JPH0221733Y2 - - Google Patents

Info

Publication number
JPH0221733Y2
JPH0221733Y2 JP1983001356U JP135683U JPH0221733Y2 JP H0221733 Y2 JPH0221733 Y2 JP H0221733Y2 JP 1983001356 U JP1983001356 U JP 1983001356U JP 135683 U JP135683 U JP 135683U JP H0221733 Y2 JPH0221733 Y2 JP H0221733Y2
Authority
JP
Japan
Prior art keywords
air
station building
exhaust stack
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983001356U
Other languages
Japanese (ja)
Other versions
JPS59108166U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983001356U priority Critical patent/JPS59108166U/en
Publication of JPS59108166U publication Critical patent/JPS59108166U/en
Application granted granted Critical
Publication of JPH0221733Y2 publication Critical patent/JPH0221733Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は地下鉄駅舎内の排熱を回収して効果的
に利用する地下鉄の排熱回収装置に関する。 一般に地下鉄においては、駅舎内の環境を維持
する為に、例えば駅舎の給気筒、排気筒にフアン
を設け、このフアンによる強制給排気を行なつて
いる。また最近では駅舎内の目標温度を設定し
て、この温度を目標温度に維持する為にフアンの
回転数を制御して風量を調節してフアン動力に対
する省エネルギー化が図られている。すなわち駅
舎または排気筒内に温度制御装置を設け、フアン
にインバータ制御付電動機を連結する。そして温
度制御装置により駅舎内または排気筒内の温度を
検出してそれによつてインバータ制御付電動機を
制御する構成である。 なお、排気温度は駅舎内温度と略同一であり、
排気筒温度の場合は、駅舎内温度が各ゾーンの発
熱密度の差異により温度のバラツキが生じ易いの
に対しダクト等によつて集合されるため、平均温
度を検知できる利点がある。 一般に地下鉄においては、電車動力の発熱、人
体発熱、照明機器の発熱等が、壁体、土中および
地下水等に吸熱され夏期は涼しいといわれてきた
が、最近では輸送量増加により地下鉄内の発熱が
増加して地下鉄駅舎内温度は年々上昇する傾向に
あり、前述した風量制御によるエネルギー効果が
低減して将来は強制冷却の必要性が高まる可能性
がある。駅舎内温度は第1図および第2図に示す
ように外気温度よりかなり高くなつている。第1
図は横軸に年度をとり縦軸に温度をとり平均的な
地下鉄の駅舎内温度(図中実線で示す)および外
気温度(図中破線で示す)の変化を示した図であ
る。また第2図は横軸に月をとり、縦軸に温度を
とり平均的な地下鉄の駅舎内温度(図中実線で示
す)、トンネル内温度(図中1点鎖線で示す)の
変化を示した図である。これで明らかなように、
駅舎内温度は外気温度よりも高くまた前述したよ
うに年々上昇する傾向にあり、この為中には冷房
設備を設けている駅舎もある。そこで従来無駄に
大気に排出されていた排熱を回収して効果的に利
用する必要ができてきた。 本考案は以上の点にもとづいてなされたもので
その目的とするところは、従来排気していた排熱
を回収して効果的に利用することにより地下鉄駅
舎内の環境を健全に維持しかつ省エネルギーを図
ることが可能な地下鉄の排熱回収装置を提供する
ことにある。 すなわち本考案による地下鉄の排熱回収装置
は、地下鉄の駅舎に連通する排気筒に設置された
空気熱源ヒートポンプの空気熱交換器と、上記排
気筒に設置された空気熱交換器用フアンと、この
空気熱交換器用フアンに連結されたインバータ制
御付電動機と、上記空気熱交換器及びフアンの下
流側で上記排気筒より分岐し駅舎に連通する再循
環路と、同再循環路の分岐部において再循環路及
び排気筒にそれぞれ設けられた再循環ダンパ及び
排気ダンパと、前記駅舎または排気筒に設置され
駅舎内または排気筒内の温度を検出してその検出
値により上記インバータ制御付電動機を制御する
温度制御装置と、前記空気熱交換器を介して排気
筒内空気と熱交換する冷媒回路と、この冷媒回路
に介挿された凝縮器と、この凝縮器を介して上記
冷媒回路を流通する冷媒と熱交換する温水配管系
とを具備したことを特徴とするものである。 つまり排気筒に空気熱源ヒートポンプの空気熱
交換器を設け、例えば夏期には排気筒内空気と冷
媒回路を循環する冷媒とを熱交換させて冷却され
た空気を拝気ダンパを閉、再循環ダンパを開と
し、再循環路により再度駅舎内に戻して駅舎内の
冷房に利用する。一方、昇温した冷媒は凝縮器を
介して温水生産の熱源とする。そして冬期および
中間期には冷媒との熱交換により除熱された空気
は大気に放出され、昇温した冷媒は夏期同様温水
生産の熱源とする。ここで温度制御装置によりイ
ンバータ制御付電動機を介して熱交換器用フアン
の回転数を制御することによつて空気熱交換器で
の潜熱及び顕熱除去量を増減して冷房効果を増減
することができるため駅舎内の温度を目標温度に
保持することができるとともに動力削減を図るこ
とができる。 したがつて駅舎内の温度を各月または各季節の
目標温度に保持し、同時に熱交換器用フアンの動
力削減を図ることができ環境を快適に保持するこ
とが可能となる。また排熱を回収して、温水生産
の熱源とする等排熱の効果的な利用が可能とな
る。 以下第3図を参照して本考案の一実施例を説明
する。第3図は本考案による地下鉄の排熱回収装
置の概略構成を示す図である。図中符号1は地下
鉄駅舎の一部を示す。この駅舎1には排気筒2が
連通されており、この排気筒2からは排気筒3が
分岐されている。この排気筒3には空気熱源ヒー
トポンプ4の空気熱交換器5および熱交換器用フ
アン6が設置されている。この熱交換器用フアン
6には駆動機構としてのインバータ制御付電動機
7が連結されている。上記空気熱交換器5の伝熱
管8には空気熱源ヒートポンプの冷媒回路9が接
続されている。この冷媒回路9は冷媒連絡管1
0、この冷媒連絡管10に介挿された冷媒圧縮機
11、凝縮器12および冷媒膨脹弁13とから構
成されている。上記凝縮器12には温水配管14
が配設されており冷媒圧縮機11には圧縮機駆動
用モータ11Aが連結されている。前記排気筒3
には再循環路15が分岐構成されており、この再
循環路15の他端側は前記駅舎1に接続されてい
る。そして排気筒3および再循環路15にはそれ
ぞれ排気ダンパ16および再循環ダンパ17が介
挿されている。また駅舎1には給気筒18が接続
されており、この給気筒18には給気フアン19
が設置されている。この給気フアン19にはイン
バータ制御付電動機20が連結されている。そし
て駅舎1内または排気筒2内には温度制御装置2
1が設けられている。この温度制御装置21によ
り駅舎1内または排気筒2内の温度を検出して前
記熱交換器用フアン6のインバータ制御付電動機
7を制御して熱交換器用フアン6の回転数を調節
して風量制御をを行ない、駅舎1内の温度を目標
温度に保持する構成である。 上記構成によるとまず夏期には熱交換器用フア
ン6により駅舎1内の換気を行なう。このとき熱
交換器用フアン6の回転数はインバータ制御付電
動機7を介して温度制御装置21により制御され
ている。熱交換器用フアン6により換気された空
気は空気熱交換器5を通過する際伝熱管8内を流
通する冷媒と熱交換して冷却される。そして駅舎
1内の冷房が必要な錠合には排気ダンパ16を閉
とし循環ダンパ17を開として再循環路15を介
して冷却された空気を駅舎1内に供給して冷房を
行なう。一方昇温気化した冷媒は冷媒圧縮機11
を介して凝縮器12内に流入し、温水配管14内
を流通する温水と熱交換して冷却され凝縮し、冷
媒膨脹弁13を介して再度伝熱管8内に戻る。そ
して昇温した温水は給湯等に利用される。このと
き例えば駅舎排熱量を100kcal/m2・h、空気熱
交換器8入口空気温度を30℃、出口温度を25℃、
温水供給温度を60℃とすると約126kcal/m2・h
の熱を回収することができる。そして例えば駅舎
1の冷房の為にターボ冷凍機を採用した場合には
100kcal/m2・hの冷房負荷に対して、温度レベ
ル30℃で125kcal/m2・h程度の熱を大気に排出
しなければならないのに対して、本実施例によれ
ば50℃〜90℃程度の熱を回収しながら、駅舎1の
冷良を行なうことができきわめて効率的である。
また温度制御装置21により風量制御を行なつて
いるので駅舎1内の温度を目標温度に保持するこ
とができ省エネルギーをも図ることができる。 すなわち、温度制御装置21によりフアン回転
数をコントロールしてフアン風量制御を行うこと
によつて、同じ空気熱交換器の冷凍能力に対し顕
熱除去量と潜熱除去量を制御することができるた
め、風量を増加すると、空気熱交換器の出口温度
は上り、潜熱負荷は減少、顕熱除去量が増大する
ので冷房効果は増し、逆に風量を減少すると空気
熱交換器出口温度が下り、潜熱負荷が増大、顕熱
除去量が減少するので冷房効果は低下する。これ
によつて駅舎温度を目標温度に保持することがで
The present invention relates to a subway waste heat recovery device that recovers and effectively uses waste heat within a subway station building. In general, in subways, in order to maintain the environment within the station building, fans are installed in, for example, the supply cylinder and exhaust stack of the station building, and forced air supply and exhaust are performed using these fans. Recently, efforts have been made to set a target temperature within the station building, and to maintain this temperature at the target temperature, the number of rotations of the fan is controlled to adjust the air volume, thereby saving energy for the fan power. That is, a temperature control device is installed in the station building or the exhaust stack, and an electric motor with inverter control is connected to the fan. The temperature control device detects the temperature inside the station building or the exhaust stack, and the inverter-controlled electric motor is controlled accordingly. Note that the exhaust temperature is approximately the same as the temperature inside the station building.
In the case of exhaust stack temperature, the temperature inside the station building tends to vary due to differences in the heat generation density of each zone, but since it is collected by ducts etc., there is an advantage that the average temperature can be detected. In general, subways are said to be cool in the summer because the heat generated by train power, the human body, and lighting equipment are absorbed by the walls, underground, and underground water, but recently, due to the increase in transportation volume, the heat generated in the subways has increased. As a result, the temperature inside subway station buildings tends to rise year by year, and the energy effect of the aforementioned air volume control may decrease, increasing the need for forced cooling in the future. As shown in Figures 1 and 2, the temperature inside the station building is considerably higher than the outside temperature. 1st
The figure shows changes in the average temperature inside a subway station building (indicated by a solid line in the figure) and outside air temperature (indicated by a broken line in the figure), with the year on the horizontal axis and temperature on the vertical axis. In addition, Figure 2 shows the month on the horizontal axis and the temperature on the vertical axis, showing changes in the average temperature inside the subway station building (shown by the solid line in the figure) and the temperature inside the tunnel (shown by the dashed line in the figure). This is a diagram. As is clear from this,
The temperature inside the station building is higher than the outside temperature, and as mentioned above, it tends to rise year by year, and for this reason some station buildings are equipped with air conditioning equipment. Therefore, it has become necessary to recover and effectively utilize the waste heat that was previously wasted into the atmosphere. The present invention was developed based on the above points, and its purpose is to maintain a healthy environment inside subway station buildings and save energy by recovering and effectively using the waste heat that was conventionally exhausted. The object of the present invention is to provide an exhaust heat recovery device for a subway that can achieve the following. In other words, the subway waste heat recovery device according to the present invention includes an air heat exchanger of an air heat source heat pump installed in an exhaust stack communicating with a subway station building, an air heat exchanger fan installed in the exhaust stack, and a An inverter-controlled electric motor connected to a heat exchanger fan, a recirculation path branching from the exhaust stack downstream of the air heat exchanger and fan and communicating with the station building, and a recirculation path connected to the station building at the branch point of the recirculation path. A recirculation damper and an exhaust damper installed in the road and the exhaust stack, respectively, and a temperature installed in the station building or the exhaust stack to detect the temperature inside the station building or the exhaust stack and control the inverter-controlled electric motor based on the detected value. A control device, a refrigerant circuit that exchanges heat with the air in the exhaust stack via the air heat exchanger, a condenser inserted in the refrigerant circuit, and a refrigerant that flows through the refrigerant circuit via the condenser. It is characterized by comprising a hot water piping system for heat exchange. In other words, an air heat exchanger for an air heat source heat pump is installed in the exhaust stack, and for example, in the summer, the air inside the exhaust stack exchanges heat with the refrigerant circulating in the refrigerant circuit, and the cooled air is transferred to the recirculation damper by closing the air damper. The air is then opened and returned to the station building via a recirculation path to be used for cooling the station building. On the other hand, the heated refrigerant is used as a heat source for producing hot water via a condenser. Then, during the winter and intermediate seasons, the air whose heat has been removed by heat exchange with the refrigerant is released into the atmosphere, and the heated refrigerant is used as a heat source for hot water production as in the summer. Here, by controlling the rotation speed of the heat exchanger fan using a temperature control device via an inverter-controlled electric motor, it is possible to increase or decrease the amount of latent heat and sensible heat removed in the air heat exchanger, thereby increasing or decreasing the cooling effect. This makes it possible to maintain the temperature inside the station building at the target temperature and reduce power consumption. Therefore, the temperature inside the station building can be maintained at the target temperature for each month or each season, and at the same time, the power of the heat exchanger fan can be reduced, making it possible to maintain a comfortable environment. In addition, it becomes possible to recover waste heat and use it effectively, such as by using it as a heat source for hot water production. An embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a diagram showing a schematic configuration of a subway exhaust heat recovery device according to the present invention. Reference numeral 1 in the figure indicates a part of the subway station building. An exhaust stack 2 is communicated with the station building 1, and an exhaust stack 3 is branched off from the exhaust stack 2. An air heat exchanger 5 and a heat exchanger fan 6 of an air source heat pump 4 are installed in the exhaust pipe 3 . An inverter-controlled electric motor 7 serving as a drive mechanism is connected to the heat exchanger fan 6. A refrigerant circuit 9 of an air source heat pump is connected to the heat transfer tube 8 of the air heat exchanger 5. This refrigerant circuit 9 includes a refrigerant communication pipe 1
0, the refrigerant compressor 11, a condenser 12, and a refrigerant expansion valve 13 are inserted into the refrigerant communication pipe 10. The hot water pipe 14 is connected to the condenser 12.
The refrigerant compressor 11 is connected to a compressor driving motor 11A. The exhaust pipe 3
A recirculation path 15 is branched into the station, and the other end of the recirculation path 15 is connected to the station building 1. An exhaust damper 16 and a recirculation damper 17 are inserted into the exhaust pipe 3 and the recirculation path 15, respectively. Furthermore, an air supply cylinder 18 is connected to the station building 1, and an air supply fan 19 is connected to this air supply cylinder 18.
is installed. An inverter-controlled electric motor 20 is connected to the air supply fan 19 . A temperature control device 2 is installed inside the station building 1 or inside the exhaust stack 2.
1 is provided. This temperature control device 21 detects the temperature inside the station building 1 or the exhaust stack 2, controls the inverter-controlled electric motor 7 of the heat exchanger fan 6, adjusts the rotation speed of the heat exchanger fan 6, and controls the air volume. The temperature inside the station building 1 is maintained at the target temperature. According to the above configuration, first, the inside of the station building 1 is ventilated by the heat exchanger fan 6 during the summer. At this time, the rotation speed of the heat exchanger fan 6 is controlled by the temperature control device 21 via the inverter-controlled electric motor 7. When the air ventilated by the heat exchanger fan 6 passes through the air heat exchanger 5, it exchanges heat with the refrigerant flowing through the heat exchanger tubes 8 and is cooled. When the station building 1 requires cooling, the exhaust damper 16 is closed and the circulation damper 17 is opened to supply cooled air to the station building 1 via the recirculation path 15 for cooling. On the other hand, the refrigerant that has been heated and vaporized is sent to the refrigerant compressor 11.
The refrigerant flows into the condenser 12 via the refrigerant expansion valve 13, exchanges heat with the hot water flowing through the hot water pipe 14, is cooled and condensed, and returns to the heat exchanger tube 8 again via the refrigerant expansion valve 13. The heated hot water is then used for hot water supply, etc. At this time, for example, the station building exhaust heat amount is 100kcal/ m2・h, the air temperature at the inlet of air heat exchanger 8 is 30℃, the outlet temperature is 25℃,
If the hot water supply temperature is 60℃, approximately 126kcal/ m2・h
heat can be recovered. For example, if a turbo chiller is used to cool station building 1,
For a cooling load of 100kcal/ m2・h, approximately 125kcal/ m2・h of heat must be discharged into the atmosphere at a temperature level of 30℃, but according to this example, heat of about 50℃~90℃ must be discharged to the atmosphere. It is extremely efficient as it can cool the station building 1 while recovering heat of about 0.9°C.
Further, since the air volume is controlled by the temperature control device 21, the temperature inside the station building 1 can be maintained at the target temperature, and energy saving can also be achieved. That is, by controlling the fan rotation speed and controlling the fan air volume using the temperature control device 21, it is possible to control the sensible heat removal amount and the latent heat removal amount for the same refrigerating capacity of the air heat exchanger. When the air volume is increased, the air heat exchanger outlet temperature increases, the latent heat load decreases, and the amount of sensible heat removed increases, increasing the cooling effect. Conversely, when the air volume is decreased, the air heat exchanger outlet temperature decreases and the latent heat load decreases. increases, the amount of sensible heat removed decreases, and the cooling effect decreases. This allows the station building temperature to be maintained at the target temperature.

【表】 そして特に夏期において駅舎1内の冷房を行な
う場合には再循環空気風量分と冷房効果により上
記給気フアン19の風量は少なくてすみ動力を大
巾に削減することができる。 以上の通り本考案による地下鉄の排熱回収装置
は、地下鉄の駅舎に連通する排気筒に設置された
空気熱源ヒートポンプの空気熱交換器と、上記排
気筒に設置された空気熱交換器用フアンと、この
空気熱交換器用フアンに連結されたインバータ制
御付電動機と、上記空気熱交換器及びフアンの下
流側で上記排気筒より分岐し駅舎に連通する再循
環路と、同再循環路の分岐部において再循環路及
び排気筒にそれぞれ設けられた再循環ダンパ及び
排気ダンパと、前記駅舎または排気筒に設置され
た駅舎内または排気筒内の温度を検出してその検
出値により上記インバータ制御付電動機を制御す
る温度制御装置と、前記空気熱交換器を介して排
気筒内空気と熱交換する冷媒回路と、この冷媒回
路に介挿された凝縮器と、この凝縮器を介して上
記冷媒回路を流通する冷媒と熱交換する温水配管
系とを具備した構成である。 つまり排気筒に空気熱源ヒートポンプの空気熱
交換器を設け、例えば夏期には排気筒内空気と冷
媒回路を循環する冷媒とを熱交換させて冷却され
た空気を排気ダンパを閉、再循環ダンパを開とし
再循環路により再度駅舎内に戻して駅舎内の冷房
に利用する。一方、昇温した冷媒は凝縮器を介し
て温水生産の熱源とする。そして冬期および中間
期には冷媒との熱交換により除熱された空気は大
気に放出され、昇温した冷媒は夏期同様温水生産
の熱源とする。ここで温度制御装置によりインバ
ータ制御付電動機を介して熱交換器用フアンの回
転数を制御することによつて空気熱交換器での潜
熱及び顕熱除去量を増減して冷房効果を増減する
ことができるため駅舎内の温度を目標温度に保持
するとともに動力削減を図ることができる。 したがつて駅舎内の温度を各月または各季節の
目標温度に保持し、同時に熱交換器用フアンの動
力削減を図ることができ環境を快適に保持するこ
とが可能となる。また排熱を回収して、温水生産
の熱源とする等排熱の効果的利用が可能となる等
その効果は大である。
[Table] Particularly when cooling the station building 1 in the summer, the amount of air from the air supply fan 19 can be reduced due to the amount of recirculated air and the cooling effect, and the power consumption can be significantly reduced. As described above, the subway waste heat recovery device according to the present invention includes: an air heat exchanger of an air source heat pump installed in an exhaust stack communicating with a subway station building; an air heat exchanger fan installed in the exhaust stack; An inverter-controlled electric motor connected to the air heat exchanger fan, a recirculation path that branches from the exhaust stack downstream of the air heat exchanger and fan and communicates with the station building, and a branch part of the recirculation path. A recirculation damper and an exhaust damper provided in the recirculation path and the exhaust stack, respectively, and temperatures inside the station building or the exhaust stack installed in the station building or the exhaust stack are detected, and the inverter-controlled electric motor is operated based on the detected values. A temperature control device to control, a refrigerant circuit that exchanges heat with the air in the exhaust stack via the air heat exchanger, a condenser inserted in the refrigerant circuit, and a refrigerant that flows through the refrigerant circuit via the condenser. The structure includes a hot water piping system that exchanges heat with a refrigerant. In other words, an air heat exchanger for an air heat source heat pump is installed in the exhaust stack, and for example, in the summer, the air inside the exhaust stack exchanges heat with the refrigerant circulating in the refrigerant circuit, and the cooled air is transferred by closing the exhaust damper and using a recirculation damper. It is then returned to the station building via the recirculation route and used for cooling the station building. On the other hand, the heated refrigerant is used as a heat source for producing hot water via a condenser. Then, during the winter and intermediate seasons, the air whose heat has been removed by heat exchange with the refrigerant is released into the atmosphere, and the heated refrigerant is used as a heat source for producing hot water, as in the summer. Here, by controlling the rotation speed of the heat exchanger fan using a temperature control device via an inverter-controlled electric motor, it is possible to increase or decrease the amount of latent heat and sensible heat removed in the air heat exchanger, thereby increasing or decreasing the cooling effect. This makes it possible to maintain the temperature inside the station building at the target temperature and reduce power consumption. Therefore, the temperature inside the station building can be maintained at the target temperature for each month or each season, and at the same time, the power of the heat exchanger fan can be reduced, making it possible to maintain a comfortable environment. Moreover, the effects are great, such as recovering waste heat and making it possible to use it effectively, such as by using it as a heat source for hot water production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平均的な地下鉄の駅舎内温度および外
気温度の変化を示す図、第2図は平均的な地下鉄
の駅舎内温度、トンネル内温度および外気温度の
変化を示す図、第3図は本考案の一実施例を示す
排熱回収装置の概略構成図である。 1……駅舎、2,3……排気筒、4……空気熱
源ヒートポンプ、5……空気熱交換器、6……空
気熱交換器用フアン、7……インバータ制御付電
動機、9……冷媒回路、14……温水配管、15
……再循環路、16……排気ダンパ、17……再
循環ダンパ、21……温度制御装置、18……給
気筒。
Figure 1 is a diagram showing changes in average subway station building temperature and outside air temperature, Figure 2 is a diagram showing average subway station building temperature, tunnel temperature, and outside air temperature changes, and Figure 3 is a diagram showing changes in average subway station building temperature, tunnel temperature, and outside air temperature. 1 is a schematic configuration diagram of an exhaust heat recovery device showing an embodiment of the present invention. 1...Station building, 2,3...Exhaust stack, 4...Air heat source heat pump, 5...Air heat exchanger, 6...Air heat exchanger fan, 7...Inverter-controlled electric motor, 9...Refrigerant circuit , 14...Hot water piping, 15
... Recirculation path, 16 ... Exhaust damper, 17 ... Recirculation damper, 21 ... Temperature control device, 18 ... Supply cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 地下鉄の駅舎に連通する排気筒に設置された空
気熱源ヒートポンプの空気熱交換器と、上記排気
筒に設置された空気熱交換器用フアンと、この空
気熱交換器用フアンに連結されたインバータ制御
付電動機と、上記空気熱交換器及びフアンの下流
側で上記排気筒より分岐し駅舎に連通する再循環
路と、同再循環路の分岐部において再循環路及び
排気筒にそれぞれ設けられた再循環ダンパ及び排
気ダンパと、前記駅舎または排気筒に設置され駅
舎内または排気筒内の温度を検出してその検出値
により上記インバータ制御付電動機を制御する温
度制御装置と、前記空気熱交換器を介して排気筒
内空気と熱交換する冷媒回路と、この冷媒回路に
介挿された凝縮器と、この凝縮器を介して上記冷
媒回路を流通する冷媒と熱交換する温水配管系と
を具備したことを特徴とする地下鉄の排熱回収装
置。
An air heat exchanger of an air heat source heat pump installed in an exhaust stack connected to a subway station building, an air heat exchanger fan installed in the exhaust stack, and an inverter-controlled electric motor connected to the air heat exchanger fan. and a recirculation path that branches from the exhaust stack downstream of the air heat exchanger and the fan and communicates with the station building, and a recirculation damper that is installed in the recirculation path and the exhaust stack, respectively, at the branching part of the recirculation path. and an exhaust damper, a temperature control device that is installed in the station building or the exhaust stack and detects the temperature inside the station building or the exhaust stack and controls the inverter-controlled electric motor based on the detected value, and A refrigerant circuit that exchanges heat with the air in the exhaust stack, a condenser inserted in the refrigerant circuit, and a hot water piping system that exchanges heat with the refrigerant flowing through the refrigerant circuit through the condenser. Features of subway waste heat recovery equipment.
JP1983001356U 1983-01-10 1983-01-10 Subway waste heat recovery equipment Granted JPS59108166U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983001356U JPS59108166U (en) 1983-01-10 1983-01-10 Subway waste heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983001356U JPS59108166U (en) 1983-01-10 1983-01-10 Subway waste heat recovery equipment

Publications (2)

Publication Number Publication Date
JPS59108166U JPS59108166U (en) 1984-07-20
JPH0221733Y2 true JPH0221733Y2 (en) 1990-06-12

Family

ID=30133082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983001356U Granted JPS59108166U (en) 1983-01-10 1983-01-10 Subway waste heat recovery equipment

Country Status (1)

Country Link
JP (1) JPS59108166U (en)

Also Published As

Publication number Publication date
JPS59108166U (en) 1984-07-20

Similar Documents

Publication Publication Date Title
CN109649119A (en) A kind of entire new energy automobile heat management system making full use of waste heat
CN103912947B (en) For fan coil and the heat pump of heat recovery fresh air conditioning group
CN103900184A (en) Water cooling medium three-pipe refrigerating and heating air-conditioning system
CN103994601A (en) Independent temperature and humidity control air-conditioning system with heat recovery function
CN103925657B (en) It arranges wind source heat pump and drives fresh air system
CN106403143A (en) Temperature and humidity independent treatment air conditioner system and control method thereof
CN105805868B (en) Regenerate backheat dehumidifying heat pump system and its operation method
CN204853854U (en) Rotary wheel type heat recovery air processing unit
CN102563785A (en) Air conditioning unit combining gas turning wheel-dew point type evaporative cooling and mechanical refrigeration
CN202403360U (en) Gas type rotating wheel and evaporative cooling and mechanical refrigerating combined air conditioner
CN205980700U (en) Responsibility is dodged all to heat of high -efficient heat recovery
CN202119021U (en) Multistage heat-recovery compound-dehumidifying new air processor
CN111594962A (en) Fluorine pump energy-saving indirect evaporative cooling air conditioning unit and control method
JPH0221733Y2 (en)
CN207179881U (en) Low energy consumption solution dehumidifying air-conditioning system
CN203518140U (en) Air conditioner system for recycling waste heat
CN203116202U (en) Double-cold-source combined operation air-conditioning system
CN106871280B (en) A kind of heat pump driven two-stage solution dehumidifying air-conditioning system
CN206338898U (en) A kind of double-cold source fresh air handling unit with recuperation of heat
CN213514206U (en) Energy-saving indirect evaporative cooling air conditioning unit with fluorine pump
CN106839354A (en) A kind of interior circulation heat recovery fresh air unit
US6606874B1 (en) Ventilation arrangement for buildings
CN201050908Y (en) Highly effective multifunctional air energy resource apparatus
CN201037714Y (en) Highly effective multifunctional air energy source set
CN106091228B (en) Subway station air wall type evaporation condensation direct expansion evaporation ventilation air conditioning system and control method