JPH02219289A - Laser resonator - Google Patents

Laser resonator

Info

Publication number
JPH02219289A
JPH02219289A JP1328632A JP32863289A JPH02219289A JP H02219289 A JPH02219289 A JP H02219289A JP 1328632 A JP1328632 A JP 1328632A JP 32863289 A JP32863289 A JP 32863289A JP H02219289 A JPH02219289 A JP H02219289A
Authority
JP
Japan
Prior art keywords
resonator
ceramic material
support
stabilizers
laser resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1328632A
Other languages
Japanese (ja)
Inventor
Helmut Stuhler
ヘルムート・シユトウーレル
Martin Maerz
マルテイン・メルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Publication of JPH02219289A publication Critical patent/JPH02219289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0816Configuration of resonator having 4 reflectors, e.g. Z-shaped resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE: To secure the laser frequency and/or output stability relating to the temperature fluctuation by arranging resonator elements on the stabilizers made of a ceramic material. CONSTITUTION: The resonator elements 3, 3a e.g. a prism, a mirror and/or a translucent mirror are installed on two supporters 1, 2 connected by rods 5 as longitudinal stabilizers. The supports 1, 2 and the rods 5 are made of a ceramic material Besides, in the case of a folded resonator, the beams are deflected by deflecting mirrors 4 fixed by the ceramic supports 12, 13 of the support 2 and the support 1, 2 serve as the lateral stabilizers. Through these procedures, the high-frequency and output stability relating to the small weight and the temperature fluctuation can be secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、共振要素がスタビライザー上に配設された様
式のレーザー共振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] The present invention relates to a laser resonator of the type in which the resonant element is arranged on a stabilizer.

〔従来の技術〕[Conventional technology]

レーザーの周波数及び/又は出力安定性は、明らかに、
共振器の長さが外的影響に関して、特に先ず温度変動に
関して安定を保ちうろことの程度に依る。
The frequency and/or power stability of the laser is clearly
The length of the resonator depends on the extent to which the scales remain stable with respect to external influences, in particular first of all with respect to temperature fluctuations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

共振要素(ミラー、プリズム等)に使用されてきた担持
体材料(スチール、不変鋼)の場合、制御のかなりの量
が温度に関する熱膨張を補償するために必要とされてい
る。本発明はこの点での矯正をなさんとするものである
In the case of carrier materials (steel, constant steel) that have been used for resonant elements (mirrors, prisms, etc.), a considerable amount of control is required to compensate for thermal expansion with respect to temperature. The present invention attempts to correct this problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、共振要素がセラミック材のスタビライザー上
に配設されたレーザー共振器によって目的を達成するも
のである。
The invention achieves this object with a laser resonator in which the resonant element is arranged on a stabilizer of ceramic material.

共振要素は、セラミック材の横方向スタビライザー及び
縦方向スタビライザー上に据えつけることが可能であり
、また順番に横及び/又は縦スタビライザー上に配置し
たセラミンク材の支持体上に据えつけることも可能であ
る。
The resonant element can be mounted on the transverse and longitudinal stabilizers of ceramic material, and also on the support of ceramic material, which in turn is arranged on the transverse and/or longitudinal stabilizers. be.

特に本発明は、レーダー工学、計測(例えば分光学)で
用いられるレーザーを構成するのに適し、或いは遠赤外
レーザーを励起するのに、即ち、高い周波数及び出力安
定性が求められるレーザーに適している。低重量及び温
度変動に関する高い安定性は、例えば、汚染測定のため
の空輸レーザーシステムの場合に特に有利である。
In particular, the invention is suitable for constructing lasers used in radar engineering, metrology (e.g. spectroscopy) or for exciting far-infrared lasers, i.e. for lasers requiring high frequency and power stability. ing. The low weight and high stability with respect to temperature fluctuations are particularly advantageous, for example, in the case of airborne laser systems for contamination measurements.

好適な材料としては、熱膨張係数が1.0X10”7/
k (0〜100’C)より小さいセラミック材、例え
ば、菫青石、菫青石−ムライト混合物、ゲルマニウム改
変菫青石、チサン酸アルミニウム、珪酸アルミニウムの
セラミック或いは珪酸アルミニウムリチウムのセラミッ
クのようなセラミック材を挙げることができる。熱膨張
係数が0〜60°Cで0.5X10−’/により小さい
菫青石、珪酸アルミニウムリチウムのセラミックがとり
わけ好適である。上記材料によって、熱的なウォー(第
2図)には、ビームは支持体(2)のセラミック支持体
(12,13)で固定された偏向ミラー(4)によって
偏向させられる。第3図の折り畳まれた共振器はハウジ
ング(8)内に配設されている。共振子(3,3a)は
ハウジングの前壁(11)に据えつけられている。縦ス
タビライザーたるロッド(5)はハウジングの前壁(1
1)をプレート(10)に繋いでおり、このプレート上
で偏向ミラー(4)が支持体(12,13)に固定され
、任意で出力ミラー(6)とビームスプリッタ−(7)
とが配設されている。プレート(10)は、共振器がハ
ウジングからの減結合をなすこととなるロールベアリン
グ(10)上を滑る。第2図における支持体(1、2)
及び第3図でのプレート(10)は横スタビライザーの
機能を果たす。ミラー(3a)は出力ミラーとして構成
されうる。それぞれの場合での点線はビーム路を示して
いる。
A suitable material has a coefficient of thermal expansion of 1.0×10”7/
k (0 to 100'C), such as cordierite, cordierite-mullite mixtures, germanium-modified cordierite, aluminum tisanate, aluminum silicate ceramics or lithium aluminum silicate ceramics. be able to. Particularly preferred are cordierite, lithium aluminum silicate ceramics with a coefficient of thermal expansion of less than 0.5×10 −′/ at 0 to 60° C. With the above materials, during thermal warping (FIG. 2) the beam is deflected by a deflection mirror (4) fixed on the ceramic support (12, 13) of the support (2). The folded resonator of FIG. 3 is arranged in a housing (8). The resonator (3, 3a) is mounted on the front wall (11) of the housing. The vertical stabilizer rod (5) is attached to the front wall (1) of the housing.
1) is connected to a plate (10) on which a deflection mirror (4) is fixed to a support (12, 13) and optionally an output mirror (6) and a beam splitter (7).
and are provided. The plate (10) slides on a roll bearing (10) that decouples the resonator from the housing. Supports (1, 2) in Figure 2
and the plate (10) in FIG. 3 performs the function of a lateral stabilizer. Mirror (3a) can be configured as an output mirror. The dotted line in each case indicates the beam path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は共振器のない縦方向に安定して延びたレーザー
共振器構造の斜視図、第2図は縦方ミングアップ時間が
著しく減少するか全く無くなり、アクティブ制御、例え
ば、レーザー周波数を安定させるための周波数変調もま
た除くことが可能な共振システムを構成することができ
る。これは周波数が変調しない定常周波数レーザーが比
較的少ない費用でもたらされることを意味する。上記セ
ラミックの熱膨張係数はまた、ドイツ連邦共和国特許第
L67L115号に記載されるように珪酸アルミニウム
リチウムのセラミックを使用することでレーザー設計の
共振器の構造にマツチさせることができる。 〔実施例〕 レーザー共振器を図面の実施例に示し、以下に説明する
。 共振要素(3,3a)、例えば、プリズム、ミラー及び
/又は半透明ミラーは二の支持体(1,2)上に据えつ
けられており、当該二の支持体(1,2)は縦スタビラ
イザーたるロッド(5)によって繋がっている。支持体
とロッドとはセラミック材から成っている。折り畳まれ
た共振器の場合一 向に安定して折り畳まれたレーザー共振器の平面図、第
3図はハウジング内に配置され縦方向及び横方向に安定
して折り畳まれたレーザー共振器の平面図である。 ■、2・・・支持体 3.3a・・・共振要素 5・・・縦スタビライザー 10・・・横スタビライザー
Figure 1 is a perspective view of a longitudinally stable laser resonator structure without a resonator; Figure 2 shows that the vertical min-up time is significantly reduced or eliminated, allowing active control, e.g. A resonant system can be constructed in which frequency modulation for causing the oscillation can also be eliminated. This means that a constant frequency laser without frequency modulation can be produced at relatively low cost. The coefficient of thermal expansion of the ceramic can also be matched to the structure of the resonator of the laser design by using a lithium aluminum silicate ceramic as described in German Patent No. L67L115. [Embodiments] Laser resonators are shown in embodiments of the drawings and will be described below. The resonant elements (3, 3a), for example prisms, mirrors and/or translucent mirrors, are mounted on two supports (1, 2), which are arranged on vertical stabilizers. They are connected by a barrel rod (5). The support and the rod are made of ceramic material. In the case of a folded resonator, FIG. 3 is a plan view of a laser resonator that is folded in a stable manner; FIG. . ■, 2... Support 3.3a... Resonant element 5... Vertical stabilizer 10... Horizontal stabilizer

Claims (3)

【特許請求の範囲】[Claims] (1)共振要素がスタビライザー上に配設された様式の
レーザー共振器にして、共振要素(3、3a)がセラミ
ック材の縦スタビライザー(5)上に配設されたレーザ
ー共振器。
(1) A laser resonator in the form of a resonant element arranged on a stabilizer, in which the resonant element (3, 3a) is arranged on a vertical stabilizer (5) of ceramic material.
(2)共振要素(3、3a、4、6、7)がセラミック
材の横スタビライザー(10)と縦スタビライザー(5
)上に配設された請求項第1項のレーザー共振器。
(2) The resonant elements (3, 3a, 4, 6, 7) are the horizontal stabilizer (10) and the vertical stabilizer (5) made of ceramic material.
) A laser resonator according to claim 1, which is arranged on a laser resonator.
(3)共振要素(3、3a、4)が横スタビライザー(
10)及び/又は縦スタビライザー(5)上に配設され
たセラミック材の支持体(1、2、12、13)上に据
えつけられた請求項第1項又は第2項のレーザー共振器
(3) The resonant elements (3, 3a, 4) are connected to the lateral stabilizer (
10) Laser resonator according to claim 1 or 2, mounted on a support (1, 2, 12, 13) of ceramic material arranged on a vertical stabilizer (5).
JP1328632A 1988-12-21 1989-12-20 Laser resonator Pending JPH02219289A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3843015A DE3843015A1 (en) 1988-12-21 1988-12-21 LASER RESONATOR
DE3843015.0 1988-12-21

Publications (1)

Publication Number Publication Date
JPH02219289A true JPH02219289A (en) 1990-08-31

Family

ID=6369715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1328632A Pending JPH02219289A (en) 1988-12-21 1989-12-20 Laser resonator

Country Status (3)

Country Link
US (1) US5031189A (en)
JP (1) JPH02219289A (en)
DE (1) DE3843015A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790575A (en) * 1996-07-15 1998-08-04 Trw Inc. Diode laser pumped solid state laser gain module
US6304392B1 (en) * 2000-04-14 2001-10-16 Trw Inc. Thermal shimming of composite structural members
DE20212488U1 (en) * 2002-08-14 2003-12-24 Voss Automotive Gmbh Plug-in coupling for fluidic systems
US7901870B1 (en) 2004-05-12 2011-03-08 Cirrex Systems Llc Adjusting optical properties of optical thin films
US7565084B1 (en) 2004-09-15 2009-07-21 Wach Michael L Robustly stabilizing laser systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464763A (en) * 1981-06-09 1984-08-07 Lexel Corporation Laser optical mount
US4479225A (en) * 1982-06-28 1984-10-23 Mohler Galen E Combined laser resonator structure
DE3368354D1 (en) * 1983-02-26 1987-01-22 Honeywell Regelsysteme Gmbh Ring laser gyro
US4613972A (en) * 1984-05-09 1986-09-23 Spectra-Physics, Inc. Resonant cavity structure for ion laser with floating plate for mirror adjustment
DE3422525A1 (en) * 1984-06-16 1986-02-13 Trumpf GmbH & Co, 7257 Ditzingen FOLDED CO (DOWN ARROW) 2 (DOWN ARROW) LASER
DE3541744A1 (en) * 1985-11-26 1987-05-27 Heraeus Gmbh W C GAS LASER
US4803697A (en) * 1987-11-05 1989-02-07 American Laser Corporation Cold welded laser mirror assembly
US4897851A (en) * 1988-10-28 1990-01-30 Spectra-Physics Water cooled laser housing and assembly

Also Published As

Publication number Publication date
DE3843015A1 (en) 1990-06-28
US5031189A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
US7561275B2 (en) Scale-factor stabilized solid-state laser gyroscope
US4677639A (en) Laser device
JPH025490A (en) Solid state microlaser
Rodloff A laser gyro with optimized resonator geometry
JPS6145399B2 (en)
JPH02219289A (en) Laser resonator
RU2210737C2 (en) Three-axes laser precision gyroscope symmetric with reference to its drive axis
US3487327A (en) Frequency stabilized laser
US4616930A (en) Optically biased twin ring laser gyroscope
CA1098201A (en) Ring laser gyroscope
US5059028A (en) Ring laser gyroscope having means for maintaining the beam intensity
US5084898A (en) Passive pathlength control mirror for laser
JPS6028288A (en) Orthogonal gas laser oscillator
JPS61199685A (en) Laser oscillator
US4744634A (en) Method and apparatus for reducing the effects of vibrational disturbances on the frequency stability of a laser
US5278859A (en) Stripline laser
CA1252551A (en) Laser angular rate sensor with dithered mirrors
JPH0221678A (en) Axial-flow type gas laser
US5131751A (en) Ring laser gyro cavity length controller, frame compression
JP3219135B2 (en) Laser oscillator
RU1820214C (en) Laser gyroscope
JPH07111352A (en) Laser oscillator
JPS647670A (en) Air-cooled argon laser oscillator
JP2539223B2 (en) Laser device
EP0379318A1 (en) Modular rlg aperturing