JPH0222002B2 - - Google Patents

Info

Publication number
JPH0222002B2
JPH0222002B2 JP59272505A JP27250584A JPH0222002B2 JP H0222002 B2 JPH0222002 B2 JP H0222002B2 JP 59272505 A JP59272505 A JP 59272505A JP 27250584 A JP27250584 A JP 27250584A JP H0222002 B2 JPH0222002 B2 JP H0222002B2
Authority
JP
Japan
Prior art keywords
tube
metal tube
manufacturing
dielectric cylinder
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59272505A
Other languages
Japanese (ja)
Other versions
JPS61151003A (en
Inventor
Makoto Koguchi
Yasushi Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27250584A priority Critical patent/JPS61151003A/en
Publication of JPS61151003A publication Critical patent/JPS61151003A/en
Publication of JPH0222002B2 publication Critical patent/JPH0222002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、同心的に配され少なくとも外側電
極が金属管からなる1対の円筒状電極の間に形成
されたリング状の空隙内に誘電体円筒が該円筒状
電極と同心に配されてなり、該1対の円筒状電極
間に交流高電圧を印加して空隙内に無声放電を生
ぜしめるとともに酸素または酸素を含む乾燥気体
を前記空隙内を流通せしめてオゾンを生成するオ
ゾン発生管の製造方法に関する。
In the present invention, a dielectric cylinder is arranged concentrically with a pair of cylindrical electrodes in a ring-shaped gap formed between a pair of cylindrical electrodes which are arranged concentrically and at least the outer electrode is made of a metal tube. , manufacture of an ozone generating tube that generates ozone by applying an AC high voltage between the pair of cylindrical electrodes to generate a silent discharge in the gap and flowing oxygen or a dry gas containing oxygen through the gap. Regarding the method.

【従来技術とその問題点】[Prior art and its problems]

第5図に、従来使用されているオゾン発生管の
構成例を示す。このオゾン発生管は、接地されて
一方の電極を構成する金属管2と同心に、内面に
カーボン膜や金属膜などの導電層12が形成され
通常一方の端部が閉じられたガラス管11が前記
金属管2と同心に配されてなり、オゾンを発生さ
せる際には、前記金属管2と導電層12とによつ
て構成される1対の円筒状電極間に交流の高電圧
が印加され、この電圧のもとでガラス管を介して
無声放電が生じているリング状空隙3の一方の端
部から、酸素または酸素を含む乾燥気体を送り込
む。このオゾン発生管は、無声放電を生ぜしめる
ために外部から注入された電力の大半が熱エネル
ギに変換され温度上昇を来すことから、このオゾ
ン発生管が多数組み込まれたオゾン発生装置は、
第6図に示されるように、水冷構造となつてい
る。すなわち、端板4aを備え内部に循環水空間
を形成する函体4の前記端板板4aを直角に貫通
して複数本該端板に水密に溶接されたそれぞれの
金属管を一方の電極とする複数のオゾン発生管を
備え、それぞれのオゾン発生管に発生した熱を金
属管2の外周側から奪い去る構造となつている。 ところで、このようなオゾン発生装置は、水冷
式のため、小形小容量のものに不向きなだけでな
く、放電空隙3、ガラス管11の温度上昇が大き
く、このため一旦生成したオゾンが熱分解して酸
素に戻り、投入電力を増加させても却つてオゾン
の収量が減ずるという欠点があつた。また、内面
に導電層12が形成されたガラス管11は寸法公
差がきく、金属管2との間に寸法が均一な空隙が
形成されず、このため空隙中に一様な放電が生じ
難く、オゾンの収率を阻害するという欠点があつ
た。
FIG. 5 shows an example of the configuration of a conventionally used ozone generating tube. This ozone generating tube has a glass tube 11 with a conductive layer 12 such as a carbon film or metal film formed on the inner surface concentrically with a grounded metal tube 2 constituting one electrode and usually closed at one end. It is arranged concentrically with the metal tube 2, and when generating ozone, an alternating current high voltage is applied between a pair of cylindrical electrodes constituted by the metal tube 2 and the conductive layer 12. , oxygen or a dry gas containing oxygen is fed from one end of the ring-shaped gap 3 where a silent discharge is occurring through the glass tube under this voltage. In order to generate silent discharge, most of the electric power injected from the outside into these ozone generating tubes is converted into thermal energy, causing a temperature rise. Therefore, an ozone generator incorporating a large number of these ozone generating tubes
As shown in FIG. 6, it has a water-cooled structure. That is, a plurality of metal tubes, each of which is watertightly welded to the end plate by penetrating the end plate 4a of the box 4 having an end plate 4a at right angles and forming a circulating water space inside, are used as one electrode. The metal tube 2 is provided with a plurality of ozone generating tubes, and has a structure in which the heat generated in each ozone generating tube is removed from the outer peripheral side of the metal tube 2. By the way, since such an ozone generator is water-cooled, it is not only unsuitable for small size and small capacity devices, but also causes a large temperature rise in the discharge gap 3 and the glass tube 11, which causes the ozone once generated to be thermally decomposed. However, even if the power input was increased, the yield of ozone would actually decrease. In addition, the glass tube 11 with the conductive layer 12 formed on its inner surface has large dimensional tolerances, and a gap with uniform dimensions is not formed between the glass tube 11 and the metal tube 2, which makes it difficult for uniform discharge to occur in the gap. The drawback was that it inhibited the ozone yield.

【発明の目的】[Purpose of the invention]

この発明は、前記の欠点を除去し、小形で風冷
の可能なオゾン発生管の好適な製造方法を提供す
ることを目的とする。
It is an object of the present invention to eliminate the above-mentioned drawbacks and to provide a suitable manufacturing method for a compact ozone generating tube that can be cooled by air.

【発明の要点】[Key points of the invention]

本発明は、以下に説明する、オゾン発生管にお
ける発熱のメカニズムに着目し、同心的に配され
少なくとも外側電極が金属管からなる1対の円筒
状電極の間に形成されたリング状の空隙内に誘電
体円筒が該円筒状電極と同心に配されてなり、該
1対の円筒状電極間に交流高電圧を印加して空隙
内に無声放電を生ぜしめるとともに酸素または酸
素を含む乾燥気体を前記空隙内を流通せしめてオ
ゾンを生成するオゾン発生管の製造方法を、所定
の長さに切断された前記金属管の外周面に放熱フ
インを固着する工程と、この金属管の内面に均
一な酸化膜を形成する工程と、この金属管に該
金属管の内径より小さい外径を持つ誘電体円筒を
挿入して形成される該金属管との間の空隙の一方
の端部をこの端部側の誘電体円筒端部を加熱拡張
して封止する工程と、前記空〓に存在する気体
を真空引きしつつ前記封止された端部から他方の
端部へ向けけて連続的に加熱しながら前記金属管
内面に前記誘電体円筒を溶着して絶縁性のライニ
ング層を形成する工程とを含むものとすること
により、オゾン発生管の冷却を従来のオゾン発生
管に比して著しく効果的ならしめ、かつ内側電極
を寸法公差の小さい金属管として、空隙中に一様
な放電を生ぜしめることができるオゾン発生管の
好適な製造方法を提供しようとするものである。
以下、オゾン発生管における発熱のメカニズムに
つき説明する。 第7図は、オゾン発生管の空隙内の無声放電時
に生ずる放電柱を模型的に示したものである。図
において2は接地された金属管、3は空隙、11
はガラス管、12は導電層であり、金属管2と導
電層12との間に交流高電圧が印加されると、3
1のような断面形状を有する放電柱が多数生ず
る。この放電柱は、金属管2の表面ではスポツト
状に、ガラス管11の表面では、その表面におけ
る強い電界のため、中央部の面状の電離領域から
外方へ放射状に広がる枝状に形成される。オゾン
発生管における発熱は、この放電柱によつておこ
るものであり、その発熱量は、電離領域の大きさ
とともに増大するから、オゾン発生管内の発熱は
ガラス管の表面近傍に集中する。一方、放電柱を
形成するプラズマの伝熱係数は中性分子に比較し
てはるかに大きいこと、気体と固体との間の熱伝
達は気体中に乱流が発達するほど大きいことも周
知の事実である。従つて、本発明のように、金属
管2の内面にガラス管11のような、材質が耐オ
ゾン性を有する誘電体円筒を溶着し絶縁性のライ
ニング層を形成し、金属管の外周面に放熱フイン
を設ければ、オゾン発生管の冷却が著しく効果的
に行なわれることになる。
The present invention focuses on the mechanism of heat generation in an ozone generating tube, which will be explained below. A dielectric cylinder is arranged concentrically with the cylindrical electrode, and an alternating current high voltage is applied between the pair of cylindrical electrodes to generate a silent discharge in the gap and to supply oxygen or a dry gas containing oxygen. The manufacturing method of an ozone generating tube that generates ozone by flowing through the gap includes a step of fixing heat dissipation fins to the outer circumferential surface of the metal tube cut to a predetermined length, and a step of fixing heat dissipation fins to the outer circumferential surface of the metal tube cut to a predetermined length; One end of the gap between the step of forming an oxide film and the metal tube formed by inserting into the metal tube a dielectric cylinder having an outer diameter smaller than the inner diameter of the metal tube. A step of heating and expanding the end of the dielectric cylinder on the side to seal it, and continuously heating from the sealed end toward the other end while vacuuming the gas existing in the space. and forming an insulating lining layer by welding the dielectric cylinder to the inner surface of the metal tube, the ozone generating tube can be cooled significantly more effectively than conventional ozone generating tubes. The object of the present invention is to provide a suitable manufacturing method for an ozone generating tube which is made of a metal tube with a small dimensional tolerance and whose inner electrode is made of a metal tube with small dimensional tolerances, thereby producing a uniform discharge in the gap.
The mechanism of heat generation in the ozone generating tube will be explained below. FIG. 7 schematically shows a discharge column generated during silent discharge within the gap of the ozone generating tube. In the figure, 2 is a grounded metal pipe, 3 is an air gap, and 11
is a glass tube, 12 is a conductive layer, and when an AC high voltage is applied between the metal tube 2 and the conductive layer 12, 3
A large number of discharge columns having a cross-sectional shape like 1 are generated. These discharge columns are formed in the form of spots on the surface of the metal tube 2, and in the form of branches that radiate outward from the planar ionized region in the center on the surface of the glass tube 11 due to the strong electric field on the surface. Ru. Heat generation in the ozone generation tube is caused by this discharge column, and the amount of heat generation increases with the size of the ionized region, so the heat generation inside the ozone generation tube is concentrated near the surface of the glass tube. On the other hand, it is a well-known fact that the heat transfer coefficient of the plasma that forms the discharge column is much larger than that of neutral molecules, and that the heat transfer between gas and solid is so large that turbulence develops in the gas. It is. Therefore, according to the present invention, a dielectric cylinder such as a glass tube 11 having ozone resistance is welded to the inner surface of the metal tube 2 to form an insulating lining layer. By providing heat dissipation fins, the ozone generating tube can be cooled extremely effectively.

【発明の実施例】 第1図に本発明のオゾン発生管の製造方法に基
づいて構成されたオゾン発生管の実施例を示す。
一方の電極を構成する、接地された金属管21の
外周面には、軸方向に適当な間隔で金属製の放熱
フインが固着されており、前記金属管21の内面
には、材質がガラスやセラミツクスなどのように
耐オゾン性を備えた誘電体円筒(この例ではガラ
ス管)22が溶着まれ絶縁性のライニング層が形
成されている。金属管21の内側には、これと同
心的に円筒状の電極として金属管1が配され、そ
の端部における電界集中をさけるため、丸味を帯
びた形状に端部加工が施されている。金属管1は
金属管21の両端部に設けられるエンドキヤツプ
(図示せず)に絶縁支持される。 つぎに、このように構成されるオゾン発生管の
製造方法につき説明する。第2図において、接地
される金属管211はたとえばステンレス鋼管か
らなり、所定の長さに切断された後、その外周面
に同じくステンレスの鋼板からなる放熱フイン2
3が溶接される。この放熱フイン付きステンレス
鋼管は、周知の方法たとえばトリクロールエチレ
ンなどの洗剤を用いて洗浄された後たとえば空焼
きを行ない、ステンレス鋼管の内面に均一な酸化
膜を形成させる。この酸化膜は、後に述べるステ
ンレス鋼管内面へのガラス管溶着の際にガラス質
と固く結合し、単にガラス層をクラツドした場合
のように温度変化時に接着面に空隙を生ずるおそ
れがなく、従つてこの空隙中の放電など、金属管
内面との非結合に起因する不測の損傷が機能障害
を防止する。この酸化膜形成後、ステンレス鋼管
211の内径より小さい外径を持つガラス管22
1をこのステンレス鋼管に挿入し、その一方の端
部Aを、外周が断熱材に覆われ内側に放熱が行な
われる加熱炉6に挿入して、金属管211とガラ
ス管221とを同時に加熱し、溶融温度近傍まで
加熱されて軟化したガラス管の端部を広げて金属
管211の端部に溶着させ、金属管とガラス管と
の間の空隙24の一方の端部を封止する。しかる
後、矢印Cのように、空隙24内の気体を真空引
きしながら、加熱炉6を図の右から左へ軸方向に
徐々に移動させると、金属管211とガラス管2
21とが同時に加熱され、軟化ないし溶融温度の
差により、ガラス管221のみが軟化して金属管
211の内面へ溶着する。このように、空隙内の
気体を真空引きしながらガラス管を軟化させるか
ら、ガラス管の内側には、その全周にわたり、こ
のガラス管を一様に押し広げる圧力差がかかり、
金属管の内面には、この内面と固く結合した、厚
さが極めて一様なガラスのライニング層が形成さ
れる。 第3図、第4図には、放熱フインの大きさが大
きく、金属管211に溶接してからでは、加熱炉
6に挿入できない場合のオゾン発生管の製造方法
を示す。この場合には、放熱フイン23の溶接工
程を、金属管211の内面に酸化膜を形成する工
程と、ガラス管221の端部を加熱拡張して空隙
の一方の端部を封止する工程と、ステンレス鋼管
内面にガラス管を溶着してガラスライニング層を
形成する工程とがすべて完了した後に行なうよう
にする。このようにすれば加熱炉を大きくするこ
となくオゾン発生管を製造することができ、また
放熱フインの材質として熱伝導率の大きい、たと
えば銅板をステンレス鋼管にろう付けして冷却効
果をあげることも可能になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of an ozone generating tube constructed based on the method for manufacturing an ozone generating tube of the present invention.
Metal heat dissipation fins are fixed to the outer peripheral surface of a grounded metal tube 21 constituting one electrode at appropriate intervals in the axial direction, and the inner surface of the metal tube 21 is made of glass or the like. A dielectric cylinder (in this example, a glass tube) 22 made of ozone-resistant material such as ceramics is welded to form an insulating lining layer. The metal tube 1 is arranged as a cylindrical electrode concentrically inside the metal tube 21, and the end is processed into a rounded shape in order to avoid electric field concentration at the end. The metal tube 1 is insulated and supported by end caps (not shown) provided at both ends of the metal tube 21. Next, a method for manufacturing the ozone generator tube configured as described above will be explained. In FIG. 2, a metal tube 211 to be grounded is made of, for example, a stainless steel tube, and after being cut to a predetermined length, a heat dissipation fin 211 made of a stainless steel plate is attached to the outer peripheral surface of the tube.
3 is welded. This stainless steel tube with heat dissipation fins is cleaned by a well-known method, for example, using a detergent such as trichlorethylene, and then subjected to, for example, dry baking to form a uniform oxide film on the inner surface of the stainless steel tube. This oxide film firmly bonds with the glass material when welding the glass tube to the inner surface of the stainless steel tube, which will be described later, and there is no risk of creating voids on the bonding surface when the temperature changes, unlike when simply cladding a glass layer. Accidental damage caused by non-coupling with the inner surface of the metal tube, such as discharge in this gap, prevents functional failure. After this oxide film is formed, a glass tube 22 with an outer diameter smaller than the inner diameter of the stainless steel tube 211 is
1 is inserted into this stainless steel tube, and one end A thereof is inserted into a heating furnace 6 whose outer periphery is covered with a heat insulating material and heat is radiated inside, thereby heating the metal tube 211 and the glass tube 221 at the same time. The end of the glass tube, which has been softened by being heated to near the melting temperature, is expanded and welded to the end of the metal tube 211, thereby sealing one end of the gap 24 between the metal tube and the glass tube. Thereafter, when the heating furnace 6 is gradually moved in the axial direction from right to left in the figure while evacuating the gas in the gap 24 as shown by arrow C, the metal tube 211 and the glass tube 2
21 is heated at the same time, and due to the difference in softening or melting temperature, only the glass tube 221 is softened and welded to the inner surface of the metal tube 211. In this way, the glass tube is softened while the gas in the gap is evacuated, so a pressure difference is applied to the inside of the glass tube that uniformly spreads the glass tube over its entire circumference.
A glass lining layer of very uniform thickness is formed on the inner surface of the metal tube, which is firmly connected to this inner surface. 3 and 4 show a method of manufacturing an ozone generating tube in a case where the radiation fins are too large to be inserted into the heating furnace 6 after being welded to the metal tube 211. In this case, the welding process of the heat dissipation fins 23 includes a process of forming an oxide film on the inner surface of the metal tube 211 and a process of heating and expanding the end of the glass tube 221 to seal one end of the gap. This is done after the steps of welding the glass tube to the inner surface of the stainless steel tube to form a glass lining layer are completed. In this way, the ozone generator tube can be manufactured without increasing the size of the heating furnace, and it is also possible to increase the cooling effect by brazing the heat dissipation fins with a material with high thermal conductivity, such as a copper plate, to the stainless steel tube. It becomes possible.

【発明の効果】【Effect of the invention】

以上に述べたように、本発明のオゾン発生管の
製造方法によれば、オゾン発生管を構成する1対
の円筒状電極の外側電極の外周面に放熱フインを
設けるとともに、無声放電時に発熱が集中する誘
電体円筒を外側電極の内面に溶着し、この外側電
極を冷却するようにしたオゾン発生管が製造でき
るので、オゾン発生管の冷却が従来のオゾン発生
管に比して著しく効果的に行なわれ、風冷でも充
分なオゾン発生効率を得ることができる。また、
内側電極を、寸法公差の小さい金属管としたの
で、外側電極との間に形成される空隙の寸法を短
くかつ均一にすることができ、前記冷却効果の向
上とあいまつて、同一印加電圧のもとでオゾン発
生管を大形化することなくオゾン収量を増大させ
ることができる。 さらに、オゾン発生管の製造方法として、誘電
体円筒が溶着される外側電極の内面に酸化膜を形
成する工程を導入したので、誘電体円筒と外側電
極とがこの酸化膜を介して固く結合され、単なる
外側電極内面への誘電体円筒のクラツドと異な
り、電極内面と誘電体円筒との間に温度変化に基
づく空隙の発生のおそれがなく、従つてこの空隙
の存在に基因する障害を防止することができる。
また、外側電極内面への誘電体円筒への溶着を、
この外側電極内面と、この内面より外径が小さい
誘電体円筒との間に形成される空隙の一方の端部
を封止する工程と、空隙に存在する気体を真空引
きしつつ外側電極と誘電体円筒とを加熱し、誘電
体円筒のみを軟化させながら外側電極内面へ溶着
する工程とにより行なうようにしたので、厚さが
極めて一様な誘電体のライニング層を形成するこ
とができる。なお、外側電極外周面に放熱フイン
を固着する工程と、この工程を除く他の工程に先
行させるか後行させるかにより、放熱フインの大
きさが異なつても加熱炉の大きさを変えることな
くオゾン発生管の製造が可能になるという付加的
効果もあわめて得ることができる。 なお、本発明は、風冷可能なオゾン発生管を提
供することを目的としたものであるが、水冷の場
合にも適用できることは勿論、水冷の場合には放
熱フインを省略して適用できることも自明であ
る。
As described above, according to the method of manufacturing an ozone generator tube of the present invention, heat dissipation fins are provided on the outer peripheral surface of the outer electrode of a pair of cylindrical electrodes constituting the ozone generator tube, and heat is generated during silent discharge. It is possible to manufacture an ozone generator tube in which a concentrated dielectric cylinder is welded to the inner surface of the outer electrode to cool the outer electrode, making cooling of the ozone generator tube much more effective than with conventional ozone generator tubes. Even with wind cooling, sufficient ozone generation efficiency can be obtained. Also,
Since the inner electrode is made of a metal tube with small dimensional tolerance, the size of the gap formed between it and the outer electrode can be made short and uniform. This makes it possible to increase the ozone yield without increasing the size of the ozone generating tube. Furthermore, as a manufacturing method for the ozone generator tube, we introduced a process of forming an oxide film on the inner surface of the outer electrode to which the dielectric cylinder is welded, so that the dielectric cylinder and the outer electrode are firmly connected via this oxide film. , unlike simply cladding the dielectric cylinder to the inner surface of the outer electrode, there is no risk of forming a void between the inner surface of the electrode and the dielectric cylinder due to temperature changes, thus preventing failures due to the presence of this void. be able to.
In addition, welding the dielectric cylinder to the inner surface of the outer electrode,
A step of sealing one end of the gap formed between the inner surface of the outer electrode and a dielectric cylinder having an outer diameter smaller than the inner surface, and a step of sealing one end of the gap formed between the inner surface of the outer electrode and the dielectric cylinder, and evacuating the gas existing in the gap while connecting the outer electrode and the dielectric cylinder. By heating the body cylinder and welding only the dielectric cylinder to the inner surface of the outer electrode while softening only the dielectric cylinder, a dielectric lining layer having an extremely uniform thickness can be formed. In addition, depending on whether the process of fixing the heat dissipation fins to the outer peripheral surface of the outer electrode precedes or follows other processes other than this process, the size of the heating furnace can be maintained without changing even if the size of the heat dissipation fins is different. An additional effect of making it possible to manufacture an ozone generating tube can also be obtained. Although the present invention aims to provide an ozone generating tube that can be cooled by air, it is of course applicable to water cooling as well, and in the case of water cooling, the heat dissipation fins may be omitted. It's self-evident.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のオゾン発生管の製造方法に基
づいて構成されたオゾン発生管の実施例の縦断面
図と側面図、第2図、第3図、第4図は本発明に
基づくオゾン発生管の製造工程を説明する説明
図、第5図は従来のオゾン発生管の構造例を示す
縦断面図と側面図、第6図は従来のオゾン発生管
を用いたオゾン発生装置の例を示す縦断面図、第
7図はオゾン発生管における発熱のメカニズムを
説明する説明図である。 1:内側電極、2:金属管、3:空隙、11:
ガラス管、21:金属管、22:誘電体円筒、2
3:放熱フイン、24:空隙、211:金属管、
221:誘電体円筒。
FIG. 1 is a vertical cross-sectional view and a side view of an embodiment of an ozone generator tube constructed based on the method of manufacturing an ozone generator tube of the present invention, and FIGS. An explanatory diagram explaining the manufacturing process of the generator tube, Figure 5 is a vertical cross-sectional view and side view showing an example of the structure of a conventional ozone generator tube, and Figure 6 is an example of an ozone generator using a conventional ozone generator tube. The longitudinal cross-sectional view shown in FIG. 7 is an explanatory diagram illustrating the mechanism of heat generation in the ozone generating tube. 1: Inner electrode, 2: Metal tube, 3: Air gap, 11:
Glass tube, 21: Metal tube, 22: Dielectric cylinder, 2
3: heat dissipation fin, 24: void, 211: metal pipe,
221: Dielectric cylinder.

Claims (1)

【特許請求の範囲】 1 同心的に配され少なくとも外側電極が金属管
からなる1対の円筒状電極の間に形成されたリン
グ状の空〓内に誘電体円筒が該円筒状電極と同心
に配されてなり、該1対の円筒状電極間に交流高
電圧を印加して空〓内に無声放電を生ぜしめると
ともに酸素または酸素を含む乾燥気体を前記空〓
内を流通せしめてオゾンを生成するオゾン発生管
を製造する方法であつて、このオゾン発生管を製
造する製造工程が、所定の長さに切断された前記
金属管の外周面に放熱フインを固着する工程
と、この金属管の内面に均一な酸化膜を形成する
工程と、この金属管に該金属管の内径より小さ
い外径を持つ誘電体円筒を挿入して形成される該
金属管との間の空〓の一方の端部をこの端部側の
誘電体円筒端部を加熱拡張して封止する工程
と、前記空〓に存在する気体を真空引きしつつ前
記封止された端部から他方の端部へ向けて連続的
に加熱しながら前記金属管内面に前記誘電体円筒
を溶着して絶縁性のライニング層を形成する工程
とを含むことを特徴とするオゾン発生管の製造
方法。 2 特許請求の範囲第1項記載の製造方法におい
て、金属管の外周面に放熱フインを固着する工程
が、少なくとも誘電体円筒端部を加熱拡張して
空〓の一方の端部を封止する工程および金属管
内面に誘電体円筒を溶着して絶縁性のライニング
層を形成する工程のいずれよりも先行すること
を特徴とするオゾン発生管の製造方法。 3 特許請求の範囲第1項記載の製造方法におい
て、金属管の外周面に放熱フインを固着する工程
が、該特許請求の範囲第1項記載の他のすべて
の工程後に行われることを特徴とするオゾン発生
管の製造方法。
[Scope of Claims] 1. A dielectric cylinder is placed concentrically with the cylindrical electrodes in a ring-shaped space formed between a pair of cylindrical electrodes that are arranged concentrically and at least the outer electrode is made of a metal tube. A high AC voltage is applied between the pair of cylindrical electrodes to generate a silent discharge in the air, and oxygen or a dry gas containing oxygen is introduced into the air.
A method for manufacturing an ozone generating tube that generates ozone by allowing the flow to flow through the metal tube, the manufacturing process for manufacturing the ozone generating tube includes fixing heat dissipating fins to the outer peripheral surface of the metal tube cut to a predetermined length. a step of forming a uniform oxide film on the inner surface of the metal tube; and a step of forming the metal tube by inserting into the metal tube a dielectric cylinder having an outer diameter smaller than the inner diameter of the metal tube. a step of sealing one end of the space between the spaces by heating and expanding the end of the dielectric cylinder on this end side; and evacuating the gas existing in the space while sealing the sealed end. A method for manufacturing an ozone generating tube, comprising the step of welding the dielectric cylinder to the inner surface of the metal tube while continuously heating the tube from one end to the other end to form an insulating lining layer. . 2. In the manufacturing method according to claim 1, the step of fixing the heat dissipation fin to the outer peripheral surface of the metal tube includes heating and expanding at least the end of the dielectric cylinder to seal one end of the air. 1. A method for manufacturing an ozone generating tube, which precedes both the step and the step of welding a dielectric cylinder to the inner surface of the metal tube to form an insulating lining layer. 3. The manufacturing method as set forth in claim 1, characterized in that the step of fixing the heat dissipation fins to the outer peripheral surface of the metal tube is performed after all other steps as set forth in claim 1. A method for manufacturing an ozone generator tube.
JP27250584A 1984-12-24 1984-12-24 Ozone generating tube and production thereof Granted JPS61151003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27250584A JPS61151003A (en) 1984-12-24 1984-12-24 Ozone generating tube and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27250584A JPS61151003A (en) 1984-12-24 1984-12-24 Ozone generating tube and production thereof

Publications (2)

Publication Number Publication Date
JPS61151003A JPS61151003A (en) 1986-07-09
JPH0222002B2 true JPH0222002B2 (en) 1990-05-17

Family

ID=17514837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27250584A Granted JPS61151003A (en) 1984-12-24 1984-12-24 Ozone generating tube and production thereof

Country Status (1)

Country Link
JP (1) JPS61151003A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545028U (en) * 1991-08-21 1993-06-18 オーシーエンジニアリング株式会社 Ozone generator
JP2013094711A (en) * 2011-10-31 2013-05-20 Sharp Corp Ozone liquid generation apparatus
SE540004C2 (en) 2016-08-05 2018-02-20 Ozone Inventions Ltd OZONE GENERATOR UNIT AND SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162408A (en) * 1979-06-01 1980-12-17 Mitsubishi Electric Corp Ozonizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134762U (en) * 1978-03-13 1979-09-19
JPS5596132U (en) * 1978-12-22 1980-07-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162408A (en) * 1979-06-01 1980-12-17 Mitsubishi Electric Corp Ozonizer

Also Published As

Publication number Publication date
JPS61151003A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
US2815472A (en) Rectifier unit
US3601887A (en) Fabrication of thermoelectric elements
US3271615A (en) Traveling wave electron discharge device having means exerting a radial force upon the envelope
JPS608963B2 (en) Manufacturing method of discharge electrode for flat plate ozonizer
US3988565A (en) Nuclear reactor fuel rod thermal simulator
WO1990009036A1 (en) Method of producing heat pipe-type semiconductor cooling device
JPH0222002B2 (en)
US3097321A (en) High energy arc electrodes
US1924368A (en) Vacuum tube
JP2967060B2 (en) Microwave plasma generator
CN214936068U (en) Ozone generator and discharge tube
JPH11204239A (en) Plate type heater, its manufacture and thin film manufacturing device
US2054119A (en) Electron discharge device
JPH04362007A (en) Ozonizer
US2080284A (en) Thermionic rectifier
JP2003217804A (en) Tubular heater and manufacturing method thereof
JPH0637406A (en) Metal vapor laser device
JP3341333B2 (en) Ozone generator
JPH0752071B2 (en) Vacuum heat treatment furnace
CN113023683A (en) Ozone generator, discharge tube and method for manufacturing discharge tube
JPS6030563A (en) Production of hot roll
KR900000536B1 (en) Method of producing a motor frame for an electric motor
JPS6314875B2 (en)
JP2827680B2 (en) Metal vapor laser device
JPH03110749A (en) Electrode for water cooling type electric discharge lamp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees