JPH02220669A - Internal-external opening terminal of living body - Google Patents

Internal-external opening terminal of living body

Info

Publication number
JPH02220669A
JPH02220669A JP1040344A JP4034489A JPH02220669A JP H02220669 A JPH02220669 A JP H02220669A JP 1040344 A JP1040344 A JP 1040344A JP 4034489 A JP4034489 A JP 4034489A JP H02220669 A JPH02220669 A JP H02220669A
Authority
JP
Japan
Prior art keywords
vivo
calcium phosphate
terminal
phosphate compound
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1040344A
Other languages
Japanese (ja)
Other versions
JPH0533634B2 (en
Inventor
Yoji Imai
庸二 今井
Sukezo Shimura
志村 介三
Masahiro Hirano
昌弘 平野
Kazuyuki Arai
和行 新井
Hiroyasu Takeuchi
啓泰 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP1040344A priority Critical patent/JPH02220669A/en
Publication of JPH02220669A publication Critical patent/JPH02220669A/en
Publication of JPH0533634B2 publication Critical patent/JPH0533634B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To provide the title terminal rich in the compatibility with skin tissue and usable for a long period of time by containing a calcium phosphate compound and a synthetic org. polymer in a specific amount. CONSTITUTION:The constitutional member of a living body internal-external opening terminal equipped with a conductive member for electrically connecting the inside and outside of a living body and/or a piercing hole for mechanically connecting the inside and outside of the living body contains 40-95wt.% of a calcium phosphate compound and 60-5wt.% of a synthetic org. polymer. As the calcium phosphate compound, a compound excellent in the compatibility with a skin tissue such as tricalcium phosphate, hydroxyapatite, tetracalcium phosphate or fluoroapatite is pref. used. The surface of the calcium compound is pref. modified preliminarily and, as a modifier, for example, 4-methacryloyl oxyethoxycarbonyl phthalic acid or 4-methacryloyl oxyethoxycarbonyl phthalic anhydride is preferable. By this method, the living body internal-external opening terminal 1 is rich in bio-compatibility, especially, the compatibility with skin tissue and withstands long-term use.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体内外を電気的に連結するための導電性部
材及び/又は機械的に連結するための貫通孔を備えた生
体内外開通端子に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an in-vivo and in-vivo communication terminal provided with a conductive member for electrically connecting the inside and outside of the living body and/or a through hole for mechanically connecting the inside and outside of the living body. Regarding.

〔従来の技術〕[Conventional technology]

医療技術の進歩に伴って、人体の内部と外部とを電気的
及び/又は機械的に開通させる必要性が信号等を電気的
信号として取り出したり、薬剤や栄養の補給及び人工腎
臓透析等を行う際、血液を採取するために、機械的に生
体内外部を連結することが必要である。従来、生体内外
を開通させるための端子材料として、シリコーン樹脂又
はフッ素樹脂等が使用されているが、これらの樹脂を使
用する場合には材料と接触する上皮が下降(downg
rowth )することが多く、その結果として端子材
料と皮膚との間に間隙が生じ、感染症や炎症をひき起し
、長期にわたっての使用ができないという欠点が生じる
With the advancement of medical technology, there is a need to electrically and/or mechanically open the inside and outside of the human body to extract signals as electrical signals, to supply drugs and nutrients, and to perform artificial kidney dialysis, etc. In order to collect blood, it is necessary to mechanically connect the inside and outside of the living body. Conventionally, silicone resins or fluororesins have been used as terminal materials for establishing connections between the inside and outside of the body, but when these resins are used, the epithelium that comes into contact with the material tends to descend.
rowth), and as a result, a gap is created between the terminal material and the skin, causing infection and inflammation, resulting in the disadvantage that it cannot be used for a long period of time.

そこで前記樹脂製の開通端子の欠点を解決するために、
端子材料としてヒドロキシアパタイト緻密体(特開昭5
9−174146号公報)、リン酸三カルシウム及び/
又はリン酸四カルシウム(特開昭60−92768号公
報)、リン酸カルシウム系ガラス及び/又はバイオガラ
ス(特開昭63−9435号公報)等を使用することが
提案されており、これらの材料により製造した端子が、
皮膚組織に対して単に親和性を有するのみならず、皮膚
組織と緊密に、且つ一体的に接合することが知られてい
る。
Therefore, in order to solve the drawbacks of the resin opening terminal,
As a terminal material, hydroxyapatite dense body (Unexamined Japanese Patent Publication No. 5
9-174146), tricalcium phosphate and/
Alternatively, it has been proposed to use tetracalcium phosphate (Japanese Unexamined Patent Publication No. 60-92768), calcium phosphate glass and/or bioglass (Japanese Unexamined Patent Publication No. 63-9435), etc. The terminal that was
It is known that they not only have an affinity for skin tissue, but also bond tightly and integrally with the skin tissue.

しかしながら、前記材料は、いわゆる脆性材料であって
衝撃に弱く、破損の恐れがある上に、加工性に乏しく、
量産に適さないという欠点がある。
However, this material is a so-called brittle material that is susceptible to impact and may break, and has poor workability.
The drawback is that it is not suitable for mass production.

更に、前記材料は、生体内外の開通孔内に通す金属線又
は金属製、高分子製着しくは++**の生体内外連結チ
ューブとの親和性及び密着性にも欠け、従って、皮膚と
端子とが緊密に接しているにもがかわらず、開通孔内壁
とチューブ外壁との間に間隙が生じ、感染症等が生じる
可能性が十分に考えられるという欠点がある。
Furthermore, the material lacks compatibility and adhesion with metal wires, metal, polymer adhesives, or ++** in-vivo and in-vivo connecting tubes that are passed through the openings inside and outside the body, and therefore, there is a possibility that the skin and the terminal Although they are in close contact with each other, there is a drawback that a gap is created between the inner wall of the opening and the outer wall of the tube, and there is a high possibility that infection or the like will occur.

〔発明が解決しようとす漬課題〕[The problem that the invention attempts to solve]

そこで、本発明の主要な目的は、生体親和性、特に皮膚
組織との親和性に富み、長期間にわたる使用に耐え得る
生体内外開通端子を提供することである。
Therefore, the main object of the present invention is to provide an in-vivo and in-vivo communication terminal that has high biocompatibility, particularly compatibility with skin tissue, and can withstand long-term use.

本発明の別の目的は、靭性が高く、耐衝撃性が強く更に
加工性に富んだ生体内外開通端子を提供することである
Another object of the present invention is to provide an in-vivo and in-vivo terminal that has high toughness, strong impact resistance, and excellent workability.

本発明の更に別の目的は、生体内外の開通孔内に通す金
属線又は高分子製等の生体内外連結チューブとの親和性
及び密着性に富み、従って、感染症等を生じる恐れが全
くない生体内外開通端子を提供することである。
Still another object of the present invention is to have high compatibility and adhesion with the in-vivo and in-vivo connecting tubes made of metal wires or polymers, which are passed through the openings inside and outside the living body, and therefore there is no risk of infection. It is an object of the present invention to provide an in-vivo and in-vivo communication terminal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、生体内外を電気的に連結するための導
電性部材及び/又は機械的に連結するための貫通孔を僅
えた端子において、前記端子の構成部材が、リン酸カル
シウム化合物40〜95重量%と、合成有機重合体60
〜5重量%とを含有することを特徴とする生体内外開通
端子が提供される。
According to the present invention, in a terminal having a small number of conductive members for electrically connecting the inside and outside of a living body and/or a through hole for mechanically connecting, the component of the terminal is made of a calcium phosphate compound with a weight of 40 to 95%. % and synthetic organic polymer 60
- 5% by weight is provided.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の生体内外開通端子は、リン酸カルシウム化合物
と、合成有機重合体とを特定量含有することを特徴とす
る。
The in-vivo/in-vivo communication terminal of the present invention is characterized by containing a specific amount of a calcium phosphate compound and a synthetic organic polymer.

本発明において、リン酸カルシウム化合物としては、リ
ン酸三カルシウム、ヒドロキシアパタイト、リン酸四カ
ルシウム、オキシアパタイト、ピロリン酸カルシウム、
フッ素アパタイト、ヒドロキシアパタイトの水酸基の水
酸基の一部がフッ素イオンで置換された化合物又はこれ
らの混合物等を挙げることができ、特に、皮膚組織との
親和性に優れたリン酸三カルシウム、ヒドロキシアパタ
イト、リン酸四カルシウム及びフッ素アパタイト等から
なる群の1種又は2種以上より選択される化合物を使用
することが好ましい。更には、皮膚組織との親和性が最
も優れたヒドロキシアパタイトを使用することが最も好
ましい。
In the present invention, the calcium phosphate compounds include tricalcium phosphate, hydroxyapatite, tetracalcium phosphate, oxyapatite, calcium pyrophosphate,
Examples include fluoroapatite, a compound in which a portion of the hydroxyl group of hydroxyapatite is substituted with fluorine ions, or a mixture thereof; in particular, tricalcium phosphate, hydroxyapatite, which has excellent affinity with skin tissue, It is preferable to use one or more compounds selected from the group consisting of tetracalcium phosphate, fluoroapatite, and the like. Furthermore, it is most preferable to use hydroxyapatite, which has the best affinity with skin tissue.

本発明において好ましく使用できる前記リン酸カルシウ
ム化合物は、湿式法、乾式法又は水熱法等の公知の製造
方法により、人工的に合成されたものであっても、また
骨等から得られる天然のものであっても共に使用できる
。更に、本発明において好ましく使用できるリン酸カル
シウム化合物は、有機重合体モノマーとの混合が可能で
ある限りは粉末状、顆粒状のいずれであっても好ましく
使用できる。
The calcium phosphate compound that can be preferably used in the present invention may be one that is artificially synthesized by a known production method such as a wet method, a dry method, or a hydrothermal method, or a natural one obtained from bones etc. They can be used together even if they are. Furthermore, the calcium phosphate compound that can be preferably used in the present invention can be preferably used in either powder or granule form as long as it can be mixed with the organic polymer monomer.

本発明においては、前記リン酸カルシウム化合物の表面
を、予め改質しておくことが好ましい。
In the present invention, it is preferable that the surface of the calcium phosphate compound is modified in advance.

該改質処理を行うことにより、生体内外開通端子の強度
を増加させることができ、また生理食塩水中の長期間浸
漬においても強度劣化を防止することができる。更に、
表面改質したリン酸カルシウム化合物を使用することに
より、合成有機重合体との親和性が著しく向上し、端子
製造にあたっての原料混合時にも、特別な混合法や熟練
等を必要とせず、容易に均一混合が可能になる。
By performing this modification treatment, the strength of the in-vivo/external communication terminal can be increased, and strength deterioration can be prevented even when immersed in physiological saline for a long period of time. Furthermore,
By using a surface-modified calcium phosphate compound, its affinity with synthetic organic polymers is significantly improved, and even when mixing raw materials for terminal manufacturing, it can be easily and uniformly mixed without the need for special mixing methods or skill. becomes possible.

前記リン酸カルシウム化合物の表面を改質するための改
質剤としては、例えば、4−メタクリロイルオキシエト
キシカルボニルフタル酸(以下、4−MECPと称する
)、4−メタクリロイルオキシエトキシカルボニルフタ
ル酸無水物(以下、4−MECPAと称する)、p−ビ
ニル安息香酸等の不飽和ポリカルボン酸及びその無水物
;2−メタクリロイルオキシエチルホスフェート等の不
飽和ポリリン酸及びその無水物;10−メタクリロイル
オキシデシルチオホスフェート等の不飽和ポリチオリン
酸及びその無水物等を好ましく挙げることができる。前
記改質剤の中では、4−MECPA、4−MECPは少
量でリン酸カルシウム化合物の表面を改質できるため、
特に好ましい。
Examples of the modifier for modifying the surface of the calcium phosphate compound include 4-methacryloyloxyethoxycarbonylphthalic acid (hereinafter referred to as 4-MECP) and 4-methacryloyloxyethoxycarbonylphthalic anhydride (hereinafter referred to as 4-MECP). 4-MECPA), unsaturated polycarboxylic acids and their anhydrides such as p-vinylbenzoic acid; unsaturated polyphosphoric acids and their anhydrides such as 2-methacryloyloxyethyl phosphate; 10-methacryloyloxydecyl thiophosphate, etc. Preferred examples include unsaturated polythiophosphoric acid and its anhydride. Among the modifiers, 4-MECPA and 4-MECP can modify the surface of calcium phosphate compounds with a small amount;
Particularly preferred.

改質剤の使用量は、リン酸カルシウム化合物と合成有機
重合体の原料モノマーとの親和性が向上し、端子製造に
あたっての原料混合時に容易に均一に混合でき、更に、
生体内外開通端子の強度の劣化を防止できるように、リ
ン酸カルシウム化合物の表面を改質できる量を使用する
ことが好ましい。かかる量は、特に限定はされるもので
はないが、例えば、リン酸カルシウム化合物100重量
部に対して、0.05重量部以上、特に好ましくは0.
1〜0.5重量部使用することが望ましい。
The amount of modifier used is determined by improving the affinity between the calcium phosphate compound and the raw material monomer of the synthetic organic polymer, allowing easy and uniform mixing of raw materials during terminal manufacturing, and
It is preferable to use an amount of the calcium phosphate compound that can modify the surface so as to prevent deterioration of the strength of the in-vivo/external communication terminal. This amount is not particularly limited, but is, for example, 0.05 parts by weight or more, particularly preferably 0.05 parts by weight, based on 100 parts by weight of the calcium phosphate compound.
It is desirable to use 1 to 0.5 parts by weight.

この場合に最も高強度の端子が製造できる。また前記改
質剤の量を増加することは、もちろん可能であるが、経
済性及び生体親和性の観点から。
In this case, the highest strength terminal can be manufactured. It is of course possible to increase the amount of the modifier, but from the viewpoint of economy and biocompatibility.

2.0重量部以下が好ましい。The amount is preferably 2.0 parts by weight or less.

改質方法もリン酸カルシウム化合物の表面を改質し得る
かぎり、任意の方法が使用できる。例えば、メタクリル
酸メチル、メタクリル酸トリフルオロエチル等の合成有
機重合体のモノマー、アセトン等の溶媒に改質剤を溶解
し、次いで、リン酸カルシウム化合物を投入し、3〜1
0分間撹拌後、リン酸カルシウム化合物の沈殿物を自然
乾燥又は加熱乾燥する方法により改質できる。
Any modification method can be used as long as the surface of the calcium phosphate compound can be modified. For example, a modifier is dissolved in a synthetic organic polymer monomer such as methyl methacrylate or trifluoroethyl methacrylate, or a solvent such as acetone, and then a calcium phosphate compound is added to
After stirring for 0 minutes, the precipitate of the calcium phosphate compound can be modified by air drying or heating drying.

本発明において好ましく使用できる有機重合体としては
、生体に対し毒性がなく、且つリン酸カルシウム化合物
との親和性があれば特に限定されず1例えば、ポリ乳酸
ポリグリコール酸等のカルボン酸系重合体;ポリメタク
リル酸メチル(以下。
Organic polymers that can be preferably used in the present invention are not particularly limited as long as they are non-toxic to living organisms and have an affinity for calcium phosphate compounds.For example, carboxylic acid polymers such as polylactic acid and polyglycolic acid; Methyl methacrylate (hereinafter)

PMMAと称す)、ポリ(メタクリル酸トリフルオロエ
チル)(以下、PTFEMAと称す)等のカルボン酸エ
ステル系重合体;及びポリエチレン(以下、PEと称す
)、ポリプロピレン等のオレフィン系重合体が好ましく
使用できる。これらの重合体のうちでは、強度及びリン
酸カルシウム化合物との親和性が高いという観点から、
特に、PMMA及びPTFEMAが好ましい。これらの
合成有機重合体は、いずれも公知の方法にて製造される
重合体が好ましく使用できる。
Carboxylic acid ester polymers such as PMMA), poly(trifluoroethyl methacrylate) (hereinafter referred to as PTFEMA); and olefin polymers such as polyethylene (hereinafter referred to as PE) and polypropylene can be preferably used. . Among these polymers, from the viewpoint of strength and high affinity with calcium phosphate compounds,
Particularly preferred are PMMA and PTFEMA. As these synthetic organic polymers, polymers produced by known methods can be preferably used.

本発明において、リン酸カルシウム化合物及び合成有機
重合体との配合割合は、リン酸カルシウム化合物40〜
95重量%、好ましくは50〜85重量%1合成有機重
合体60〜5重量%好ましくは50〜15重量%である
。リン酸カルシウム化合物の量が、40重量%未満であ
ると、加工後に表面処理を施しても表層部に面積比で5
0%以上のリン酸カルシウム化合物を露出させることが
できず、従って、十分な皮膚組織との親和性を有する生
体内外開通端子を製造することが困難である。又、リン
酸カルシウム化合物の量が、95重量%を超えると、生
体内外開通端子自体の加工が困難になる。
In the present invention, the blending ratio of the calcium phosphate compound and the synthetic organic polymer is 40 to 40%.
95% by weight, preferably 50-85% by weight 1 synthetic organic polymer 60-5% by weight, preferably 50-15% by weight. If the amount of calcium phosphate compound is less than 40% by weight, even if surface treatment is performed after processing, the surface area will be 5% by weight.
It is impossible to expose 0% or more of the calcium phosphate compound, and therefore, it is difficult to manufacture an in-vivo/external-opening terminal that has sufficient affinity with skin tissue. Furthermore, if the amount of the calcium phosphate compound exceeds 95% by weight, it becomes difficult to process the in-vivo/external communication terminal itself.

本発明による生体内外開通端子は、好ましくは。The in-vivo and ex-vivo communication terminal according to the present invention is preferably.

リン酸カルシウム化合物の粉末又は顆粒並びに合成有機
重合体のモノマーとを混合し、好ましくは40〜100
℃で1〜10時間段階的に加熱重合した後に、所望の形
状に加工することによって製造できる。
The powder or granules of the calcium phosphate compound and the monomer of the synthetic organic polymer are mixed, preferably 40 to 100%
It can be manufactured by heating and polymerizing stepwise at 1 to 10 hours at °C and then processing it into a desired shape.

この際、本発明に用いる材料が靭性及び加工性に優れて
いるため、所望の形状に加工するには、例えば、旋盤、
ダイヤモンドカッター、ダイヤモンドディスク等により
、容易に加工することができる。
At this time, since the material used in the present invention has excellent toughness and workability, it is necessary to use a lathe, for example, to process it into the desired shape.
It can be easily processed using a diamond cutter, diamond disk, etc.

本発明の生体内外開通端子の製造においては、更に、生
体内外開通端子の表面の処理を行うことが好ましい。表
面処理は、好ましくは、例えば。
In the production of the in-vivo and in-vivo communication terminal of the present invention, it is preferable that the surface of the in-vivo and in-vivo communication terminal is further treated. The surface treatment is preferably for example.

旋盤等による加工後の半製品である端子を、少なくとも
カルシウムイオン及びリンイオンを含有する溶液中に浸
漬して行う。この処理により、端子表面に最初から露出
しているリン酸カルシウム化合物を核として、該核にエ
ピタキシャル成長が起こりリン酸カルシウム化合物が析
出し、表層部を覆う。このようにして、当初の混合時に
は、期待し得ない程の広い面積にリン酸カルシウム化合
物を露出させることが可能となる。
This is done by immersing a terminal, which is a semi-finished product after processing with a lathe or the like, in a solution containing at least calcium ions and phosphorus ions. Through this treatment, epitaxial growth occurs on the core of the calcium phosphate compound exposed from the beginning on the terminal surface, and the calcium phosphate compound precipitates to cover the surface layer. In this way, it is possible to expose an unexpectedly large area of calcium phosphate compound during initial mixing.

本発明の生体内外開通端子の製造においては、加工時の
切削による熱のために、耐熱性の低い合成有機重合体が
表層部を薄く被覆する場合があるが、かかる場合には、
例えば、プラズマ処理を行うことにより1合成有機重合
体薄膜を飛ばし、リン酸カルシウム化合物を露出させる
ことができる。
In manufacturing the in-vivo/in-vivo terminal of the present invention, the surface layer may be thinly coated with a synthetic organic polymer with low heat resistance due to the heat generated by cutting during processing, but in such cases,
For example, plasma treatment can be performed to remove the synthetic organic polymer thin film and expose the calcium phosphate compound.

この際、切削加工時に薄膜で被覆されたリン酸カルシウ
ム化合物のみでなく、切削加工時には、表面にまで達し
ていない比較的浅い位置に存在するリン酸カルシウム化
合物までをも露出させることが可能である。この場合に
も、当初の混合時には、期待し得ない程の広い面積にリ
ン酸カルシウム化金物を露出させることが可能となる。
At this time, it is possible to expose not only the calcium phosphate compound coated with a thin film during cutting, but also the calcium phosphate compound present at a relatively shallow position that does not reach the surface. In this case as well, it becomes possible to expose the calcium phosphate metal over an unexpectedly large area during initial mixing.

なお、前記プラズマ処理によって、表面が活性化され、
その結果として生体活性が向上する場合もある。
Note that the plasma treatment activates the surface,
As a result, biological activity may be improved.

当然ながら、前記の溶液浸漬処理及びプラズマ処理を組
合せて実施することにより、効果は相乗的に増大する。
Naturally, by performing the solution immersion treatment and the plasma treatment in combination, the effect increases synergistically.

本発明の生体内外開通端子において、表層部に露出させ
るリン酸カルシウム化合物の面積比は、50%以上が好
ましく、特に70%以上が好ましい、その理由は1本発
明の生体内外開通端子と皮膚組織との親和性は表層部に
露出しているリン酸カルシウム化合物の面積比に依存す
ると容易に推測されるためである。実際に、50%以上
の面積比でリン酸カルシウム化合物が露出している限り
In the in-vivo and in-vivo terminal of the present invention, the area ratio of the calcium phosphate compound exposed to the surface layer is preferably 50% or more, particularly preferably 70% or more.The reason is 1. This is because it is easily assumed that the affinity depends on the area ratio of the calcium phosphate compound exposed on the surface layer. In fact, as long as the calcium phosphate compound is exposed with an area ratio of 50% or more.

皮膚組織と緊密且つ一体的に接合し、面積比が増加する
と、リン酸カルシウム化合物単独の生体内外開通端子と
全く遜色のない皮膚組l!a親和性を示す。
When it is closely and integrally bonded to the skin tissue and the area ratio increases, it is comparable to the in-vivo terminal made of calcium phosphate compound alone! a Shows affinity.

本発明による生体内外開通端子においては、中心部に生
体内外を電気的に連結するための導電性金属線及び/又
は機械的に連結するための貫通孔としての金属製、高分
子製又は陶製の生体内外連結チューブが配置される。本
発明による生体内外開通端子の材料は、加工性に富むの
で端子製造後に前記金属線や生体内外連結チューブを通
すための孔を開通させることも可能である。好ましくは
、端子を製造するにあたって2加熱重合時に端子中心部
に予め金属線や生体内外連結チューブを配置しておき、
一体的に重合すれば、間隙のない、緊密な生体内外開通
端子が製造できる。更に、金属線や生体内外連結チュー
ブの外表面に予め接着剤を塗布しておいてもよく、端子
と金属線や生体内外連結チューブとの一体性は一層向上
する。しかし、本発明による生体内外開通端子の材料は
、金属、高分子材料等と高い接着性を有するため、必ず
しも接着剤を使用しなくても所望の緊密性を維持できる
。なお、使用する接着剤は所望の接層強度が提供される
限り、特に限定されない。
In the in-vivo and in-vivo communication terminal according to the present invention, a conductive metal wire for electrically connecting the inside and outside of the body and/or a through hole for mechanically connecting the inside and outside of the body is made of metal, polymer, or ceramic. An in-vivo/external connection tube is placed. Since the material of the in-vivo/in-vivo connecting terminal according to the present invention is highly workable, it is possible to open a hole for passing the metal wire or the in-vivo/in-vivo connection tube after the terminal is manufactured. Preferably, in manufacturing the terminal, a metal wire or an in-vivo/external connection tube is placed in advance at the center of the terminal during the second heating polymerization.
If they are integrally polymerized, a tight in-vivo/external communication terminal with no gaps can be manufactured. Furthermore, an adhesive may be applied in advance to the outer surface of the metal wire or the in-vivo/external connection tube, and the integrity of the terminal and the metal wire or the in-vivo or in-vivo connection tube is further improved. However, since the material of the in-vivo/in-vivo communication terminal according to the present invention has high adhesiveness with metals, polymeric materials, etc., desired tightness can be maintained without necessarily using an adhesive. Note that the adhesive used is not particularly limited as long as the desired adhesive strength is provided.

本発明による生体内外開通端子においては、機械的強度
及び靭性等を更に改善するために、端子内部の適切な位
置に金属を配置してもよい。この場合、金属としては、
前記目的に沿う限り特に限定されないが、リン酸カルシ
ウム化合物と合成有機重合体との混合物に何等かの原因
でクラック等が生じる場合も考えられるため、毒性が少
ない又は無いといわれるステンレス(316L)やチタ
ン等を使用することが好ましい。
In the in-vivo/in-vivo terminal according to the present invention, metal may be placed at an appropriate position inside the terminal in order to further improve mechanical strength, toughness, etc. In this case, the metal is
There is no particular limitation as long as it meets the above purpose, but since cracks may occur for some reason in the mixture of calcium phosphate compound and synthetic organic polymer, stainless steel (316L), titanium, etc., which are said to have little or no toxicity, may be used. It is preferable to use

〔実施例〕〔Example〕

以下に実施例により、本発明の生体内外開通端子を更に
詳細に説明する。
Hereinafter, the in-vivo/in-vivo communication terminal of the present invention will be explained in more detail with reference to Examples.

11何よ ヒドロキシアパタイトの粉末及びPMMA又はPTFE
MAの各モノマーを、ボールミルにて均一に混合し、次
いで40℃から100℃まで段階的に加熱重合させて5
X5X10m+の角柱状の複合体を製造した。この場合
、配合割合は、ヒドロキシアバタイ1−の配合割合を重
量比で、30.40.50.70.85及び95%とし
た。次いで、製造した角柱状の複合体を表1に示す組成
を有し、温度37℃に維持した疑似体液中に3日間浸漬
した後、走査電顕により撮影した写真を画像処理する方
法によって表層部に露出しているヒドロキシアパタイト
の面積比を測定した。その結果を表2に示す。
11 What is hydroxyapatite powder and PMMA or PTFE?
Each monomer of MA was mixed uniformly in a ball mill, and then heated and polymerized stepwise from 40°C to 100°C.
A prismatic composite of X5X10m+ was manufactured. In this case, the blending ratio of hydroxyavatai 1- was 30.40.50.70.85 and 95% by weight. Next, the produced prismatic composite had the composition shown in Table 1 and was immersed in a simulated body fluid maintained at a temperature of 37°C for 3 days, and then the surface layer was image-processed by a method of image processing a photograph taken with a scanning electron microscope. The area ratio of hydroxyapatite exposed to was measured. The results are shown in Table 2.

表2より明らかなように、ヒドロキシアパタイトの配合
割合が50重量%以上の場合には、ヒドロキシアパタイ
トの面積比も50%以上となった。
As is clear from Table 2, when the blending ratio of hydroxyapatite was 50% by weight or more, the area ratio of hydroxyapatite was also 50% or more.

なお、前記の疑似体液中に7日間浸漬した後には、ヒド
ロキシアパタイトの配合割合が40重量%の場合にも、
ヒドロキシアパタイトの面積比が50%以上となった。
In addition, after being immersed in the above-mentioned simulated body fluid for 7 days, even when the blending ratio of hydroxyapatite is 40% by weight,
The area ratio of hydroxyapatite was 50% or more.

しかしながら1重量比が30%の場合は、1力月浸漬し
た後であっても、ヒドロキシアパタイトの面積比を5o
%以上とすることはできなかった。
However, when the weight ratio of hydroxyapatite is 30%, even after immersion for one month, the area ratio of hydroxyapatite is 50%.
% or more was not possible.

(以下余白) 表 疑 似 体 液 の 組 成 歩」」1劃 参考例1に記載の方法と同様にして角柱状複合体を各々
製造し、更に旋盤にて3mφ、10nmLの円柱状に加
工した。円柱状に加工した後の1表層部に露出したヒド
ロキシアパタイトの面積比を表3に示す。表3より明ら
かなように、加工後であって表面処理以前の状態では、
密度より算出されるよりも、ヒドロキシアパタイトの露
出量ははるかに少なかった。これは、旋盤加工の際に、
PMMA及びPTFEMAが一部溶融して、ヒドロキシ
アパタイトを薄く被覆したためである。この後、プラズ
マ処理装置(島津製作所製のLCVD−20)にて、表
層部の処理を施したところ、表3に示す如くに顕著にヒ
ドロキシアパタイトが露出した。更に、参考例1と同様
の方法にて、疑似体液中に3日間浸漬処理したところ、
ヒドロキシアパタイト露出面積比は更に増加した。
(Left below in the margin) Composition Steps of Surface Simulated Body Fluid'' Part 1: Each prismatic composite was produced in the same manner as described in Reference Example 1, and further processed into a cylindrical shape with a diameter of 3 m and 10 nm using a lathe. Table 3 shows the area ratio of hydroxyapatite exposed in one surface layer after being processed into a columnar shape. As is clear from Table 3, after processing but before surface treatment,
The amount of hydroxyapatite exposed was much lower than calculated from the density. This is during lathe processing.
This is because PMMA and PTFEMA were partially melted and were thinly coated with hydroxyapatite. Thereafter, the surface layer was treated using a plasma treatment apparatus (LCVD-20 manufactured by Shimadzu Corporation), and as shown in Table 3, hydroxyapatite was significantly exposed. Furthermore, when the sample was immersed in a simulated body fluid for 3 days in the same manner as in Reference Example 1,
The hydroxyapatite exposed area ratio further increased.

奎」目」y アセトンに改質剤として、4−MECPを溶解し1次い
でリン酸カルシウム化合物として、リン酸四カルシウム
、リン酸三カルシウム及びヒドロキシアパタイトの各粉
末を投入後、各々を沈殿させてから、沈殿物を採取し、
乾燥して各材料の表面改質を行った。その後、各沈殿物
にPMMA又はPTFEMAの各モノマーを各々混合し
、加熱、重合させてリン酸カルシウム化合物と合成有機
重合体との複合体を参考例1と同様に製造した。この場
合のリン酸カルシウム化合物と合成有機重合体との濡れ
は非常に良好であり、混合が容易であった。なお、配合
割合は、いずれもリン酸カルシウム化合物を80重量%
、有機重合体を20重量%とじた。
Dissolve 4-MECP as a modifier in acetone, then add powders of tetracalcium phosphate, tricalcium phosphate, and hydroxyapatite as calcium phosphate compounds, and then precipitate each powder. Collect the sediment,
After drying, the surface of each material was modified. Thereafter, each monomer of PMMA or PTFEMA was mixed with each precipitate, heated and polymerized to produce a composite of a calcium phosphate compound and a synthetic organic polymer in the same manner as in Reference Example 1. In this case, wetting of the calcium phosphate compound and the synthetic organic polymer was very good, and mixing was easy. The blending ratio is 80% by weight of calcium phosphate compound.
, 20% by weight of organic polymer.

贅(史土 リン酸カルシウム化合物としてヒドロキシアパタイトの
みを使用した以外は全て参考例3と同様にして、リン酸
カルシウム化合物と合成有機重合体との複合体を製造し
た。これらの複合体を乾燥状態及び生体中に近似させる
ために生理食塩水(37℃)中に3力月間浸漬し、濡れ
たままの状態で曲げ強度を測定した。曲げ試験は、JI
SR1601に従い、三点間げにて実施した。その結果
を表4に示す。
A composite of a calcium phosphate compound and a synthetic organic polymer was produced in the same manner as in Reference Example 3 except that only hydroxyapatite was used as the historical soil calcium phosphate compound. To approximate this, the bending strength was measured by immersing it in physiological saline (37°C) for 3 months while still wet.The bending test was conducted according to JI
It was carried out in accordance with SR1601 with three-point spacing. The results are shown in Table 4.

見九盤且 ヒドロキシアパタイト粉末の表面処理を行わない以外は
全て参考例4と同様にして、曲げ強度を測定した。その
結果を、同様に表4に示す。
The bending strength was measured in the same manner as in Reference Example 4 except that the surface treatment of the hydroxyapatite powder was not performed. The results are also shown in Table 4.

この場合には、ヒドロキシアパタイト粉末とPMMA又
はPTFEMAとの濡れが悪く、実施例4の場合と比較
して混合が困難であり、均一な組成が得られにくかった
In this case, wetting of the hydroxyapatite powder and PMMA or PTFEMA was poor, and mixing was more difficult than in Example 4, making it difficult to obtain a uniform composition.

(以下余白) 去】111 ヒドロキシアパタイト50重量部と、PMMA50重量
部又はPTFEMA50重量部とを参考例1と同様に各
々混合し、加熱重合して生体内外開通端子を作製した。
(The following is a blank space) 111 50 parts by weight of hydroxyapatite and 50 parts by weight of PMMA or 50 parts by weight of PTFEMA were each mixed in the same manner as in Reference Example 1, and heated and polymerized to prepare an in-vivo/external communication terminal.

作製した生体内外開通端子を第1図に示す、第1図にお
いて、生体内外開通端子1の中心には、生体内外連結チ
ューブ2が配設される。該生体内外連結チューブ2は、
重合時において直径1msのポリ塩化ビニル製のチュー
ブを配置し、一体的に加熱重合することにより得られる
。次いで得られた生体内外開通端子の表層部をプラズマ
処理してから、参考例1と同様に疑似体液中に浸漬し1
表層部にヒドロキシアパタイトを面積比で50%露出さ
せた5次いで表面処理した生体内外開通端子の双方の端
子を成犬腹部皮膚に埋入し、経時的に観察を行った。そ
の結果上皮の下降も生じず、皮膚との緊密性も良好であ
り、炎症反応等は全く発生しなかった。
The produced in-vivo/in-external communication terminal is shown in FIG. 1. In FIG. 1, at the center of the in-vivo/in-external communication terminal 1, a living-in/external connection tube 2 is disposed. The in-vivo/external connection tube 2 is
It is obtained by placing a polyvinyl chloride tube with a diameter of 1 ms during polymerization and integrally heating and polymerizing it. Next, the surface layer of the obtained in-vivo/external communication terminal was subjected to plasma treatment, and then immersed in a simulated body fluid in the same manner as in Reference Example 1.
Both terminals of an in-vivo and in-vivo open terminal which had been surface-treated and had 50% hydroxyapatite exposed in terms of area ratio were implanted into the abdominal skin of an adult dog, and were observed over time. As a result, the epithelium did not descend, the tightness with the skin was good, and no inflammatory reaction occurred.

失誰何ス ヒドロキシアパタイトの量を70重量部とし、表層部へ
の露出を70%とした以外は、実施例1と同様に生体内
外開通端子を作製し、試験を行った。その結果皮膚との
親和性に優れ、上皮の下降も生じず、皮膚との緊密性も
良好であり、炎症反応等は全く発生しなかった。また1
年経過後においても、同等問題が生じなかった。
An in-vivo and in-vivo open terminal was prepared and tested in the same manner as in Example 1, except that the amount of depleted hydroxyapatite was 70 parts by weight and the exposure to the surface layer was 70%. As a result, it had excellent compatibility with the skin, no epithelial drop occurred, good tightness with the skin, and no inflammatory reactions occurred. Also 1
Even after a year had passed, no similar problems arose.

ル艶涯よ ヒドロキシアパタイトの量を30重量%とじ、表層部へ
の露出を30%とした以外は実施例1と同様に生体内外
開通端子を作製し、試験を行った。
An in-vivo terminal was prepared and tested in the same manner as in Example 1, except that the amount of hydroxyapatite was 30% by weight and the exposure to the surface layer was 30%.

その結果上皮は若干下降がwA察され、長期の使用には
問題が生じた。
As a result, a slight decline in wA of the epithelium was observed, posing a problem with long-term use.

なお、本発明による生体内外開通端子においては、中心
部に配置したポリ塩化ビニル製のチューブと端子の開通
孔内壁との接着性は極めて良好であり、又、PMMA及
びPTFEMAの相違による差は認められなかった。
In addition, in the in-vivo and in-vivo terminal according to the present invention, the adhesion between the polyvinyl chloride tube placed in the center and the inner wall of the opening hole of the terminal is extremely good, and no difference was observed due to the difference between PMMA and PTFEMA. I couldn't.

〔発明の効果〕 本発明による生体内外開通端子は、生体親和性、特に皮
膚組織との親和性に富み、長期間にわたる使用に耐え得
ることが可能である。しかも、本発明による生体内外開
通端子は、靭性が高く、耐衝撃性が強く、加工性にも富
んでおり、更に、生体内外の開通孔内に通す金属線や高
分子製等の生体内外連結チューブとの親和性及び密着性
に富み、従って、感染が生じる恐れの全くない生体内外
開通端子である。
[Effects of the Invention] The in-vivo/outside-opening terminal according to the present invention has high biocompatibility, particularly compatibility with skin tissue, and can withstand use over a long period of time. Moreover, the in-vivo and in-vivo communication terminals according to the present invention have high toughness, strong impact resistance, and excellent workability, and furthermore, the in-vivo and in-vivo connections are made of metal wires, polymers, etc. that can be passed through the in- and out-of-body communication holes. It is an in-vivo/external communication terminal that has high affinity and adhesion with tubes, and therefore has no risk of infection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、生体内外開通端子の概略断面図である。 1・・生体内外開通端子、2・・生体内外連結チューブ
。 特許出顕人
FIG. 1 is a schematic cross-sectional view of the in-vivo/external communication terminal. 1. In-vivo and in-vivo communication terminal, 2. In-vivo and in-vivo connection tube. patent author

Claims (1)

【特許請求の範囲】 1)生体内外を電気的に連結するための導電性部材及び
/又は機械的に連結するための貫通孔を備えた端子にお
いて、前記端子の構成部材が、リン酸カルシウム化合物
40〜95重量%と、合成有機重合体60〜5重量%と
を含有することを特徴とする生体内外開通端子。 2)前記リン酸カルシウム化合物と、合成有機重合体と
の親和性を向上させ、且つ前記端子の強度劣化を防止す
る改質剤により、前記リン酸カルシウム化合物の表面を
改質処理してなる請求項1記載の生体内外開通端子。 3)生体組織と接触する前記端子の表層部に、リン酸カ
ルシウム化合物を面積比で50%以上露出させることを
特徴とする請求項1又は2記載の生体内外開通端子。 4)前記端子の生体組織と接する表層部を、所望の形状
に加工した後に表面処理し、該表層部にリン酸カルシウ
ム化合物を面積比で50%以上露出させることを特徴と
する請求項1、2又は3のいずれか1項記載の生体内外
開通端子。
[Scope of Claims] 1) A terminal provided with a conductive member for electrically connecting the inside and outside of a living body and/or a through hole for mechanically connecting, wherein the component of the terminal is a calcium phosphate compound 40- 95% by weight of a synthetic organic polymer and 60-5% by weight of a synthetic organic polymer. 2) The surface of the calcium phosphate compound is modified with a modifier that improves the affinity between the calcium phosphate compound and the synthetic organic polymer and prevents strength deterioration of the terminal. In-vivo/external open terminal. 3) The in-vivo and in-vivo communication terminal according to claim 1 or 2, characterized in that a calcium phosphate compound is exposed in an area ratio of 50% or more on the surface layer of the terminal that comes into contact with living tissue. 4) The surface layer of the terminal in contact with living tissue is processed into a desired shape and then subjected to surface treatment, so that 50% or more of the calcium phosphate compound is exposed in area ratio on the surface layer. 3. The in-vivo/external communication terminal according to any one of 3.
JP1040344A 1989-02-22 1989-02-22 Internal-external opening terminal of living body Granted JPH02220669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040344A JPH02220669A (en) 1989-02-22 1989-02-22 Internal-external opening terminal of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040344A JPH02220669A (en) 1989-02-22 1989-02-22 Internal-external opening terminal of living body

Publications (2)

Publication Number Publication Date
JPH02220669A true JPH02220669A (en) 1990-09-03
JPH0533634B2 JPH0533634B2 (en) 1993-05-20

Family

ID=12578015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040344A Granted JPH02220669A (en) 1989-02-22 1989-02-22 Internal-external opening terminal of living body

Country Status (1)

Country Link
JP (1) JPH02220669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089040A (en) * 2008-10-10 2010-04-22 Tokyo Metropolitan Industrial Technology Research Institute Method for producing fluoroapatite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560617B2 (en) * 1999-12-15 2010-10-13 独立行政法人物質・材料研究機構 Calcium phosphate-polymer composite, production method and use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281954A (en) * 1986-05-29 1987-12-07 京セラ株式会社 Inside and outside opening member of living body
JPS639435A (en) * 1986-07-01 1988-01-16 株式会社アドバンス Terminal for living body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281954A (en) * 1986-05-29 1987-12-07 京セラ株式会社 Inside and outside opening member of living body
JPS639435A (en) * 1986-07-01 1988-01-16 株式会社アドバンス Terminal for living body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089040A (en) * 2008-10-10 2010-04-22 Tokyo Metropolitan Industrial Technology Research Institute Method for producing fluoroapatite

Also Published As

Publication number Publication date
JPH0533634B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
US3839743A (en) Method for maintaining the normal integrity of blood
KR101324170B1 (en) Biomedical implants comprising surface-modified metal particles and biodegradable polymers, its use for suppressing inflammation, and preparation method thereof
US20050102025A1 (en) Plasma surface graft process for reducing thrombogenicity
JPS6238170A (en) Artificial organ improved in adhesion to bone and method
DE10004884A1 (en) Immobilization of biomolecules on medical devices included converting surface amide groups to amine groups by treatment with hypohalite and hydroxide ions
CN107456601A (en) A kind of Zn-Cu systems kirsite and preparation method and application
Vijayalakshmi et al. Synthesis and characterization of porous silica gels for biomedical applications
JP4254057B2 (en) Method for producing hydroxyapatite and method for producing composite
Chang Designs of zwitterionic polymers
JPH02220669A (en) Internal-external opening terminal of living body
EP1252902B1 (en) Artificial dura mater having cell adhesiveness and a process for producing the same
JP2007202782A (en) Biological material and method of manufacturing the same
JPH0533633B2 (en)
JP2010508109A (en) Method for producing an implantable prosthesis from a base element made of a porous material, a prosthesis related thereto and use thereof
KR102281356B1 (en) Medical implants surface modified with gold nanoparticles
Freire Anti-Bacterial Surface Protection for Prostheses
KR102131101B1 (en) Method for preparation of ePTFE-based artificial vessels with enhanced hemocompatibility via selective plasma etching
US20110153029A1 (en) Bioresorbable and flexible membranes exhibiting asymmetric osteoconductive behavior in both faces
Dos Santos et al. Biomimetic calcium phosphates-based coatings deposited on binary Ti-Mo alloys modified by laser beam irradiation for biomaterial/clinical applications
CN111388764B (en) Degradable metal anastomosis nail and preparation method thereof
JPH06285151A (en) Medical instrument coated with amorphous calcium phosphate
US20220233300A1 (en) METHOD OF MANUFACTURING ePTFE ARTIFICIAL VASCULAR GRAFT WITH IMPROVED BLOOD COMPATIBILITY BY SELECTIVE PLASMA ETCHING
EP3124057A1 (en) Calcium phosphate-based biodegradable micro-screw and manufacturing method therefor
SU764742A1 (en) Coating method
JPH04208164A (en) Grafting material and manufacture thereof