JPH02217198A - Manufacture of flux cored wire for welding - Google Patents

Manufacture of flux cored wire for welding

Info

Publication number
JPH02217198A
JPH02217198A JP3828589A JP3828589A JPH02217198A JP H02217198 A JPH02217198 A JP H02217198A JP 3828589 A JP3828589 A JP 3828589A JP 3828589 A JP3828589 A JP 3828589A JP H02217198 A JPH02217198 A JP H02217198A
Authority
JP
Japan
Prior art keywords
flux
wire
welding
steel pipe
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3828589A
Other languages
Japanese (ja)
Inventor
Junji Tateishi
立石 順治
Minoru Okuya
奥谷 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3828589A priority Critical patent/JPH02217198A/en
Publication of JPH02217198A publication Critical patent/JPH02217198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To manufacture a seamless flux cored wire for gas shielded arc welding which is prevented from generation of cracks by specifying actual pack rate of flux packed in a steel tube or a billet and conducting hot rolling and cold drawing. CONSTITUTION:The actual pack rate M of the flux packed in the steel tube or the billet holds 1<=M/Mr>=0.85, where Mr shows a compression density of the flux formed in 500kg/cm<2>. When this is hot-rolled and then, cold-drawn, the volnmetric shrinkage of the flux in roll rolling is small and the tube wall is prevented from flatening or thinning and cracks can be prevented from being generated during drawing the wire.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、造船、鉄骨、橋梁等に用いられる合せ目のな
いガスシールドアークを容接用フラックス入りワイヤに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a flux-cored wire for welding seamless gas-shielded arcs used in shipbuilding, steel frames, bridges, etc.

〈従来の技術〉 ガスシールドアーク溶接用フラックス入すワイヤは、溶
接作業性が良好で溶接能率も向上することから造船を中
心に鉄骨、橋梁等の溶接に広く普及している。このフラ
ックス入りワイヤにはワイヤ長手方向に合せ目のある巻
き締めタイプと長手方向に合−l゛目のないタイプの2
種類あるが、合−U目のないタイプ“は、 ■ 銅メツキが施ゼるため通電性、送給性、耐錆性が良
好である。
<Prior Art> Flux-cored wire for gas-shielded arc welding is widely used in welding steel frames, bridges, etc., mainly in shipbuilding, because it has good welding workability and improves welding efficiency. There are two types of flux-cored wire: a rolled type with a seam in the longitudinal direction of the wire and a type without a seam in the longitudinal direction.
There are several types, but the type with no joints is: (1) Because it is copper plated, it has good current conductivity, feedability, and rust resistance.

■ 合せ目からのフラックスのこぼれ落ちなくコンジッ
トチューブでのワイヤ詰まり等少ない。
■ No flux spills from the joint, and there is less chance of wire clogging in the conduit tube.

■ 合せ目からのフラックスの吸湿がない。■ There is no moisture absorption of flux from the seam.

などの特徴があり、巻き締めワイヤよりも良好な特性を
有している。
It has the following characteristics and has better properties than rolled wire.

この合せ目のないワイヤの製造方法としては、特公昭4
5−30937号公報に開示されているように、コイル
巻きしだ長尺鋼管の端部からフラックスを充填する方法
とフラックス充填後合せ目を溶接する方法とがあるが、
これらの方法は生産性が低く、フラックス充填度のバラ
ツキ等が生じやすい。この問題点を解決するため特公昭
63−33958号公報のごとく管外径≧50+nmの
大径鋼管にフラックスを充填したのち熱間圧延で伸ばし
、次いで冷間伸線で所定の線径に仕上げる技術が提案さ
れているが、この方法は生産性も高く有効な製造法であ
る。
As a manufacturing method for this seamless wire,
As disclosed in Japanese Patent No. 5-30937, there are two methods: filling flux from the end of a coil-wound long steel pipe, and welding the joint after filling with flux.
These methods have low productivity and are likely to cause variations in the degree of flux filling. In order to solve this problem, the technology disclosed in Japanese Patent Publication No. 63-33958 involves filling a large-diameter steel pipe with an outer diameter of 50+ nm with flux, stretching it by hot rolling, and then finishing it to a predetermined wire diameter by cold drawing. has been proposed, and this method is highly productive and effective.

しかし本発明者らが、特公昭63−33958号公報の
実施例のように管外径(D)  :  150mmφ、
管肉厚(t)  :40mm、  L/D= 0.2(
i7で長さくL):5mの軟鋼鋼管中にチタニア系のフ
ラックスを直径(DF )  :60mmφ、長さ(N
)  ’ 180mm (42/ Dr=3)の円柱形
のペレット状のフラックス塊として充填し、900°C
で熱間圧延を行い7mmφの線材としたのち冷間伸線で
1.2mmφまで仕上げたところ、ワイヤ長手方向に割
れが生じ、合せ目のないフラックス入りワイヤの特徴で
あるメツキが施・Uないだけでなく、ワイヤの送給性す
なわち溶接作業性が劣化した。
However, the present inventors, as in the example of Japanese Patent Publication No. 63-33958, have a tube outer diameter (D) of 150 mmφ,
Pipe wall thickness (t): 40mm, L/D=0.2(
i7, length L): 5m mild steel pipe with titania-based flux diameter (DF): 60mmφ, length (N
) ' Filled as a 180 mm (42/ Dr = 3) cylindrical pellet-like flux mass and heated at 900 °C.
When the wire rod was hot-rolled to a diameter of 7 mm and then cold-drawn to a diameter of 1.2 mm, cracks appeared in the longitudinal direction of the wire, and there was no plating or U, which is a characteristic of flux-cored wire without seams. In addition, the wire feeding performance, that is, the welding workability deteriorated.

く発明が解決しようとする課題〉 本発明は、鋼管にペレット状フラックスを充填し、この
鋼管を熱間圧延し、次いで冷間伸線する合せ目のない溶
接用フランクス入すワイヤの製造方法において、製造作
業中にワイヤ長手方向に割れが発生ずることがないワイ
ヤの製造方法を提供するためになされたものである。
Problems to be Solved by the Invention The present invention provides a method for manufacturing a welding flank-inserted wire without seams, in which a steel pipe is filled with pelletized flux, the steel pipe is hot-rolled, and then cold-drawn. This was done in order to provide a method for manufacturing a wire that does not cause cracks to occur in the longitudinal direction of the wire during manufacturing operations.

〈課題を解決するための手段〉 本発明は、鋼管又はビレット内に1≦M / M r≧
0.85となるような実質充填密度でフラックスを充填
して熱間圧延を行い、次いで冷間伸線加工を施すことを
特徴とする溶接用フランクス入すワイヤの製造方法であ
る。但しM:フラックスの実質充填密度(g/cJ) 
、 Mr  : 500kg/cm2で圧縮成型したと
きのフラックスの圧縮密度(g/c+tl)である。
<Means for Solving the Problems> The present invention provides 1≦M/M r≧ in a steel pipe or billet.
This is a method for manufacturing a wire to be inserted into a welding flank, which is characterized in that the wire is filled with flux at an effective packing density of 0.85, hot rolled, and then cold wire drawn. However, M: actual packing density of flux (g/cJ)
, Mr: Compression density (g/c+tl) of the flux when compression molded at 500 kg/cm2.

〈作 用〉 従来の鋼管にペレット状フラックスを充填して熱間圧延
、ついで冷間伸線する合せ目のない溶接用フラックス入
りワイヤ製造方法で、ワイヤ長手方向に割れが発生ずる
ケースについて、本発明者らが研究を重ねた結果、つぎ
のことが明らかになった。
<Function> This paper describes a case in which cracks occur in the longitudinal direction of the wire in the conventional manufacturing method of flux-cored wire for welding without seams, in which a steel pipe is filled with pelletized flux, hot-rolled, and then cold-drawn. As a result of repeated research by the inventors, the following became clear.

すなわち、第5図に示ずような線材の熱間圧延は第3図
のごとく、スクエアーダイヤおよびオーバル−ラウンド
等の圧延ロール溝を通るため鋼管の内孔は真円状に変形
−Uず、第4図のごとくフラックス2は偏平状に変形し
、このため圧延前には十分な肉厚があった外皮1に圧延
後には肉厚の薄い個所が生しここが伸線中の割れにつな
がる。
That is, in hot rolling of a wire rod as shown in FIG. 5, as shown in FIG. 3, the inner hole of the steel pipe is deformed into a perfect circle because it passes through rolling roll grooves such as square diamond and oval-round. As shown in Figure 4, the flux 2 is deformed into a flat shape, and as a result, the outer skin 1, which had sufficient thickness before rolling, develops thinner areas after rolling, which can lead to cracks during wire drawing. .

さらに詳説すれば、ロール圧延法では上下からの圧下刃
だけのため、フラックスは圧延の一段目で押しつぶされ
偏平状になる。また充填フラックス面積率はこの段階で
圧縮され減少する。その後2段目以後のロールで外皮の
形状は整えられるが、ロール圧延では肉厚の太りもなく
内包フラックスの景の割合に内孔表面積が大きいため外
形が円状になっても内孔の形状は回復せず偏平状のまま
である。また圧延ではロール溝に一定に組まれているが
、実際の線材はロール間でねじれ等が生じるために一定
方向で圧下されず更に偏平度が大きくなることもある。
To explain in more detail, in the roll rolling method, since only the rolling blades are used from above and below, the flux is crushed and flattened in the first stage of rolling. Also, the filling flux area ratio is compressed and reduced at this stage. After that, the shape of the outer skin is adjusted by the second and subsequent rolls, but roll rolling does not increase the wall thickness and the surface area of the inner hole is large in proportion to the included flux, so even if the outer shape becomes circular, the shape of the inner hole will remain unchanged. has not recovered and remains flat. In addition, in rolling, the wire is fixed in the roll grooves, but in reality, the wire is twisted between the rolls, so it is not rolled down in a fixed direction, and the flatness may even increase.

このような充填フラックスの偏平化で肉厚の薄いところ
が生じ、伸線中の割れ。
This flattening of the filling flux results in areas with thin walls, which can lead to cracks during wire drawing.

断線の原因になっていた。It was causing a disconnection.

ここで本発明ではフラックスを鋼管又はビレットの内孔
への充填時にあらかじめ圧縮成型するか、実質充填密度
を高くしておいて、かつ理想的には内孔に空間がないよ
うに充填したので、ロール圧延で圧下刃を受けてもフラ
ックスの体積収縮が少なく、充填フラックスの偏平化が
おこらず外皮に肉厚の薄い個所は生せず伸線中の割れは
生じない。
Here, in the present invention, when filling the inner hole of the steel pipe or billet, the flux is compression-molded in advance, or the actual packing density is made high, and ideally, the inner hole is filled so that there is no space. Even when subjected to a reduction blade during roll rolling, the volumetric shrinkage of the flux is small, the filling flux does not flatten, no thin areas are formed on the outer skin, and no cracks occur during wire drawing.

なお、鋼管又はビレット内に充填されたフラックスの実
質充填密度M、(以下実質充填密度と略す)が、フラッ
クスのみを500kg/c+flで圧縮成型したときの
フラックスの圧縮密度MP(以下圧縮密度と略す)の0
.85〜1.00であれば内孔のフラックスの偏平度が
少なく、鋼管肉厚(1)の鋼管外径(D)に対する比t
/Dが0.15〜0.35であっても、伸線中に割れ、
断線などが生じないことを本発明者らの実験、実施例に
よって確認できた。
In addition, the actual packing density M, (hereinafter abbreviated as the actual packing density) of the flux filled in the steel pipe or billet is the compressed density MP of the flux (hereinafter abbreviated as the compressed density) when only the flux is compression molded at 500 kg/c + fl. ) of 0
.. If it is 85 to 1.00, the flatness of the flux in the inner hole is small, and the ratio t of the steel pipe wall thickness (1) to the steel pipe outer diameter (D)
Even if /D is 0.15 to 0.35, cracking occurs during wire drawing,
The inventors' experiments and examples have confirmed that no wire breakage occurs.

一方、圧縮成型した円柱形フラッスク塊を鋼管又はビレ
ット内に充填して熱間圧延、冷間伸線加工しワイヤを製
造する場合に、フラックス塊の長さのフラックス塊の直
径に対する比が2未満となるようなフラックス塊の形状
にすることがフランクス密度、ペレット自体の強度の確
保のために必要であるこまが同様に本発明者らの実験、
実施例によって確認できた。
On the other hand, when manufacturing a wire by filling a compression molded cylindrical flax lump into a steel pipe or billet, hot rolling and cold wire drawing, the ratio of the length of the flux lump to the diameter of the flux lump is less than 2. Similarly, in our experiments, it is necessary to shape the flux mass so that it has Franks density and the strength of the pellet itself.
This was confirmed through examples.

以上の確認結果に基づく本発明によれば、伸線中に割れ
、断線が発生しない。
According to the present invention based on the above confirmation results, cracking and wire breakage do not occur during wire drawing.

〈実施例〉 本発明者らは、第1表のごとく外径150mmφ内径8
0mmφ、長さ6mの軟鋼鋼管内に外径70mmφ74
mmφおよび78m+nφ、高さ70〜100mmに圧
縮成型したチタニア系フラックスを充填し、1000°
Cにて熱間圧延を行い5.5mmφの線材を製造した。
<Example> As shown in Table 1, the present inventors developed a
0mmφ, 6m long mild steel pipe with outer diameter 70mmφ74
Filled with titania-based flux compression molded to mmφ and 78m+nφ, height 70 to 100mm, 100°
Hot rolling was performed at C to produce a wire rod with a diameter of 5.5 mm.

フラックスを圧縮成型した場合、加圧力によって成型後
の密度が変わってくるが、第1図のごと<300kg 
/ crR以上であればほとんど密度の差がないため全
て500kg/c+flの圧力でプレス成型を行った。
When flux is compression molded, the density after molding changes depending on the pressure applied, but as shown in Figure 1 <300 kg.
/crR or more, there is almost no difference in density, so all press molding was performed at a pressure of 500 kg/c+fl.

第1表の圧縮密度(MP)とは500kg/cIIlで
圧縮成型したフラックスの密度であり、充填密度(M)
は鋼管の体積に対する成型フラックスのmff1、すな
わちフラックスの実質充填密度をあられしている。この
場合、実質充填密度/圧縮密度の比は0.77〜0.9
5であった。
The compressed density (MP) in Table 1 is the density of the flux compressed at 500 kg/cIIl, and the packing density (M)
represents mff1 of the forming flux with respect to the volume of the steel pipe, that is, the actual packing density of the flux. In this case, the ratio of real packing density/compressed density is 0.77-0.9
It was 5.

圧延後の5.5mmφ線材は、冷間伸線、銅メツキを施
し1.2mmφに仕上げた。この時2.5+nmφの段
階で650°(:Xl)Irの焼鈍処理を行った。仕上
げた線材は断面を切断、研磨し拡大鏡でフラックス形状
を5ケ所測定し、フラックス形状の長径/短径比の平均
値を偏平率とした。また長手方向の表面割れについても
観察した。
After rolling, the 5.5 mmφ wire rod was cold drawn and copper plated to finish it to 1.2 mmφ. At this time, 650° (:Xl) Ir annealing treatment was performed at the stage of 2.5+nmφ. The cross section of the finished wire was cut and polished, and the shape of the flux was measured at five locations using a magnifying glass, and the average value of the ratio of the major axis to the minor axis of the flux shape was taken as the oblateness. Surface cracks in the longitudinal direction were also observed.

その結果、実質充填密度の低いA1ワイヤはフラックス
の偏平率が大きく表面割れが生じ、断線も発生したが、
実質充填密度が高<M/MP:0.85以上のA2ワイ
ヤ、A3ワイヤは偏平率が小さく表面割れも発生しなか
った。
As a result, the A1 wire, which has a low actual packing density, had a large flux oblateness, which caused surface cracks and disconnections.
A2 wires and A3 wires with substantial packing densities of high<M/MP: 0.85 or higher had small oblateness and no surface cracks occurred.

またフラックスをあらかじめ円柱状に圧縮成型せず、鋼
管内に少量づつ投入しながら500kg/clの圧力で
プレス圧縮しながら充填を行ったワイヤB2についても
偏平率が小さく、割れも発生しなかったが、フシックス
粉末をそのまま充填しただけのワイヤB1は充填密度が
低いため偏平状になりワイヤ表面割れが生じた。
In addition, wire B2, in which the flux was not compression-molded into a cylindrical shape in advance and was filled into the steel pipe by press-compressing it at a pressure of 500 kg/cl while injecting it little by little into the steel pipe, also had a small oblateness and no cracks occurred. Wire B1, which was simply filled with Fusix powder, had a low packing density, so it became flat and cracked on the wire surface.

充填方法としてはあらかじめフラックスを圧縮成型して
も、充填しながら圧縮しても良いが、フラックスの充填
密度を上げることが肝要である。
As a filling method, the flux may be compressed in advance or compressed while being filled, but it is important to increase the packing density of the flux.

あらかじめ圧縮したフラックスを鋼管の内孔に装入する
場合には、圧縮フラックスの外径が鋼管内径に近いと、
フラックス間の空気抜きが十分に行われず、長手方向で
実質充填密度を低下さゼることがあるので、この場合に
は第2図のように中央部に空気抜き六8を開りるか、フ
ラックスペレットのサイドに空気抜き溝9をつけること
が望ましい。
When charging pre-compressed flux into the inner hole of a steel pipe, if the outer diameter of the compressed flux is close to the inner diameter of the steel pipe,
Air between the flux may not be sufficiently vented and the actual packing density may be reduced in the longitudinal direction.In this case, either open an air vent 68 in the center as shown in Figure 2, or use It is desirable to provide an air vent groove 9 on the side of the housing.

また、圧縮成型する時の寸法が大切であり、フラックス
ベレットの長さlは、フラックスペレットの直径の2倍
未満が密度を上げるためには望ましい。充填しながら圧
縮する場合も1回ごとのフラックス投入量は上記以内に
なるようにしなりればならない。
In addition, the dimensions during compression molding are important, and the length l of the flux pellet is preferably less than twice the diameter of the flux pellet in order to increase the density. Even when compressing while filling, the amount of flux added each time must be within the above range.

また、フラックスを圧縮成型する場合に、若干の水また
は粘結剤を添加しても良いが、成型後は100°C以上
の温度で乾燥を行うことが望ましい。
Further, when compression molding the flux, a small amount of water or a binder may be added, but it is desirable to dry the flux at a temperature of 100° C. or higher after molding.

更に線材圧延のビレットは一般的には円柱状ではなく四
角柱のビレットであるが、この四角柱に円柱状の穴をあ
りでも最小肉厚(1)が四角柱幅(W)に対してt =
0.15〜0.35Wであれば充填フラックスの密度比
M/Mpを0.85以上にすれば割れ等は発生しなかっ
た。
Furthermore, wire rod rolling billets are generally rectangular prism billets rather than cylindrical, but even if the rectangular prism has a cylindrical hole, the minimum wall thickness (1) is t relative to the rectangular prism width (W). =
If the density ratio M/Mp of the filling flux was 0.15 to 0.35W or more than 0.85, no cracking or the like would occur.

t<0.15Wの場合には肉厚が薄く割れが発生し、t
 > 0.35 Wの場合にはフラックスが不足して溶
接作業性が劣化するので好ましくない。
When t<0.15W, the wall thickness is thin and cracks occur, and t
>0.35 W is not preferable because flux is insufficient and welding workability deteriorates.

一般的な線材用のビレットである180mm口×6mm
長さの軟鋼ビレットに8011II++φの穴を機械加
工で開けその中にTi0262%を主体とし、残部がr
eSi、 re−Mn、アーク安定剤等からなるチタニ
ア系フラックスを80mmφX 100m+nj!の円
柱形のベレット状に500kg / c+llで圧縮成
型して充填した。フラックス間には中央部に10mmφ
の穴を開け、充填中の空気抜きを容易にした。またこの
時のフラックス充填密度は3.05g/caであり、圧
縮力500kg/c+llでのフラックスの圧縮密度と
の比は0.98であった。
180mm opening x 6mm billet for general wire rods
A hole of 8011II++φ is machined into a long mild steel billet, and the hole is made mainly of Ti0262% and the remainder is r.
Titania-based flux consisting of eSi, re-Mn, arc stabilizer, etc. 80mmφX 100m+nj! It was compression molded and filled into a cylindrical pellet shape at 500 kg/c+ll. 10mmφ in the center between the fluxes
A hole was opened to facilitate air release during filling. Further, the flux packing density at this time was 3.05 g/ca, and the ratio to the compressed density of the flux at a compressive force of 500 kg/c+ll was 0.98.

このビレットを1100°Cで熱間圧延で5.5mmφ
に線材化したのち、冷間伸線で1.2mmφまで伸線し
た。このワイヤはもともとビレットが四角であったため
偏平率は円筒状よりやや大きいが割れ等は全く生じなか
った(第1表の01ワイヤ)。
This billet was hot rolled at 1100°C to a diameter of 5.5mm.
After forming the wire into a wire rod, the wire was drawn to a diameter of 1.2 mm by cold wire drawing. Since the billet of this wire was originally square, the oblateness was slightly larger than that of a cylindrical billet, but no cracks or the like occurred at all (wire 01 in Table 1).

このワイヤを用いてCO□ガスシールドで溶接を行った
が溶接作業性2機械性能とも良好であった。
Welding was performed using this wire with a CO□ gas shield, and both welding workability and mechanical performance were good.

更にこのワイヤを0 、9 mmφまで伸線したがそれ
でも割れ等は生じなかった。
This wire was further drawn to a diameter of 0.9 mm, but no cracks or the like occurred.

又C1と同じ鋼管に、同じチタニャ系フラックスで78
mmφX 100mmff1の圧縮成形円柱形ペレント
で第2図(b)に示すような空気抜き溝とし′ζ20m
mV溝を開けたフランクス塊を充填して熱間圧延し、1
.2mmφまで伸線加工しC2ワイヤを製造したが、C
1と同様割れは生じなかったし、このワイヤによるCO
□ガスシールド熔接溶接溶接作業性機械性能とも良好で
あった。
Also, with the same steel pipe as C1 and the same titania flux, 78
A compression-molded cylindrical pellet of mmφ
Filled with mV grooved Franks block and hot rolled, 1
.. C2 wire was manufactured by drawing to 2mmφ, but C
Similar to 1, no cracking occurred, and the CO caused by this wire
□ Gas shield welding Welding workability and mechanical performance were both good.

〈発明の効果〉 本発明の製造方法によれば、高品質の合ゼ目のない溶接
用フランクス入りワイヤを高い生産性で製造することが
できる。
<Effects of the Invention> According to the manufacturing method of the present invention, a high-quality welding flank-cored wire without seams can be manufactured with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加圧力とフラックス成型後の密度との関係を示
す特性図、第2図はフラックス塊の空気抜き穴、空気抜
き溝を示す正面断面図および側面図、第3図は線材の圧
延ロール溝を示す説明図で(a)はスクエアーダイヤ法
、(b)はオーバルラウン1−法、第4図は偏平状フラ
ックスを示す説明図、第5図は本発明に用いる線祠(例
)の正面断面図および側面断面図である。 1・・・外皮、      2・・・フラフクス、3・
・・鋼管(又はビレット) 4・・・充填フラックス、5・・・蓋、6・・・ガス抜
き穴、  7・・・空気抜き穴、8・・・空気抜き溝。 特許出願人   川崎製鉄株式会社 ]/1 (ρ/2)誼 出
Figure 1 is a characteristic diagram showing the relationship between pressing force and density after flux molding, Figure 2 is a front sectional view and side view showing air vent holes and air vent grooves in the flux mass, and Figure 3 is the rolling roll groove of the wire rod. (a) is an explanatory diagram showing the square diamond method, (b) is an explanatory diagram showing the oval round 1-method, Fig. 4 is an explanatory diagram showing the flat flux, and Fig. 5 is a front view of the wire shed (example) used in the present invention. They are a sectional view and a side sectional view. 1...Outer skin, 2...Furafukus, 3.
... Steel pipe (or billet) 4... Filling flux, 5... Lid, 6... Gas vent hole, 7... Air vent hole, 8... Air vent groove. Patent applicant Kawasaki Steel Corporation]/1 (ρ/2) Extrusion

Claims (1)

【特許請求の範囲】 鋼管又はビレット内に1≦M/M_P≧0.85となる
ような実質充填密度でフラックスを充填して熱間圧延を
行い、次いで冷間伸線加工を施すことを特徴とする溶接
用フラックス入りワイヤの製造方法。 但しM:フラックスの実質充填密度(g/cm^3)、
M_P:500kg/cm^2で圧縮成型したときのフ
ラックスの圧縮密度(g/cm^3)。
[Claims] A steel pipe or billet is filled with flux at a substantial packing density such that 1≦M/M_P≧0.85, hot rolling is performed, and then cold wire drawing is performed. A method for manufacturing flux-cored wire for welding. However, M: actual packing density of flux (g/cm^3),
M_P: Compression density (g/cm^3) of flux when compression molded at 500 kg/cm^2.
JP3828589A 1989-02-20 1989-02-20 Manufacture of flux cored wire for welding Pending JPH02217198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3828589A JPH02217198A (en) 1989-02-20 1989-02-20 Manufacture of flux cored wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3828589A JPH02217198A (en) 1989-02-20 1989-02-20 Manufacture of flux cored wire for welding

Publications (1)

Publication Number Publication Date
JPH02217198A true JPH02217198A (en) 1990-08-29

Family

ID=12521037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3828589A Pending JPH02217198A (en) 1989-02-20 1989-02-20 Manufacture of flux cored wire for welding

Country Status (1)

Country Link
JP (1) JPH02217198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838771B2 (en) 2002-04-12 2005-01-04 Renesas Technology Corp. Semiconductor device having conductor layers stacked on a substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838771B2 (en) 2002-04-12 2005-01-04 Renesas Technology Corp. Semiconductor device having conductor layers stacked on a substrate
US7247525B2 (en) 2002-04-12 2007-07-24 Renesas Technology Corp. Method for manufacturing a semiconductor device
US7372154B2 (en) 2002-04-12 2008-05-13 Renesas Technology Corp. Semiconductor device
US7772700B2 (en) 2002-04-12 2010-08-10 Renesas Technology Corp. Semiconductor device
US7986041B2 (en) 2002-04-12 2011-07-26 Renesas Electronics Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US4379811A (en) Tubular filler wire for fusion welding
US3474518A (en) Strip welding electrode and a method for making the same
US3220106A (en) Forming and solid-phase bonding
US2435800A (en) Automatic welding electrode
JPH02217198A (en) Manufacture of flux cored wire for welding
CN207272026U (en) A kind of push-expanding type evaporator fin
CN110936050A (en) Stranded welding wire for high-strength steel and preparation process thereof
JP2792758B2 (en) Manufacturing method of powder filled tube
JPS606274A (en) Production of metallic tube
JPS5913316B2 (en) Manufacturing method of small diameter flux-cored wire
JPS6171191A (en) Manufacture of copper-lithium clad material
JPH03281092A (en) Production of metallic powder flux cored wire
JPS631160B2 (en)
JPH02179316A (en) Manufacture of resistance welded tube and its apparatus
JPS6360017A (en) Manufacture of copper covered aluminum wire
JP2732937B2 (en) Manufacturing method of flux cored wire for welding
JPH0531594A (en) Flux-cored wire for arc welding
CN113263072A (en) Collinear production process of low-carbon microalloy and high-alloy corrosion-resistant coiled tubing
JPH03254316A (en) Manufacture of squeeze rolls for forming resistance welded tube and resistance welded tube
JPH0565278B2 (en)
JPS59169616A (en) Manufacture of hard aluminum pipe having high electric conductivity
JPH0377796A (en) Method for drawing sintered flux-cored wire
JPS61123498A (en) Copper alloy for brazing
JPS62275522A (en) Manufacture of welding pipe
JPH03275296A (en) Method for hot-rolling raw material containing powder body