JPH02219285A - Thermoelectric material - Google Patents

Thermoelectric material

Info

Publication number
JPH02219285A
JPH02219285A JP1039734A JP3973489A JPH02219285A JP H02219285 A JPH02219285 A JP H02219285A JP 1039734 A JP1039734 A JP 1039734A JP 3973489 A JP3973489 A JP 3973489A JP H02219285 A JPH02219285 A JP H02219285A
Authority
JP
Japan
Prior art keywords
carbide
boron
silicon
silicon carbide
seebeck coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1039734A
Other languages
Japanese (ja)
Other versions
JP2549307B2 (en
Inventor
Toshio Hirai
平井 敏雄
Matsuo Kishi
松雄 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1039734A priority Critical patent/JP2549307B2/en
Publication of JPH02219285A publication Critical patent/JPH02219285A/en
Application granted granted Critical
Publication of JP2549307B2 publication Critical patent/JP2549307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermoelectric material having high performance by employing a composite material containing boron carbide and silicon carbide as main ingredients, free carbon, boron, silicon, etc., as unavoidable components. CONSTITUTION:A composite material containing boron carbide and silicon carbide as main ingredients and free carbon, boron. silicon, etc., as unavoidable components is employed as a thermoelectric material. That is, the boron carbide and the silicon carbide having large Seebeck coefficient are used as composite material to maintain the Seebeck coefficient high as it is, its resistance value can be reduced by several powers as compared with the silicon carbide, and the Seebeck coefficient can be increased as compared with that of the boron carbide. Thus, a thermoelectric material having high performance at a high temperature can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽エネルギー等を始めとする熱エネルギー
をゼーベック効果を利用して、電気エネルギーに変換、
あるいは、ベルチェ効果による電子冷却を行う熱電材料
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes the Seebeck effect to convert thermal energy such as solar energy into electrical energy.
Alternatively, the present invention relates to a thermoelectric material that performs electronic cooling using the Beltier effect.

〔発明の概要〕[Summary of the invention]

この発明は、太陽エネルギー等の熱エネルギーをゼーベ
ック効果により、電気エネルギーに変換する熱電材料、
また、ベルチェ効果による電子冷却用材料として、炭化
ホウ素と炭化ケイ素を主成分とし、不可避的成分として
、遊離炭素、ホウ素およびケイ素等から成る複合材料を
用いることにより、高性能の熱電材料を提供するもので
ある。
This invention relates to a thermoelectric material that converts thermal energy such as solar energy into electrical energy by the Seebeck effect;
In addition, as a material for electronic cooling using the Beltier effect, a composite material containing boron carbide and silicon carbide as main components and free carbon, boron, silicon, etc. as inevitable components is used to provide a high-performance thermoelectric material. It is something.

〔従来の技術〕[Conventional technology]

従来、熱電材料としてPbTe、B iz Te3等の
化合物が用いられていた。また、SiCやB4Cなどの
ケイ素やホウ素の化合物も性能が高いことが知られてい
た。
Conventionally, compounds such as PbTe and B iz Te3 have been used as thermoelectric materials. It was also known that silicon and boron compounds such as SiC and B4C have high performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

熱電材料は、ゼーベツク係数が大きく、電気抵抗が低く
、熱伝導率が低いものが優れている。
Thermoelectric materials are best if they have a large Seebeck coefficient, low electrical resistance, and low thermal conductivity.

一般に、テルルやセレン等のいわゆるカルコゲナイド化
合物を熱電材料として用いる場合、優れた特性を有して
いるが、300℃程度以上の温度になると、その特性を
失ってしまうという問題点を有していた。
In general, when so-called chalcogenide compounds such as tellurium and selenium are used as thermoelectric materials, they have excellent properties, but they have the problem that they lose their properties when the temperature exceeds about 300°C. .

一方、SiCでは耐熱性及び熱起電力においては優れた
特性を示すが、熱電材料として重要な電気抵抗が高いと
いう欠点をもっていた。また、B4Cでは、電気抵抗と
いう点では優れた特性を有しているが、SiCに比べ、
ゼーベック係数の面で劣るという欠点があった。
On the other hand, although SiC exhibits excellent properties in terms of heat resistance and thermoelectromotive force, it has the drawback of high electrical resistance, which is important as a thermoelectric material. In addition, B4C has excellent characteristics in terms of electrical resistance, but compared to SiC,
It had the disadvantage of being inferior in terms of Seebeck coefficient.

〔課題を解決するための手段〕[Means to solve the problem]

上記の問題点を解決するために、炭化ホウ素と炭化ケイ
素を主成分とし、不可避的成分として遊離炭素、ホウ素
およびケイ素等から成る複合材料を熱電材料として用い
る。
In order to solve the above problems, a composite material containing boron carbide and silicon carbide as main components and free carbon, boron, silicon, etc. as inevitable components is used as a thermoelectric material.

〔作用〕[Effect]

上記のように、炭化ホウ素と炭化ケイ素を主成分とする
複合材料を用いることにより、高温においても高い性能
指数を有する熱電材料を提供することが出来る。
As described above, by using a composite material containing boron carbide and silicon carbide as main components, it is possible to provide a thermoelectric material that has a high figure of merit even at high temperatures.

すなわち、炭化ホウ素と炭化ケイ素を複合化することに
より、再化合物の優れた特性を引き出すことが出来るの
である。
That is, by combining boron carbide and silicon carbide, it is possible to bring out the excellent properties of the recombined compound.

〔実施例〕〔Example〕

〔実施例−1〕 本発明の実施例として、炭化ホウ素と炭化ケイ素の複合
材料の製造方法としてCVD法を例にあげて説明する。
[Example-1] As an example of the present invention, a CVD method will be described as an example of a method for manufacturing a composite material of boron carbide and silicon carbide.

第1図は、本発明である炭化ホウ素と炭化ケイ素の複合
材料を作製するための直接加熱方式CVD装置の縦断面
図である。
FIG. 1 is a longitudinal sectional view of a direct heating type CVD apparatus for producing a composite material of boron carbide and silicon carbide according to the present invention.

まず、真空槽1を10−3Torrまで真空排気した後
、真空槽1内の圧力が100 Torrになるように水
素四塩化ケイ素、三塩化ホウ素およびメタンを導入した
。この時、四塩化ケイ素は水素ガスをキャリヤーガスと
して用い、液体の四塩化ケイ素をバブリングにより気化
することにより導入した。なお、各々の総流量は下記の
通りとした。また、基板であるカーボン基板2には、温
度が1600℃になるように交流電流を流した。
First, the vacuum chamber 1 was evacuated to 10 −3 Torr, and then hydrogen silicon tetrachloride, boron trichloride, and methane were introduced so that the pressure inside the vacuum chamber 1 was 100 Torr. At this time, silicon tetrachloride was introduced by vaporizing liquid silicon tetrachloride by bubbling, using hydrogen gas as a carrier gas. In addition, each total flow rate was as follows. Further, an alternating current was passed through the carbon substrate 2 as a substrate so that the temperature reached 1600°C.

(ガス流量条件) 水素     ・・・ 1000cc/min四塩化ケ
イ素 ・・・  50cc/min三塩化ホウ素 ・・
・  250cc/minメタン    ・・・50C
C/Lllin成膜を2時間行ったところ、カーボン基
板2上に膜厚0.5+n、組成がB a C25mo1
%、S i C70mo1%、C5mo1%の複合材料
が形成された。
(Gas flow conditions) Hydrogen...1000cc/min Silicon tetrachloride...50cc/min Boron trichloride...
・250cc/min methane...50C
When the C/Lllin film was formed for 2 hours, a film with a thickness of 0.5+n and a composition of B a C25 mo1 was formed on the carbon substrate 2.
%, S i C70mo1%, C5mo1% composite material was formed.

次に、カーボン基板を削り取り、生成物を板状にし、温
度に対する比抵抗率およびゼーベック係数の変化を測定
したものを第2図および第3図に示すが、高温における
熱電性能が極めて大きいものと推定できるものであった
Next, the carbon substrate was scraped off, the product was made into a plate shape, and the changes in resistivity and Seebeck coefficient with respect to temperature were measured. Figures 2 and 3 show that the thermoelectric performance at high temperatures is extremely high. It was possible to estimate.

〔実施例−2〕 実施例1と同様のCVD装置を用い温度を1400℃と
し、各々のガス流量を下記の通りにし、成膜を2時間行
ったところ、膜厚0.4鰭、組成がB4C15mo1%
、S i C84mo1%、Clmol%、さらに、第
2図および第3図のような温度に対する比抵抗とゼーベ
ック係数の変化を示す複合材料を得ることができた。
[Example-2] Using the same CVD apparatus as in Example 1, the temperature was set to 1400°C, each gas flow rate was set as shown below, and film formation was performed for 2 hours. The film thickness was 0.4 fin and the composition was B4C15mo1%
, S i C84mol%, Clmol%, and a composite material exhibiting changes in resistivity and Seebeck coefficient with respect to temperature as shown in FIGS. 2 and 3 could be obtained.

(ガス流量条件) 水素     ・・・ 1000cc/m1n−塩化ホ
ウ素 ・・・  100cc/min四塩化ケイ素 ・
・・  200cc/min・・・  100cc/m
in なお、同じCVD装置を用いて作製した炭化ケメタン イ素(S i C)単体と炭化ホウ素(B a C)の
ゼーベック係数と比抵抗の温度依存性を第2図および第
3図に示すが、実施例1および2にあげた炭化ホウ素と
炭化ケイ素の複合材料に比べ、炭化ケイ素単体では、ゼ
ーベック係数の絶対値では優れているものの、比抵抗の
面で、また、炭化ホウ素ではゼーベック係数および比抵
抗のいずれの面においても劣っていた。
(Gas flow conditions) Hydrogen...1000cc/min-Boron chloride...100cc/minSilicon tetrachloride
... 200cc/min... 100cc/m
In Figures 2 and 3 show the temperature dependence of the Seebeck coefficient and resistivity of kemetane carbide (S i C) and boron carbide (B a C), which were produced using the same CVD equipment. Compared to the boron carbide and silicon carbide composite materials listed in Examples 1 and 2, silicon carbide alone is superior in terms of the absolute value of the Seebeck coefficient, but boron carbide has a lower Seebeck coefficient and ratio. It was inferior in both aspects of resistance.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、室温から高温において、優れた熱電
作用を有する材料を提供することができる。すなわち、
ゼーベック係数の大きい炭化ホウ素と炭化ケイ素を複合
することにより、ゼーベック係数は、そのまま高く維持
することができ、抵抗値を炭化ケイ素に比べ、数ケタ下
げることができ、ゼーベック係数においては炭化ホウ素
より大きくすることができた。
According to the present invention, it is possible to provide a material that has excellent thermoelectric effect from room temperature to high temperature. That is,
By combining boron carbide, which has a large Seebeck coefficient, with silicon carbide, the Seebeck coefficient can be maintained as high as it is, and the resistance value can be lowered by several orders of magnitude compared to silicon carbide, and the Seebeck coefficient is larger than that of boron carbide. We were able to.

この材料の優れた熱電作用を利用することにより、太陽
エネルギーなどの熱エネルギーをゼーベック効果により
電気エネルギーに効率良く変換できる、一方、ペルチェ
効果による電子冷却効果も期待でき、IC用セラミック
ス基板の冷却や無振動冷却装置などの冷却装置用材料と
して利用されることが期待できる。
By utilizing the excellent thermoelectric properties of this material, it is possible to efficiently convert thermal energy such as solar energy into electrical energy through the Seebeck effect, while electronic cooling effects due to the Peltier effect can also be expected, which can be used to cool ceramic substrates for ICs. It is expected that it will be used as a material for cooling devices such as vibration-free cooling devices.

なお、実施例では本発明である炭化ホウ素と炭化ケイ素
の複合材料をいわゆる熱CVDにより作製したが、その
他の方法、たとえば、−船釣な焼結法や反応焼結法、さ
らに、プラズマCVD法。
In the examples, the composite material of boron carbide and silicon carbide of the present invention was produced by so-called thermal CVD, but other methods, such as - sintering method, reaction sintering method, and plasma CVD method .

PVD法などの作製法なども考えられ、同様な効果が得
られることが期待できることは言うまでもない。
It goes without saying that manufacturing methods such as the PVD method are also conceivable and can be expected to produce similar effects.

1・・・真空槽 2・・・カーボン基板 以上1...Vacuum chamber 2...Carbon substrate that's all

Claims (1)

【特許請求の範囲】[Claims] 炭化ホウ素と炭化ケイ素を主成分とし、不可避的成分と
して遊離炭素、ホウ素およびケイ素等を含有する複合材
料を用いることを特徴とする熱電材料。
A thermoelectric material characterized by using a composite material whose main components are boron carbide and silicon carbide, and which also contain free carbon, boron, silicon, etc. as inevitable components.
JP1039734A 1989-02-20 1989-02-20 Thermoelectric material Expired - Fee Related JP2549307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039734A JP2549307B2 (en) 1989-02-20 1989-02-20 Thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039734A JP2549307B2 (en) 1989-02-20 1989-02-20 Thermoelectric material

Publications (2)

Publication Number Publication Date
JPH02219285A true JPH02219285A (en) 1990-08-31
JP2549307B2 JP2549307B2 (en) 1996-10-30

Family

ID=12561203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039734A Expired - Fee Related JP2549307B2 (en) 1989-02-20 1989-02-20 Thermoelectric material

Country Status (1)

Country Link
JP (1) JP2549307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017389A3 (en) * 2001-08-13 2003-04-10 Motorola Inc High performance thermoelectric material
WO2003069744A1 (en) * 2002-02-14 2003-08-21 Infineon Technologies Ag Optoelectronic component with a peltier cooler
JP2008069771A (en) * 2006-09-13 2008-03-27 Caterpillar Inc Thermoelectric system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017389A3 (en) * 2001-08-13 2003-04-10 Motorola Inc High performance thermoelectric material
US6677515B2 (en) 2001-08-13 2004-01-13 Motorola, Inc. High performance thermoelectric material and method of fabrication
WO2003069744A1 (en) * 2002-02-14 2003-08-21 Infineon Technologies Ag Optoelectronic component with a peltier cooler
JP2008069771A (en) * 2006-09-13 2008-03-27 Caterpillar Inc Thermoelectric system

Also Published As

Publication number Publication date
JP2549307B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
Li et al. The influence of heat treatments on the thermoelectric properties of copper selenide thin films prepared by ion beam sputtering deposition
CN106399937A (en) Method for preparing preferred-orientation bismuth telluride thermoelectric thin film
Hu et al. Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering
JPH02219285A (en) Thermoelectric material
Yue et al. Enhanced Thermoelectric Properties of Cu x Se (1.75≤ x≤ 2.10) during Phase Transitions
Lin et al. Annealing effects on the thermoelectric properties of silver-doped bismuth telluride thin films
JPH01500153A (en) Thermoelectric semiconductor materials based on silver, copper, tellurium and thallium, production methods and applications in thermoelectric converters
JP4078414B2 (en) Lanthanum sulfide sintered body and manufacturing method thereof
US20070084495A1 (en) Method for producing practical thermoelectric devices using quantum confinement in nanostructures
US20060032525A1 (en) Boron carbide films with improved thermoelectric and electric properties
US20070084499A1 (en) Thermoelectric device produced by quantum confinement in nanostructures
EP2187461B1 (en) Process for producing fine thermoelectric element
Shibata et al. Preparation and thermoelectric characterization of boron-doped Si nanocrystals/silicon oxide multilayers
Mukaida et al. Preparation of β-FeSi2 films by chemical vapor deposition
JP2664056B2 (en) Thin film single crystal substrate
Roy et al. Feed gas dependence of the surface nanophase on HFCVD grown diamond films studied by surface enhanced Raman spectroscopy
KR101726498B1 (en) Thermoelectric material containing higher manganese silicides, and preparation method thereof
Chuang et al. Magnetron deposition of in situ thermoelectric Mg 2 Ge thin films
US5316858A (en) Materials for thermoelectric and light-heat conversion
Miyata et al. Thermoelectric Properties of Amorphous Ge/Au and Si/Au Thin Films
Fang et al. Observations on the phase transformation and its effect on the resistivity of WSi2 films prepared by low‐pressure chemical vapor deposition
JP4756282B2 (en) Cerium sulfide sintered body and method for producing the same
Mudasar et al. The Enhanced Figure of Merit in N-Type Bismuth Telluride Nanofilms Deposited on the Commercial Epoxy Substrate
JPH0492894A (en) Vapor-phase synthesized diamond of high thermal conductivity
JP2007073640A (en) Clathrate compound and thermoelectric conversion element using same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees