JPH02214185A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02214185A
JPH02214185A JP3543289A JP3543289A JPH02214185A JP H02214185 A JPH02214185 A JP H02214185A JP 3543289 A JP3543289 A JP 3543289A JP 3543289 A JP3543289 A JP 3543289A JP H02214185 A JPH02214185 A JP H02214185A
Authority
JP
Japan
Prior art keywords
type
mask
ion
layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3543289A
Other languages
Japanese (ja)
Inventor
Yutaka Mihashi
三橋 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3543289A priority Critical patent/JPH02214185A/en
Publication of JPH02214185A publication Critical patent/JPH02214185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser with a low threshold value with improved reproduction and yield by performing ion implantation of first conductive and second conductive impurities ions from aslant upper direction of opposite direction for the mask length of mask for stripe-shaped implanted ion elements to form doped regions. CONSTITUTION:A p-type or high-resistance clad layer 2, a quantum well active layer 3, an n-type or high-resistance clad layer 4, and a GaAs contact layer 5 are subjected to epitaxial growth in sequence on a semi-insulation GaAs substrate 1 and a stripe-shaped mask 6 for implantation ion elements consisting of photo resist is formed. Then, a p-type and n-type impurities atom ion is ion-implanted from aslant upper direction of opposite direction for the mask 6 for implantation ion elements and then p-type and n-type doped regions 8 and 7 are formed. Thus, it becomes possible to determine the width of an active region 9 in self-aligned manner without mask matching. Therefore, it is possible to obtain a horizontal semiconductor layer of low-threshold value oscillation with improved reproduction properties and yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザの製造方法に関し、特に光・電
子集積回路(以下、0EICという)へ組み込むのに適
した横型半導体レーザの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor laser, and particularly to a method for manufacturing a horizontal semiconductor laser suitable for being incorporated into an opto-electronic integrated circuit (hereinafter referred to as 0EIC). It is something.

〔従来の技術〕[Conventional technology]

第3図は従来の横方向電流注入半導体レーザ(以下、横
型半導体レーザという)を示す断面図である(古屋氏等
、電子情報通信学会、研究会予稿集0QE−86−16
2p、117) 、図において、1は半絶縁性GaAs
基板、2はアンドープAt!GaAsクラッド層、3は
多重量子井戸(MQW)活性層、4はアンドープAjG
aAsクラッド層、7はn型不純物(例えばSt)拡散
領域、8はp型不純物(例えばZn)拡散領域、9は活
性領域、10はn電極、11はp電極、12は絶縁膜で
ある。
FIG. 3 is a cross-sectional view showing a conventional lateral current injection semiconductor laser (hereinafter referred to as a lateral semiconductor laser) (Mr. Furuya et al., Institute of Electronics, Information and Communication Engineers, Proceedings of a research meeting 0QE-86-16
2p, 117), in the figure, 1 is semi-insulating GaAs
Substrate 2 is undoped At! GaAs cladding layer, 3 is multiple quantum well (MQW) active layer, 4 is undoped AjG
In the aAs cladding layer, 7 is an n-type impurity (for example, St) diffusion region, 8 is a p-type impurity (for example, Zn) diffusion region, 9 is an active region, 10 is an n-electrode, 11 is a p-electrode, and 12 is an insulating film.

次に、従来の横型半導体レーザの動作及び製造方法につ
いて説明する。従来の横型半導体レーザにおいては、多
重量子井戸活性層3がGaAs井戸層、例えばAl 6
,3 G a 11.? A Sからなる多重量子井戸
から構成されている。そして、表面からn型不純物(例
えばSi)及びp型不純物(例えばZn)をそれぞれA
j!GaAsクランド層2に到達するように所定の深さ
に拡散することにより、n型不純物拡散領域7及びn型
不純物拡散領域8が形成されている。また、それぞれの
不純物拡散領域7,8上には、n電極10及びn電極1
1が取り付けられている。
Next, the operation and manufacturing method of a conventional horizontal semiconductor laser will be explained. In a conventional lateral semiconductor laser, the multi-quantum well active layer 3 is a GaAs well layer, for example, Al 6
, 3 Ga 11. ? It is composed of multiple quantum wells consisting of AS. Then, n-type impurities (for example, Si) and p-type impurities (for example, Zn) are removed from the surface by A
j! By diffusing to a predetermined depth so as to reach the GaAs ground layer 2, an n-type impurity diffusion region 7 and an n-type impurity diffusion region 8 are formed. Further, on each impurity diffusion region 7, 8, an n-electrode 10 and an n-electrode 1 are provided.
1 is attached.

一般に、多重量子井戸構造は、p型、n型の不純物を拡
散することにより、無秩序化され実効的に活性層よりも
エネルギーギャップが大きく、屈折率が小さくなること
が知られている。従って、このレーザ構造では、横方向
に屈折率段差が形成されることにより、n型、p型の不
純物拡散領域7.8に挟まれた領域9に光が閉じ込めら
れ、この領域が活性領域となる。
In general, it is known that a multi-quantum well structure is disordered by diffusing p-type and n-type impurities, effectively making the energy gap larger and the refractive index smaller than that of the active layer. Therefore, in this laser structure, by forming a refractive index step in the lateral direction, light is confined in the region 9 sandwiched between the n-type and p-type impurity diffusion regions 7.8, and this region becomes the active region. Become.

また、この半導体レーザは、多重量子井戸活性領域9に
横歩行から電子、ホールが注入されるため、各量子井戸
へのキャリアの注入が効率良く行なうことができる。こ
のため、従来の縦方向注入(上方のクラッド層からキャ
リアを注入)型の量子井戸レーザに比べ低閾値化が可能
であるという特徴がある。
Further, in this semiconductor laser, since electrons and holes are injected into the multi-quantum well active region 9 from a lateral movement, carriers can be efficiently injected into each quantum well. Therefore, compared to conventional vertical injection (carrier injection from the upper cladding layer) type quantum well laser, it is possible to lower the threshold value.

さらに、表面に段差のないプレーナー構造であり、同一
表面上にp、n両電極を取付けできることから0EIC
を構成する光デバイスとして適した構造である。
Furthermore, it has a planar structure with no steps on the surface, and both p and n electrodes can be installed on the same surface, making it 0EIC.
This structure is suitable for use as an optical device.

次に、第4図(a)、  (b)は従来の横型半導体レ
ーザの不純物拡散領域の主要製造工程を示す断面図であ
る。
Next, FIGS. 4(a) and 4(b) are cross-sectional views showing the main manufacturing steps of an impurity diffusion region of a conventional lateral semiconductor laser.

まず、同図(a)のように所定幅の開口を有するSiO
,、SiN膜等の拡散マスク上に拡散源としてSi蒸着
膜13を形成した後、所定の温度所定の時間で固相拡散
し、n拡散領域7を形成する。
First, as shown in the figure (a), a SiO
,, After forming a Si vapor deposition film 13 as a diffusion source on a diffusion mask such as a SiN film, solid phase diffusion is performed at a predetermined temperature and for a predetermined time to form an n diffusion region 7.

次に、同図(b)の様に同様な材質の拡散マスクを再び
形成し、n拡散領域7との間隔を所定距11!I(例え
ば1〜2μm以下)に制御して拡散窓を形成する。その
後、Zn等のp型不純物を気相拡散し、n型不純物拡散
領域8を形成する。
Next, a diffusion mask made of the same material is formed again as shown in FIG. A diffusion window is formed by controlling the diffusion window to have a thickness of I (for example, 1 to 2 μm or less). Thereafter, a p-type impurity such as Zn is vapor-phase diffused to form an n-type impurity diffusion region 8.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の横型半導体レーザは上記のような工程で製造され
ているため、活性領域幅を決定するp型不純物拡散領域
とn型不純物拡散領域との間隔をマスク合わせにより、
数μm以下の小さな値に精度よく制御する必要があり、
低閾値のレーザを再現性1歩留まり良く得ることが困難
であった。
Conventional lateral semiconductor lasers are manufactured using the process described above, so the distance between the p-type impurity diffusion region and the n-type impurity diffusion region, which determines the width of the active region, is determined by mask alignment.
It is necessary to precisely control the value to a small value of several μm or less.
It has been difficult to obtain a low threshold laser with good reproducibility and good yield.

本発明は上記のような欠点を解消するためになされたも
ので、活性領域幅を精度良く制御できると共に0EIC
に組み込むのに適した低閾値の半導体レーザを再現性2
歩留まり良く得ることができる半導体レーザの製造方法
を得ることを目的とする。
The present invention was made in order to eliminate the above-mentioned drawbacks, and it is possible to control the active region width with high accuracy and achieve 0EIC.
A low threshold semiconductor laser suitable for integration into a reproducible 2
An object of the present invention is to obtain a method for manufacturing a semiconductor laser that can be obtained with a high yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体レーザの製造方法は、活性領域とな
るべき領域上にストライプ状の注入イオン阻止用マスク
を形成する工程と、この注入イオン阻止用マスクのマス
ク長に対し半導体基板の斜め上方から第1の導電型の第
1の不純物イオンを第1のクラッド層又は量子井戸活性
層に到達する深さまでイオン注入する工程と、注入イオ
ン阻止用マスクのマスク長に対し第1の不純物イオンと
反対方向の斜め上方から第2の導電型の第2の不純物イ
オンをイオン注入する工程と、半導体基板に注入した第
1の導電型及び第2の導電型の不純物イオンを活性化、
拡散し量子井戸活性層を無秩序化する熱拡散工程とを有
している。
The method for manufacturing a semiconductor laser according to the present invention includes the steps of forming a stripe-shaped mask for blocking implanted ions on a region to become an active region, and a step of forming a stripe-shaped mask for blocking implanted ions from diagonally above the semiconductor substrate with respect to the mask length of the mask for blocking implanted ions. a step of implanting first impurity ions of a first conductivity type to a depth that reaches the first cladding layer or quantum well active layer; a step of ion-implanting second impurity ions of a second conductivity type from diagonally above the direction; activating the impurity ions of the first conductivity type and the second conductivity type implanted into the semiconductor substrate;
and a thermal diffusion process to diffuse and disorder the quantum well active layer.

〔作 用〕[For production]

ストライプ状の注入イオン素子用マスクのマスク長に対
し、第1導電型及び第2導電型の不純物イオンをそれぞ
れ反対方向の斜め上方からイオン注入することにより、
第1導電型及び第2導電型の不純物注入領域を形成する 〔実施例〕 以下、本発明の実施例を図に従って説明する。
By implanting impurity ions of the first conductivity type and the second conductivity type from diagonally above in opposite directions to the mask length of the striped implanted ion element mask,
Forming Impurity Implanted Regions of First Conductivity Type and Second Conductivity Type [Example] Examples of the present invention will be described below with reference to the drawings.

第1図は本発明に係る一実施例を示した半導体レーザの
断面図である。図において、第3図と同−部分又は相当
部分には同一符号を付する。5はGaAsコンタクト層
である。また、活性領域9の両側は、p型、n型の不純
物注入、拡散領域が形成され、量子井戸活性層3は無秩
序化されて、実効的なバンドギャップが太き(なること
共に屈折率が小さくなっていることは、第3図の横型半
導体レーザと基本的に同様である。
FIG. 1 is a sectional view of a semiconductor laser showing an embodiment of the present invention. In the figure, the same or equivalent parts as in FIG. 3 are given the same reference numerals. 5 is a GaAs contact layer. In addition, p-type and n-type impurity implantation and diffusion regions are formed on both sides of the active region 9, and the quantum well active layer 3 is disordered, resulting in a thicker effective band gap (and a lower refractive index). The fact that it is smaller is basically the same as the horizontal semiconductor laser shown in FIG.

次に、第2図(a)〜(d)は第1図に示す半導体レー
ザの主要製造工程を示す断面図である。
Next, FIGS. 2(a) to 2(d) are sectional views showing the main manufacturing steps of the semiconductor laser shown in FIG. 1.

以下、この図に従って説明する。The explanation will be given below according to this figure.

まず、第2図(a)のように面方位(100)の半絶縁
性GaAs基板l上に順次、p型又は高抵抗クラッド層
2、量子井戸活性1i3.n型又は高抵抗クラッド層4
.GaAsコンタクト層5をMOCVD法等によりエピ
タキシャル成長する。
First, as shown in FIG. 2(a), a p-type or high-resistance cladding layer 2, a quantum well active layer 1i3. N-type or high resistance cladding layer 4
.. A GaAs contact layer 5 is epitaxially grown by MOCVD or the like.

そして、写真製版技術を用いて〔011)又は(011
)方向にフォトレジストからなるストライプ状の注入イ
オン素子用マスク6を形成する。
Then, using photolithography technology, [011] or (011)
) A striped implanted ion element mask 6 made of photoresist is formed in the ) direction.

次に、同図(b)に示すように、GaAsコンタクト層
5の表面から、n型不純物(例えばSiイオン)を注入
イオン素子用マスク6のマスク長に対し図面の左斜め上
方から所定角度でイオン注入する。このときの注入エネ
ルギーは、SiイオンがAj!GaAsクラッド層2の
途中まで到達するような値に設定する。一般に、イオン
注入では所謂チャンネリング現象を防ぎ注入イオンの結
晶中での分布の再現性を良くするため、基板の垂直方向
に対し5〜10°傾斜させるが、本実施例においては所
定幅の活性領域を得るため、10゛以上傾けることが望
ましい。
Next, as shown in FIG. 5B, n-type impurities (for example, Si ions) are implanted from the surface of the GaAs contact layer 5 at a predetermined angle from the diagonally upper left side of the drawing with respect to the mask length of the implanted ion element mask 6. Implant ions. The implantation energy at this time is Aj! The value is set to reach the middle of the GaAs cladding layer 2. In general, ion implantation is performed at an angle of 5 to 10 degrees with respect to the vertical direction of the substrate in order to prevent the so-called channeling phenomenon and improve the reproducibility of the distribution of implanted ions in the crystal. In order to obtain a large area, it is desirable to tilt it by 10 degrees or more.

次に、同図(c)のように、同じ注入イオン素子用マス
ク6を用い上記Siイオンの注入方向と注入イオン素子
用マスク6のマスク長とに対し反対側、即ち図面の右斜
め上方よりp型不純物(例えばZnイオン)を注入する
。このときの注入エネルギー及び注入量は、n型不純物
拡散領域7がp型に反転しないようにするため、Si、
Zn両者のイオンが注入される結晶中において、Znイ
オンの不純物濃度がSiイオンの不純物濃度を上回らな
いよう設定する必要がある。また、同図(c)から判る
ように、両不純物イオンを注入後注入イオン素子用マス
ク6直下の部分には、両不純物原子とも含まれない領域
9が形成されると共に、そのすぐ左側近傍ではSiのみ
が存在する領域、右側近傍ではZnのみが存在する領域
が形成される。
Next, as shown in FIG. 6(c), using the same implantation ion element mask 6, from the side opposite to the implantation direction of the Si ions and the mask length of the implantation ion element mask 6, that is, from the diagonally upper right side of the drawing. A p-type impurity (for example, Zn ions) is implanted. The implantation energy and implantation amount at this time are such that Si,
In the crystal into which both Zn and ions are implanted, it is necessary to set the impurity concentration of Zn ions so that it does not exceed the impurity concentration of Si ions. Furthermore, as can be seen from FIG. 2(c), after implanting both impurity ions, a region 9 that does not contain either of the impurity atoms is formed directly under the implanted ion element mask 6, and in the immediate left vicinity A region where only Si exists, and a region where only Zn exists near the right side are formed.

そして、所定温度、所定時間の熱処理(アニル)を行な
って注入イオンを活性化する。そして、必要に応じ若干
の注入不純物の拡散を行なうことにより、注入イオン素
子用マスク6下の左側近傍にZnイオンに重なり合わな
いn型不純物拡散領域?a、右側近傍にSiイオンに重
なり合わないp型不純物拡散領域8aが形成される。こ
れらの領域では、量子井戸活性層3は通常の不純物拡散
と同様無秩序化され、実効的エネルギーギャップは増加
して屈折率が低下する。従って、2つの不純物拡散領域
7,8に挟まれた活性層が活性領域9となる。
Then, heat treatment (anilization) is performed at a predetermined temperature and for a predetermined time to activate the implanted ions. Then, by diffusing a small amount of the implanted impurity as necessary, an n-type impurity diffusion region that does not overlap with the Zn ions is formed near the left side under the implanted ion element mask 6. a, a p-type impurity diffusion region 8a that does not overlap with the Si ions is formed near the right side. In these regions, the quantum well active layer 3 is disordered as in normal impurity diffusion, the effective energy gap increases and the refractive index decreases. Therefore, the active layer sandwiched between the two impurity diffusion regions 7 and 8 becomes the active region 9.

次に、同図(d)のようにn型電極10.及びn型電極
11を両不純物拡散領域上のGaAsコンタクト層5上
に形成した後、GaAsコンタク。
Next, as shown in FIG. 2(d), the n-type electrode 10. After forming an n-type electrode 11 on the GaAs contact layer 5 on both impurity diffusion regions, a GaAs contact is formed.

ト層5中に形成されるp−n接合を取り除き、リーク電
流を防ぐため、両不純物が注入されていないGaAsコ
ンタクト層5を完全に除去する(この場合のエツチング
マスクとしてn電極]0.p電極11をそのまま用いる
ことができる)ことにより、横型半導体レーザが完成す
る。
In order to remove the p-n junction formed in the contact layer 5 and prevent leakage current, the GaAs contact layer 5 in which both impurities are not implanted is completely removed (n electrode as an etching mask in this case). (The electrode 11 can be used as is.) A horizontal semiconductor laser is completed.

このように本実施例における半導体レーザは、ストライ
プ状の注入イオン素子用マスク6に対し、p型及びn型
の不純物原子イオンをそれぞれ反対方向の斜め上方から
イオン注入することにより、p型及びn型不純物注入領
域を形成するようにしたので、マスク合わせなしに自己
整合的に横型半導体レーザの活性領域幅を決定すること
が可能となる。これにより、再現性9歩留まり良く、さ
らに0EICに組み込むことに適した低閾値発振の横型
半導体レーザを得ることができる。
In this way, the semiconductor laser in this embodiment is manufactured by implanting p-type and n-type impurity atom ions into the striped implanted ion element mask 6 from diagonally above in opposite directions. Since the type impurity implantation region is formed, it becomes possible to determine the width of the active region of the lateral semiconductor laser in a self-aligned manner without mask alignment. As a result, it is possible to obtain a lateral semiconductor laser with low threshold oscillation, which has good reproducibility and yield, and is suitable for being incorporated into 0EIC.

なお、上記実施例では、AffGaAs系材料を用いた
横型半導体レーザの製造方法への適用例について説明し
たが、InGaAs系長波長レーザやAlGa InP
系可視光レーザに適用してもよい。
In the above embodiment, an example of application to a method for manufacturing a horizontal semiconductor laser using an AffGaAs-based material was described, but an InGaAs-based long wavelength laser or an AlGa InP
The present invention may also be applied to visible light lasers.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ストライプ状の注入イオ
ン素子用マスクのマスク長に対し、第1導電型及び第2
導電型の不純物イオンをそれぞれ反対方向の斜め上方か
らイオン注入することにより、第1導電型及び第2導電
型の不純物注入領域を形成するようにしたので、マスク
合わせなしに自己整合的に半導体レーザの活性領域幅を
決定することができる。これにより、再現性1歩留まり
良く、さらに0BICに組み込むことに適した低閾値発
振の横型半導体レーザを得ることができる。
As explained above, the present invention provides a first conductivity type and a second conductivity type with respect to the mask length of a striped implanted ion element mask.
By implanting conductivity type impurity ions diagonally from above in opposite directions, the impurity implantation regions of the first conductivity type and the second conductivity type are formed, so that the semiconductor laser can be formed in a self-aligned manner without mask alignment. The width of the active region can be determined. As a result, it is possible to obtain a lateral semiconductor laser with good reproducibility, high yield, and low threshold oscillation suitable for integration into 0BIC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例を示した半導体レーザの
断面図、第2図(a)〜(d)は第1図に示す半導体レ
ーザの主要製造工程を示す断面図、第3図は従来の横方
向電流注入半導体レーザを示す断面図、第4図(a)、
  (b)は従来の横型半導体レーザの不純物拡散領域
の主要製造工程を示す断面図である。 1・・・半絶縁性GaAs基板、2・・・アンドープA
lGaAsクラッド層、3・・・多重量子井戸(MQW
)活性層、4・・・アンドープAlGaAsクラッド層
、5・・・GaAsコンタクト層、7・・・n型不純物
拡散領域、8・・・p型不純物拡散領域、9・・・活性
領域、10・・・n電極、11・・・p電極。
FIG. 1 is a cross-sectional view of a semiconductor laser showing an embodiment of the present invention, FIGS. 2(a) to (d) are cross-sectional views showing main manufacturing steps of the semiconductor laser shown in FIG. 1, and FIG. FIG. 4(a) is a cross-sectional view showing a conventional lateral current injection semiconductor laser;
(b) is a cross-sectional view showing the main manufacturing process of an impurity diffusion region of a conventional horizontal semiconductor laser. 1... Semi-insulating GaAs substrate, 2... Undoped A
lGaAs cladding layer, 3...multiple quantum well (MQW)
) active layer, 4... undoped AlGaAs cladding layer, 5... GaAs contact layer, 7... n-type impurity diffusion region, 8... p-type impurity diffusion region, 9... active region, 10. ...n electrode, 11...p electrode.

Claims (1)

【特許請求の範囲】 半導体基板上に第1の導電型又は高抵抗の第1のクラッ
ド層、量子井戸活性層、第2の導電型又は高抵抗の第2
のクラッド層を順次形成してなるダブルヘテロ構造にお
いて、 活性領域となるべき領域上にストライプ状の注入イオン
阻止用マスクを形成する工程と、この注入イオン阻止用
マスクのマスク長に対し、前記半導体基板の斜め上方か
ら第1の導電型の第1の不純物イオンを前記第1のクラ
ッド層又は量子井戸活性層に到達する深さまでイオン注
入する工程と、 前記注入イオン阻止用マスクのマスク長に対し、前記第
1の不純物イオンと反対方向の斜め上方から第2の導電
型の第2の不純物イオンをイオン注入する工程と、 前記半導体基板に注入した前記第1の導電型及び第2の
導電型の不純物イオンを活性化、拡散し、前記量子井戸
活性層を無秩序化する熱拡散工程とを有することを特徴
とする半導体レーザの製造方法。
[Claims] A first cladding layer of a first conductivity type or high resistance, a quantum well active layer, a second conductivity type or high resistance layer, and
In a double heterostructure formed by sequentially forming cladding layers of a step of implanting first impurity ions of a first conductivity type from diagonally above the substrate to a depth reaching the first cladding layer or quantum well active layer; , ion-implanting second impurity ions of a second conductivity type from diagonally above in the opposite direction to the first impurity ions, and implanting the first conductivity type and the second conductivity type into the semiconductor substrate. a thermal diffusion step of activating and diffusing impurity ions to disorder the quantum well active layer.
JP3543289A 1989-02-15 1989-02-15 Manufacture of semiconductor laser Pending JPH02214185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3543289A JPH02214185A (en) 1989-02-15 1989-02-15 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3543289A JPH02214185A (en) 1989-02-15 1989-02-15 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02214185A true JPH02214185A (en) 1990-08-27

Family

ID=12441694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3543289A Pending JPH02214185A (en) 1989-02-15 1989-02-15 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02214185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264346A (en) * 2002-03-08 2003-09-19 Sanyo Electric Co Ltd Nitride based semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264346A (en) * 2002-03-08 2003-09-19 Sanyo Electric Co Ltd Nitride based semiconductor laser element

Similar Documents

Publication Publication Date Title
JPH04234189A (en) Ridge waveguide tube buried hetero structure laser and its manufacture
US4937835A (en) Semiconductor laser device and a method of producing same
JP2686764B2 (en) Method for manufacturing optical semiconductor device
US3984262A (en) Method of making a substrate striped planar laser
JPH0758823B2 (en) Geometric doping method and electronic device manufactured by the same method
JP2760596B2 (en) Semiconductor device having waveguide structure and method of manufacturing the same
JPH01146390A (en) Semiconductor device
JP2004179657A (en) Iii-v semiconductor device
US5102825A (en) Method of making an ion-implanted planar-buried-heterostructure diode laser
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
US5225370A (en) Method of diffusing P type impurity
JPH01198088A (en) Semiconductor laser and manufacture thereof
US20030002554A1 (en) Compound semiconductor light emitting device and process for producing the same
JPH02121382A (en) Manufacture of buried stripe semiconductor laser and said semiconductor laser
JPH02214185A (en) Manufacture of semiconductor laser
JPH0864899A (en) Manufacture of semiconductor laser and the same laser
KR100366041B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS58106885A (en) Semiconductor laser
RU2324999C2 (en) Method of quantum wells mixing within semiconductor device and semiconductor device structure made according to this method
EP0206851A1 (en) Method of producing semiconductor lasers with blocking junctions for electrical confinement
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
GB2620487A (en) Photonic devices with improved lateral current confinement
JPH07115242A (en) Device and fabrication for semiconductor laser
KR0178488B1 (en) Fabrication method of a surface emitting laser
JPH0878775A (en) Semiconductor laser device and its manufacture