JPH02213320A - Eye refractometer - Google Patents

Eye refractometer

Info

Publication number
JPH02213320A
JPH02213320A JP1032693A JP3269389A JPH02213320A JP H02213320 A JPH02213320 A JP H02213320A JP 1032693 A JP1032693 A JP 1032693A JP 3269389 A JP3269389 A JP 3269389A JP H02213320 A JPH02213320 A JP H02213320A
Authority
JP
Japan
Prior art keywords
eye
optical axis
optotype
diopter
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1032693A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1032693A priority Critical patent/JPH02213320A/en
Publication of JPH02213320A publication Critical patent/JPH02213320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To measure refraction with high accuracy by arranging a target having a three-dimensional structure having depth in an optical axis direction within parallel luminous flux. CONSTITUTION:For example, a three-dimensional target 7 consists of three concentrically circular parts 7a-7c and these parts are respectively different in their apparent distances of about 0.5 diopter in the direction of an optical axis C and the part 7a among them is positioned at the remotest distance. When the luminous flux B at the three-dimensional target 7 is parallel, the distance on the optical axis C is in direct proportion to diopter and, therefore, even when visibility is changed by moving lenses 4, 5, the mutual diopter difference of three parts 7a-7c is not changed. When control remains yet, control is relieved so as to match with the indicated part 7a. When this operation is repeated many times, an eye E to be examined can be guided to a remote point. When a refractive value is measured by a known means in a measuring part 10 in this state, the refractive value of the eye E to be examined can be measured accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、眼の屈折調節検査等に利用できる眼屈折計に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ocular refractometer that can be used for eye refractive accommodation tests and the like.

[従来の技術] 従来のオートレフラクトメータでは、一般に平面的な視
標を使用して調節を遠方に誘導するため、視標は眼底共
役面よりも幾分か遠方に配置して雲霧を行っている。
[Prior art] Conventional autorefractometers generally use a planar optotype to guide accommodation far away, so the optotype is placed somewhat further away than the conjugate plane of the fundus to perform fogging. There is.

[発明が解決しようとする課8] しかし、これでは平面的な視標がぼけて見えるだけであ
るから、被検眼に対する調節緩解刺激の効果が小さく、
被検者が調節力の旺盛な若年者である場合には、往々に
して測定誤差を生じ易いという問題がある。
[Problem 8 to be solved by the invention] However, in this case, the planar optotype only appears blurred, so the effect of accommodative stimulation on the subject's eye is small;
When the subject is a young person with strong accommodation ability, there is a problem in that measurement errors are often likely to occur.

本発明の目的は、このような従来例の問題を改善し、視
標系の雲霧効果を高めることにより、高精度の測定を可
能とした眼屈折計を提供することにある。
It is an object of the present invention to provide an eye refractometer that improves the problems of the conventional example and improves the fog effect of the optotype system, thereby making it possible to perform highly accurate measurements.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る眼屈折計に
おいては、光学系を介して被検眼に視標を呈示する眼屈
折計において、前記視標は光軸方向に奥行きを有する立
体構造とし、前記視標上の各点を発し被検眼の瞳孔中心
を通る光束が前記視標部分において平行である視標光学
系を備えたことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, an ocular refractometer according to the present invention presents an optotype to the eye to be examined via an optical system, wherein the optotype is A three-dimensional structure having a depth in the optical axis direction, and comprising an optotype optical system in which a light beam emitted from each point on the optotype and passing through the center of the pupil of the eye to be examined is parallel to the optotype portion. It is.

[作用] 上記の構成を有する眼屈折計は、視標は立体構造とされ
、雲霧効果を高めて測定を行うことができる。
[Operation] In the eye refractometer having the above configuration, the optotype has a three-dimensional structure and can perform measurements with enhanced fog effect.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明に係る眼屈折計の第1の実施例を示し、
被検眼Eの前方には、対物レンズ1、光分割部材2、絞
り3、レンズ4.5.6.立体視標7、レンズ8.光源
9が光軸Cに沿って順次に配列されている。また、光分
割部材2の反射方向には測定部10が設けられている。
FIG. 1 shows a first embodiment of an ocular refractometer according to the present invention,
In front of the eye E to be examined are an objective lens 1, a light splitting member 2, an aperture 3, and lenses 4,5,6. Stereoscopic target 7, lens 8. Light sources 9 are sequentially arranged along the optical axis C. Further, a measuring section 10 is provided in the reflection direction of the light splitting member 2.

第2図は立体視標7を光軸C方向から見た正面図であり
1例えば同心円状の3つの部分7a、7b、7Cから成
り、これらの部分は光軸C方向においてそれぞれ0.5
デイオプタ程度見掛は上の距離を異にし、その中で部分
7aが最も遠方に位置している。
FIG. 2 is a front view of the stereoscopic target 7 viewed from the direction of the optical axis C. It consists of, for example, three concentric parts 7a, 7b, and 7C, and each of these parts has a diameter of 0.5 in the direction of the optical axis C.
The apparent distances differ by a diopter, and the portion 7a is located farthest among them.

第1図において、光源9からの光はレンズ8により平行
光束となって立体視標7を裏面から照明する。立体視標
7から出た光束Bは、レンズ6゜5.4、絞り3.光分
割部材2及び対物レンズlを経て被検眼Eの瞳孔中心を
通って被検眼E内に入射する。絞り3は視標光束の径を
規制するためのものであり、被検眼Eの瞳共役面の近傍
に配置される。レンズ5.6は一体となって矢印A方向
に移動可能であり、立体視標7の見掛は上の距離を決定
する。なお、レンズ6.8はアフォーカル光学系とされ
、光束Bは光軸Cに平行な平行光束となっている。
In FIG. 1, light from a light source 9 is converted into a parallel beam by a lens 8 and illuminates a stereoscopic target 7 from the back side. The light beam B emitted from the stereoscopic target 7 is transmitted through a lens 6°5.4, an aperture 3. The light passes through the light splitting member 2 and the objective lens 1, passes through the center of the pupil of the eye E, and enters the eye E to be examined. The aperture 3 is for regulating the diameter of the optotype light beam, and is arranged near the pupil conjugate plane of the eye E to be examined. The lenses 5.6 are movable together in the direction of the arrow A, and the appearance of the stereoscopic target 7 determines the distance above. The lens 6.8 is an afocal optical system, and the light beam B is a parallel light beam parallel to the optical axis C.

立体視標7での光束Bが平行光束になっていると、光軸
C上の距離はデイオプタと正比例するから、レンズ5,
6を動かして視度を変えても、3つの部分7a、7b、
7Cの相互のデイオプタ差は変化しない、そこで、被検
@Eの調節を遠方の誘導しようとするとき、例えば中心
を見るように指示を与え、測定部10によって測定した
眼底共役位置に立体視標7の部分7bを持ってくると、
他の部分7a、7cは幾分かぼけてしまう。
If the light beam B at the stereoscopic target 7 is a parallel light beam, the distance on the optical axis C is directly proportional to the diopter, so the lens 5,
Even if you change the diopter by moving 6, the three parts 7a, 7b,
The mutual deopter difference of 7C does not change. Therefore, when attempting to induce accommodation in the subject @E in a far distance, for example, an instruction is given to look at the center, and a stereoscopic target is placed at the conjugate position of the fundus measured by the measurement unit 10. When we bring part 7b of 7,
The other parts 7a and 7c are somewhat blurred.

一般に、眼は幾つかの刺激によって調節を動かし、関心
のある点にピントを合わせる習性がある。その第1は経
験からくるtmであり、遠くにあることを知っていれば
、その意識で遠くにピントを合わせる。第2は両眼の輻
幀であり、これは単眼視ではきかない、第3は調節微動
であり、微動でピントの状態が変わるから、どの方向に
ピントを合わせるかが判る。ところが、オートレフラク
トメータの視標は一般に単眼視であるから、第2の輻幀
は使用できない、第1の意識による調節作用、を使うた
めには、遠方の景色のスライドを使用することがある。
In general, the eye has a habit of adjusting its accommodation in response to several stimuli and focusing on a point of interest. The first is TM that comes from experience; if you know something is far away, you use that awareness to focus on that far away. The second is the convergence of both eyes, which cannot be achieved with monocular vision.The third is accommodative micromovements, and since the state of focus changes with micromovements, it is possible to know in which direction to focus. However, since the visual target of an autorefractometer is generally monocular, the second convergence cannot be used.In order to use the first conscious adjustment, slides of distant scenery may be used. .

本発明は主に第3の調節微動を応用している。The present invention mainly applies the third adjustment fine movement.

即ち、立体視標7は前後に部分7a、7b、7Cがずれ
ているので、未だ調節が残っていれば、指示された部分
7aに合わせようと調節を解緩する。これを何回も繰り
返せば被検眼Eを遠点に誘導することができる。この状
態において、測定部10において既知の手段によって屈
折値の測定を行えば、被検眼Eに対する正確な測定を行
うことができる。
That is, since the portions 7a, 7b, and 7C of the stereoscopic visual target 7 are shifted in the front and back, if there is still adjustment left, the adjustment is loosened in order to adjust to the designated portion 7a. By repeating this many times, the eye E to be examined can be guided to the far point. In this state, if the refraction value is measured by a known means in the measurement unit 10, accurate measurement of the eye E can be performed.

第3図は第2の実施例を示し、この場合は立体視標11
自体を平行光束Bの中で動かして見掛は上の距離を変え
るようにしている。ここで、平行光束Bは対物レンズ1
2を経て被検眼Eの瞳孔中心から被検眼E内に入射する
。この立体視標11は中心部が凹んでおり1周辺部と連
続的に見掛は上の視度が変わっている。被検眼Eの視度
に応じて立体視標11を矢印A′力方向動かしても、立
体視標11の中心部と周辺部との見掛は上のデイオプタ
差は一定であるから、先の実施例と同様な効果を上げる
ことができる。なお、この場合に視標11には景色を使
ってもよいし、或いはホログラムを用いてもよい。
FIG. 3 shows a second embodiment, in which the stereoscopic target 11
By moving itself within the parallel light beam B, the apparent distance above is changed. Here, the parallel light beam B is the objective lens 1
2 and enters into the eye E from the center of the pupil of the eye E to be examined. The stereoscopic visual target 11 has a concave central portion, and the apparent upper diopter changes continuously from the periphery. Even if the stereoscopic target 11 is moved in the direction of arrow A' according to the diopter of the eye E, the apparent diopter difference between the center and peripheral parts of the stereoscopic target 11 is constant, so the above The same effects as in the embodiment can be achieved. In this case, the visual target 11 may be a landscape or a hologram.

[発明の効果] 以上説明したように本発明に係る眼屈折計は、光軸方向
に奥行きを有する立体構造の視標を用い、この視標を平
行光束の中に配置するため、視度を変えても立体感を一
定に保持することができ、遠点への誘導を効果的に行う
ことができる。
[Effects of the Invention] As explained above, the ocular refractometer according to the present invention uses a three-dimensional structured optotype that has depth in the optical axis direction, and because this optotype is placed in a parallel light beam, the diopter is adjusted. Even if the distance is changed, the three-dimensional effect can be maintained constant, and guidance to the far point can be effectively performed.

従って、被検者が調節力の旺盛な若年者の場合でも測定
誤差を生ずることがなく、高精度の屈折測定が可能であ
る。
Therefore, even if the subject is a young person with strong accommodation ability, there will be no measurement error, and highly accurate refraction measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る眼屈折計の実施例を示し。 第1図は第1の実施例の光学的配置図、第2図は立体視
標の正面図、第3図は第2の実施例の部分図である。 符号lは対物レンズ、2は光分割部材、3は絞り、7.
11は立体視標、9は光源、10は測定部である。 特許出願人   キャノン株式会社
The drawings show an embodiment of an ocular refractometer according to the invention. FIG. 1 is an optical layout diagram of the first embodiment, FIG. 2 is a front view of a stereoscopic target, and FIG. 3 is a partial view of the second embodiment. Symbol l is an objective lens, 2 is a light splitting member, 3 is an aperture, and 7.
11 is a stereoscopic target, 9 is a light source, and 10 is a measuring section. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、光学系を介して被検眼に視標を呈示する眼屈折計に
おいて、前記視標は光軸方向に奥行きを有する立体構造
とし、前記視標上の各点を発し被検眼の瞳孔中心を通る
光束が前記視標部分において平行である視標光学系を備
えたことを特徴とする眼屈折計。
1. In an ocular refractometer that presents an optotype to the subject's eye via an optical system, the optotype has a three-dimensional structure with depth in the optical axis direction, and each point on the optotype is emitted to locate the center of the pupil of the subject's eye. An eye refractometer characterized by comprising an optotype optical system through which a light beam passing through is parallel to the optotype portion.
JP1032693A 1989-02-14 1989-02-14 Eye refractometer Pending JPH02213320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032693A JPH02213320A (en) 1989-02-14 1989-02-14 Eye refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032693A JPH02213320A (en) 1989-02-14 1989-02-14 Eye refractometer

Publications (1)

Publication Number Publication Date
JPH02213320A true JPH02213320A (en) 1990-08-24

Family

ID=12365940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032693A Pending JPH02213320A (en) 1989-02-14 1989-02-14 Eye refractometer

Country Status (1)

Country Link
JP (1) JPH02213320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105176A (en) * 1996-06-20 1998-01-13 Topcon Corp Optotypes presenting device and target plate for stereoscopic vision
EP1707108A1 (en) * 2005-03-31 2006-10-04 Nidek Co., Ltd. Optometry apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105176A (en) * 1996-06-20 1998-01-13 Topcon Corp Optotypes presenting device and target plate for stereoscopic vision
EP1707108A1 (en) * 2005-03-31 2006-10-04 Nidek Co., Ltd. Optometry apparatus
US7281798B2 (en) 2005-03-31 2007-10-16 Nidek Co., Ltd. Optometry apparatus

Similar Documents

Publication Publication Date Title
KR100758409B1 (en) Optometric device
US4465348A (en) Apparatus for the subjective and objective determination of refraction
US4682866A (en) Head-borne binocular indirect ophthalmoscope with integrated telescope
CN100391398C (en) Device for measuring aberrations in an eye-type system
AU2006231140B2 (en) Method and device for determining the eye's rotation center
US3664631A (en) Cylindrical lens systems for simultaneous bimeridional measurement in a lens measuring instrument
JPS6216088B2 (en)
US3495897A (en) Device for measuring the pupillary distance
JPH04200436A (en) Ophthamologic apparatus
US4529280A (en) Apparatus for subjectively measuring the refractive power of an eye
JPS629333B2 (en)
JPH06217938A (en) Ocular refractometer
CN111419170A (en) Binocular vision screening instrument and control method thereof
JPH02213320A (en) Eye refractometer
JP3114819B2 (en) Ophthalmic measurement device
JPS6144014B2 (en)
US2477518A (en) Interpupillary distance gauge having mirror means
US3588234A (en) Optical device for moving a luminous target across the eyes
JPH01158933A (en) Pupillary distance meter
JPH01244734A (en) Ophthalmological instrument
JPH0315448B2 (en)
JPH0576292B2 (en)
JPH0337929B2 (en)
JPS6155375B2 (en)
JPH035168B2 (en)