas purification device
JPH05106424A (en) * 1991-10-14 1993-04-27 Isuzu Motors Ltd Removing device for particulate in exhaust gas
JP2009085202A (en) * 2007-10-03 2009-04-23 Tokyo Yogyo Co Ltd Honeycomb structure
WO2012105478A1 (en) * 2011-02-04 2012-08-09 日本碍子株式会社 Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
JP2014190191A (en) * 2013-03-26 2014-10-06 Ibiden Co Ltd Holding seal material for exhaust gas purification device, method of manufacturing holding seal material, exhaust gas purification device, and method of manufacturing exhaust gas purification device
JP2019173728A (en) * 2018-03-29 2019-10-10 日本碍子株式会社 Honeycomb structure body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527216U (en) * 1991-09-17 1993-04-09 イビデン株式会社 Exhaust gas purification device
JPH0527217U (en) * 1991-09-19 1993-04-09 イビデン株式会社 Exhaust gas purification device
JPH05106424A (en) * 1991-10-14 1993-04-27 Isuzu Motors Ltd Removing device for particulate in exhaust gas
JP2009085202A (en) * 2007-10-03 2009-04-23 Tokyo Yogyo Co Ltd Honeycomb structure
WO2012105478A1 (en) * 2011-02-04 2012-08-09 日本碍子株式会社 Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
CN103339087A (en) * 2011-02-04 2013-10-02 日本碍子株式会社 Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
JPWO2012105478A1 (en) * 2011-02-04 2014-07-03 日本碍子株式会社 Silicon carbide-based material, honeycomb structure, and electrically heated catalyst carrier
JP2014190191A (en) * 2013-03-26 2014-10-06 Ibiden Co Ltd Holding seal material for exhaust gas purification device, method of manufacturing holding seal material, exhaust gas purification device, and method of manufacturing exhaust gas purification device
JP2019173728A (en) * 2018-03-29 2019-10-10 日本碍子株式会社 Honeycomb structure body

Also Published As

Publication number Publication date
JP2812699B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
KR930000473B1 (en) Exhaust emission purifier for diesel engines
US5822977A (en) Method of and apparatus for purifying exhaust gas utilizing a heated filter which is heated at a rate of no more than 10° C./minute
JP2002070531A (en) Exhaust emission control device and casing structure for exhaust emission control device
JP2003161138A (en) Diesel particulate filter
JPH02221621A (en) Exhaust gas purifying device
JPH07332065A (en) Exhaust particulate purifying device of internal combustion engine
JP2928540B2 (en) Exhaust gas purification device
JP3587270B2 (en) DPF regeneration system using heater
JPH10259709A (en) Method for purifying exhaust gas and exhaust emission control device
JPH0315616A (en) Exhaust gas purifying device
JP2012241548A (en) Exhaust emission control system
JP3219404B2 (en) Exhaust gas purification device
JP4219420B2 (en) Exhaust gas filter purification method and exhaust gas filter purification device
JP3365244B2 (en) Exhaust gas purification equipment
JPH0988555A (en) Purifying method for exhaust gas filter and exhaust gas filter purifier
JP2002070529A (en) Exhaust emission control device and method of manufacturing for exhaust emission control device
JPH03915A (en) Exhaust gas purifying device
JP2003172117A (en) Exhaust emission control device having two ceramic unwoven fabrics
JP2594465Y2 (en) Exhaust gas purification device
JPS6043114A (en) Exhaust gas purifying ceramic filter
JP2689723B2 (en) Filter regeneration device for internal combustion engine
JPH0913954A (en) Exhaust gas purifying method and exhaust gas purifying device
JP3164833B2 (en) Burner heating type honeycomb filter
JPH04164115A (en) Diesel engine exhaust gas purification device
JP4308464B2 (en) Exhaust gas purification device with divided heater