JPH02213047A - Separator for alkaline secondary battery - Google Patents

Separator for alkaline secondary battery

Info

Publication number
JPH02213047A
JPH02213047A JP1030984A JP3098489A JPH02213047A JP H02213047 A JPH02213047 A JP H02213047A JP 1030984 A JP1030984 A JP 1030984A JP 3098489 A JP3098489 A JP 3098489A JP H02213047 A JPH02213047 A JP H02213047A
Authority
JP
Japan
Prior art keywords
separator
titanium oxide
alkaline secondary
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1030984A
Other languages
Japanese (ja)
Inventor
Takemi Kosaka
小坂 武美
Fukashi Sakamoto
坂本 不可止
Setsuo Hidaka
日高 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSAKA SHOKAI KK
Idemitsu Kosan Co Ltd
Original Assignee
KOSAKA SHOKAI KK
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSAKA SHOKAI KK, Idemitsu Kosan Co Ltd filed Critical KOSAKA SHOKAI KK
Priority to JP1030984A priority Critical patent/JPH02213047A/en
Priority to US07/472,945 priority patent/US5026617A/en
Priority to EP19900102339 priority patent/EP0383161A3/en
Priority to MYPI90000205A priority patent/MY104822A/en
Priority to CA002009933A priority patent/CA2009933A1/en
Publication of JPH02213047A publication Critical patent/JPH02213047A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the performance of an alkaline secondary battery by using a separator prepared by containing a specified amount of ultra fine particles of amorphous titanium oxide or hydrated titanium oxide having specified primary particle size and specific surface area in a nonwoven fabric. CONSTITUTION:Titanium tetraisopropoxide is vaporized and nitrogen gas and steam are mixed with the vapor and they are introduced into a reactor in which titanium oxide fine particles are attached on its inner wall. After completion of thermal decomposition and hydrolyzing reactions, the reactor is cooled and fine particles produced are collected. Ultra fine particles comprising amorphous titanium oxide and hydrated titanium oxide whose primary particle size is 500Angstrom or less and specific surface area is 100m<2>/g or more are obtained. 0.1-10wt.% the ultra fine particles are contained in a nonwoven fabric to manufacture a separator. By using this separator in an alkaline secondary battery, electrolyte retainability and alkali resistance are increased and gas reserve in charging is reduced.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明はアルカリ二次電池に用いるセパレータの改良に
係り、電池特性の向上したセパレータおよびこのセパレ
ータを用いてなるアルカリ二次電池を提供するものであ
る。
[Detailed Description of the Invention] [Field of Application in Industry A] The present invention relates to the improvement of separators used in alkaline secondary batteries, and provides a separator with improved battery characteristics and an alkaline secondary battery using this separator. It is something.

[従来の技術及び発明が解決しようとする課B]従来、
ニッケル−カドミウム密閉型蓄電池を主とした種々のア
ルカリ二次電池が知られているが、放電時の平坦性が不
十分であったり、寒冷地や酷暑地等の苛酷な条件下では
安定放電ができなかったり、さらには繰り返し充放電回
数が不十分であるなどの問題があり、必ずしも満足しう
るものではない。
[Problem B to be solved by the prior art and invention] Conventionally,
Various alkaline secondary batteries, mainly nickel-cadmium sealed storage batteries, are known, but some have insufficient flatness during discharge, or stable discharge cannot be achieved under harsh conditions such as in cold or extremely hot regions. However, this is not always satisfactory, as there are problems such as the charging and discharging cycles being insufficient.

そこで、これらを改良する一つの手法として、セパレー
タの特性、つまりセパレータの電気抵抗の減少、耐アル
カリ性の向上、耐酸化性の向上。
Therefore, one method to improve these is to improve the properties of the separator, namely, reduce the electrical resistance of the separator, improve its alkali resistance, and improve its oxidation resistance.

ガス(02)溜まりの低減、液保持性の向上、極板材料
のデンドライト防止を図ることにより、電池性能を向上
させようとすることが試みられている。
Attempts have been made to improve battery performance by reducing gas (02) accumulation, improving liquid retention, and preventing dendrites in the electrode plate material.

例えばニッケル−亜鉛密閉型アルカリ二次電池に関し、
200メツシユの篩を通過する微粉末状の酸化物(Ti
12. ZrO2,)IfO2)を含む7 ッ素樹脂層
と、不織布層とからなる複合セパレータを用いることに
より、サイクル寿命特性の向上した亜鉛アルカリ二次電
池を提供しようとする提案がされている(特開昭55−
165572号公報)。
For example, regarding nickel-zinc sealed alkaline secondary batteries,
Fine powder oxide (Ti) passed through a 200 mesh sieve.
12. A proposal has been made to provide a zinc-alkaline secondary battery with improved cycle life characteristics by using a composite separator consisting of a 7 fluorine resin layer containing ZrO2,) IfO2) and a nonwoven fabric layer (Japanese Patent Application Laid-Open No. 1972-
165572).

これら手法によればある程度の改善はなされるものの、
より一層の改善が望まれている。
Although these methods provide some improvement,
Further improvements are desired.

本発明者らは、電池性能のより一層の改善を図るべく鋭
意研究を重ねた。その結果、元来、親水性であり、耐ア
ルカリ性、耐酸化性、耐薬品性に優れ、しかも電気抵抗
の小さい酸化チタンの中でも特定の一次粒子径、結晶形
態および比表面積を有する酸化チタンを用いることによ
り電解液保持能力の向上、耐アルカリ性の改善、充電時
のガス(02)溜まりの低減、セパレータ電気抵抗の減
少、耐酸化性の向上3デンドライトの防止などアルカリ
二次電池用セパレータの特性を向上させることができ、
その結果アルカリ二次電池の性能を顕著に改善しうるこ
とを見出し、この知見に基いて本発明を完成するに到っ
た。
The present inventors have conducted extensive research in order to further improve battery performance. As a result, we use titanium oxide, which is originally hydrophilic, has excellent alkali resistance, oxidation resistance, and chemical resistance, and has a specific primary particle size, crystal morphology, and specific surface area among titanium oxides with low electrical resistance. This improves the characteristics of separators for alkaline secondary batteries, such as improving electrolyte holding capacity, improving alkali resistance, reducing gas (02) accumulation during charging, reducing electrical resistance of the separator, and improving oxidation resistance.3 Prevention of dendrites. can be improved,
As a result, it was discovered that the performance of alkaline secondary batteries could be significantly improved, and based on this knowledge, the present invention was completed.

[課題を解決するための手段] すなわち本発明は、一次粒子径が500λ以下であり、
その結晶形態が非晶質であり、その比表面積が10h2
/g以上の酸化チタンおよび/または水和酸化チタンか
らなる超微粒子を、セパレータ基材に対し0.I N1
0重量%含有させてなるアルカリ二次電池用セパレータ
およびこのセパレータを用いてなるアルカリ二次電池を
提供するものである0本発明のアルカリ二次電池は、こ
のアルカリ二次電池用セパレータを用いたこと以外は従
来のアルカリ二次電池と同様であるので、以下、このア
ルカリ二次電池用セパレータについて述べる。
[Means for solving the problem] That is, the present invention has a primary particle diameter of 500λ or less,
Its crystal form is amorphous, and its specific surface area is 10h2
/g or more of ultrafine particles made of titanium oxide and/or hydrated titanium oxide are applied to the separator base material at a rate of 0. I N1
The alkaline secondary battery of the present invention provides a separator for an alkaline secondary battery containing 0% by weight and an alkaline secondary battery using this separator. Other than this, it is the same as a conventional alkaline secondary battery, so this separator for an alkaline secondary battery will be described below.

本発明において用いるセパレータ基材は不織布、織布お
よびフィルムのいずれの形態のものであってもよいが、
特に不織布または織布の形態のものが、電解液保持性が
良好で、しかもイオンの通路として良好であることから
好ましい。
The separator base material used in the present invention may be in the form of nonwoven fabric, woven fabric, or film, but
Particularly preferred is one in the form of a non-woven fabric or a woven fabric because it has good electrolyte retention properties and is also good as a path for ions.

このセパレータ基材の素材としては種々のものがあり、
例えばナイロン66などのポリアミド、ポリエチレン、
ポリプロピレン、アクリル系樹脂。
There are various materials for this separator base material.
For example, polyamide such as nylon 66, polyethylene,
Polypropylene, acrylic resin.

ポリテトラフルオロエチレン、ポリビニルアルコール等
の合成樹脂の他、木綿などを挙げることができる。これ
らの中でも耐有機溶媒性でポリプロピレン、耐アルカリ
性でポリアミド、ポリプロピレン、水溶液の濡れ性でポ
リアミドが好ましい。
Examples include synthetic resins such as polytetrafluoroethylene and polyvinyl alcohol, as well as cotton. Among these, polypropylene is preferred because of its resistance to organic solvents, polyamide and polypropylene are preferred because of its alkali resistance, and polyamide is preferred because of its wettability with aqueous solutions.

本発明においては上記セパレータ基材に、超微粒子状の
酸化チタンおよび/または水和酸化チタンを含有させた
セパレータを用いる。
In the present invention, a separator containing ultrafine titanium oxide and/or hydrated titanium oxide in the separator base material is used.

ここで酸化チタンおよび/または水和酸化チタンからな
る超微粒子としては、一次粒子径(平均粒子径)が50
0Å以下、好ましくは100〜300人であり、その結
晶形態が非晶質であり、かつその比表面積(BET法)
が100m’/g以上、好ましくは120m’/g以上
のものが用いられる。一次粒子径が500人を超えたも
のであると比表面積が小さくなり電解液保持性が低下し
、OH基量の減少により電気抵抗が増大するため好まし
くない。また、超微粒子の結晶形態が非晶質のものでな
いと比表面積が小さくなり電解液保持性が低下し、OH
基量の減少により電気抵抗が増大するため好ましくない
、さらに超微粒子の比表面積が1100vi27未満の
ものであると電解液保持性が低下し、OH基量の減少に
より電気抵抗が増大するため好ましくない。
Here, the ultrafine particles made of titanium oxide and/or hydrated titanium oxide have a primary particle size (average particle size) of 50
0 Å or less, preferably 100 to 300 Å, its crystal form is amorphous, and its specific surface area (BET method)
100 m'/g or more, preferably 120 m'/g or more is used. If the primary particle size exceeds 500 particles, the specific surface area becomes small, the electrolyte retention property decreases, and the electric resistance increases due to the decrease in the amount of OH groups, which is not preferable. In addition, if the crystal form of the ultrafine particles is not amorphous, the specific surface area will be small, the electrolyte retention will be reduced, and the OH
This is undesirable because electrical resistance increases due to a decrease in the amount of bases.Furthermore, if the specific surface area of the ultrafine particles is less than 1100vi27, the electrolyte retention property decreases and electrical resistance increases due to a decrease in the amount of OH groups, which is undesirable. .

また粒径分布については、粒子の90%以上が粒子径1
00〜500人であることが好ましい、なお、ここで結
晶形態が非晶質であるとは、実質的に非晶質であればよ
く完全に非晶質でなくともよい。
Regarding the particle size distribution, more than 90% of the particles have a particle size of 1
It is preferable that the number of crystals is 00 to 500. Here, the term "amorphous" as used herein means that the crystal form is substantially amorphous and does not need to be completely amorphous.

上記超微粒子は酸化チタンあるいは水和酸化チタンのい
ずれであってもよく、またこれらの混合物であってもよ
い。
The ultrafine particles may be either titanium oxide or hydrated titanium oxide, or a mixture thereof.

このような超微粒子は例えばチタンアルコキシドの気相
加水分解により製造することができ、その製造法の一例
が特開昭61−201604号公報や特開昭60−18
6418号公報に詳細に開示されている。
Such ultrafine particles can be produced, for example, by gas phase hydrolysis of titanium alkoxide, and examples of the production method are disclosed in JP-A-61-201604 and JP-A-60-18.
This is disclosed in detail in Japanese Patent No. 6418.

本発明のセパレータは、上記の如き超微粒子を、前記セ
パレータ基材に対し0.1〜101量%、好ましくは0
.5〜5重量%の割合で含有させてなるものである。こ
こで超微粒子の含有割合が0.11量%未満であると、
この超微粒子を添加した効果が十分でなく、一方、10
重量%を超えるとセパレータから超微粒子が脱落したり
、或いはセパレータ容積の増加により二次電池が大型化
したり、さらにはコスト高となフたつするため好ましく
ない。
The separator of the present invention contains the above-mentioned ultrafine particles in an amount of 0.1 to 101% by weight, preferably 0.
.. The content is 5 to 5% by weight. Here, if the content of ultrafine particles is less than 0.11% by weight,
The effect of adding these ultrafine particles was not sufficient, and on the other hand, 10
If it exceeds % by weight, ultrafine particles may fall off from the separator, or the secondary battery may become larger due to an increase in separator volume, and furthermore, the cost may increase, which is not preferable.

なお、本発明においては上記超微粒子をセパレータ基材
に含有させたものであれば、その含有の方法はいかなる
方法であってもよい0例えば■セパレータ基材に上記超
微粒子を塗布したり、或いは含浸させたり、■セパレー
タ基材作成時に上記超微粒子を添加したりすることによ
り、セパレータ基材に上記超微粒子を含有させることが
できる。より詳細に述べると上記■の方法は、上記超微
粒子と、ボッビニルアルコール、ラテックス、アクリル
樹脂、水、カルボキシメチルセルロース(CMC)など
のいずれか−以上よりなるものとを混合し、セパレータ
基材に塗布したり、或いは混合して得られた懸濁液内に
セパレータ基材を含浸させることにより行なえばよい、
また、上記■の方法は、セパレータ基材の素材であるポ
リアミドなどからなる繊維と、上記超微粒子とを混合し
、不織布などとすることにより行なえばよい。
In the present invention, as long as the ultrafine particles are contained in the separator base material, the method of containing them may be any method. For example, The ultrafine particles can be contained in the separator base material by impregnation or by (1) adding the ultrafine particles at the time of preparing the separator base material. To be more specific, in the method (2) above, the ultrafine particles are mixed with one or more of bobbinyl alcohol, latex, acrylic resin, water, carboxymethyl cellulose (CMC), etc., and the mixture is applied to a separator base material. This can be done by impregnating the separator base material in a suspension obtained by coating or mixing.
Further, the above method (1) may be carried out by mixing fibers made of polyamide or the like, which are the material of the separator base material, and the above-mentioned ultrafine particles to form a nonwoven fabric or the like.

叙上の如き本発明のセパレータは、ニッケル−カドミウ
ム密閉型アルカリ二次電池、ニッケル−亜鉛密閉型アル
カリ二次電池、鉄−ニッケルアルカリ二次電池、亜鉛−
空気アルカリ二次電池、鉄−空気アルカリ二次電池、ア
ルミニウムー空気アルカリ二次電池1等のアルカリ二次
電池用のセパレータとして適用される。
The separator of the present invention as described above can be used for nickel-cadmium sealed alkaline secondary batteries, nickel-zinc sealed alkaline secondary batteries, iron-nickel alkaline secondary batteries, zinc-
It is applied as a separator for alkaline secondary batteries such as air-alkaline secondary batteries, iron-air-alkaline secondary batteries, and aluminum-air-alkaline secondary batteries 1.

[実施例] 次に本発明を実施例により説明する。[Example] Next, the present invention will be explained by examples.

製造例1(酸化チタンと水和酸化チタンからなる超微粒
子の製造) 原料としてチタンテトライソプロポキサイド[Ti (
OCsHa) 4]をベーパライザーにより蒸発させ、
・キャリヤーガスとして窒素ガスを用い、さらに水分量
を0.05モル%となるようにスチームを混入したもの
を用いた。これらを、予め酸化チタン微粒子を内壁に付
着させた内径30mmの反応容器に導入し%350℃に
おいて熱分解反応および加水分解反応を行なった9反応
終了後、反応生成物を直ちに冷却し、冷却管表面に付着
した微粒子を捕集した。この微粒子を電子顕ra鏡によ
り観察したところ、一次粒子径(平均粒子径)200人
、粒径分布100〜300人でありた。また、X線回折
パターンを調べた結果、非晶質であることが確認された
Production Example 1 (Production of ultrafine particles made of titanium oxide and hydrated titanium oxide) Titanium tetraisopropoxide [Ti (
OCsHa) 4] is evaporated with a vaporizer,
- Nitrogen gas was used as a carrier gas, and steam was further mixed in so that the moisture content was 0.05 mol%. These were introduced into a reaction vessel with an inner diameter of 30 mm in which titanium oxide fine particles had been attached to the inner wall in advance, and a thermal decomposition reaction and a hydrolysis reaction were carried out at 350°C.After the completion of the 9 reactions, the reaction products were immediately cooled and Fine particles attached to the surface were collected. When the fine particles were observed using an electron microscope, the primary particle diameter (average particle diameter) was 200, and the particle size distribution was 100 to 300. Further, as a result of examining the X-ray diffraction pattern, it was confirmed that it was amorphous.

さらに、窒素ガスを用いBET法により比表面積を調べ
たところ、128m2/gであった。
Furthermore, when the specific surface area was examined by the BET method using nitrogen gas, it was found to be 128 m2/g.

実施例1 製造例1で得られた酸化チタンと水和酸化チタンからな
る超微粒子(以下、チタニアという、)を7皿量%、ポ
リビニルアルコール(PVA)を7重量%およびカルボ
キシメチルセルロース(CMC)を2重量%含有する懸
濁水溶液内に、ナ゛イロン68製不織布長尺物をくぐら
せた後、120℃で2時間加熱乾燥した。得られたチタ
ニア含有不織布のチタニア含有量は5皿量%であった。
Example 1 7% by weight of ultrafine particles made of titanium oxide and hydrated titanium oxide (hereinafter referred to as titania) obtained in Production Example 1, 7% by weight of polyvinyl alcohol (PVA), and 7% by weight of carboxymethyl cellulose (CMC). A long nonwoven fabric made of nylon 68 was passed through an aqueous suspension containing 2% by weight, and then dried by heating at 120° C. for 2 hours. The titania content of the obtained titania-containing nonwoven fabric was 5% by weight.

次いで、このチタニア含有不織布をセパレータとし、電
解液として40%KOH溶液、極板としてニッケル板お
よびカドミウム板を使用して、500mAhの容量を有
する阜三型のニッケル−カドミウム密閉型蓄電池を作製
した。
Next, using this titania-containing nonwoven fabric as a separator, a 40% KOH solution as an electrolyte, and a nickel plate and a cadmium plate as electrode plates, a Fusan type nickel-cadmium sealed storage battery having a capacity of 500 mAh was produced.

このニッケル−カドミウム密閉型蓄電池について、電池
充放電装置(北斗電工株式会社製。
Regarding this nickel-cadmium sealed storage battery, a battery charging/discharging device (manufactured by Hokuto Denko Co., Ltd.) was used.

HJ−2018型)を用い、室温(20±2℃)にて放
電電流密度2.5■^/cm”としたときの放電特性試
験を行なった。この結果をfit図に示す、放電特性は
優れた平坦性を長時間維持し、放電率が51%(1,4
V→0.8V)となる時間は132分であった。
HJ-2018 model) was used to conduct a discharge characteristic test at a discharge current density of 2.5 ■^/cm'' at room temperature (20±2°C).The results are shown in the fit diagram, and the discharge characteristics are as follows. It maintains excellent flatness for a long time and has a discharge rate of 51% (1,4
The time it took for the voltage to change (from V to 0.8 V) was 132 minutes.

また、充電電流密度21^/cm”で3時間の充電と、
放電電流密度2.5膳^/C■2にて電池電圧の低下率
57%の充放電試験を繰り返したところ、放電容量の低
下は非常に緩やかであり、放電容量が初期の電池容量の
60%を下回るまで600サイクルの充放電を繰り返す
ことができた。
In addition, charging for 3 hours at a charging current density of 21^/cm'',
When we repeated a charge/discharge test with a battery voltage drop rate of 57% at a discharge current density of 2.5/C2, the drop in discharge capacity was very gradual, and the discharge capacity was 60% of the initial battery capacity. It was possible to repeat 600 cycles of charging and discharging until the voltage dropped below %.

第1表にセパレータおよび電池の特性を示す。Table 1 shows the characteristics of the separator and battery.

本実施例1は、後述する比較例1.2に比べ、セパレー
タの電気抵抗、Fi保持性、耐アルカリ性。
This Example 1 has better electric resistance, Fi retention, and alkali resistance of the separator than Comparative Example 1.2 described later.

耐酸化性、電池の液もれ性、内部抵抗に優れており、こ
れらの因子により優れた電池特性(放電特性および繰り
返し寿命)を示すものと考えられる。
It has excellent oxidation resistance, battery leakage, and internal resistance, and is thought to exhibit excellent battery characteristics (discharge characteristics and repeated life) due to these factors.

比較例1 実施例1においぞ、実施例1で用いたと同じナイロン6
6製不織布をセパレータとし、チタニアを用いなかった
こと以外は実施例1と同様にしてニッケル−カドミウム
密閉型蓄電池を作製し、放電特性試験を行ない、さらに
セパレータおよび電池の特性を調べた。結果を!1図及
び第1表に示す。
Comparative Example 1 In Example 1, the same nylon 6 used in Example 1 was used.
A nickel-cadmium sealed storage battery was prepared in the same manner as in Example 1, except that a nonwoven fabric manufactured by No. 6 was used as a separator and titania was not used. A discharge characteristic test was conducted, and the characteristics of the separator and battery were investigated. Results! It is shown in Figure 1 and Table 1.

この電池の放電特性は実施例1に比べ、平坦性に劣り、
電池電圧が57%となる時間も80分と短かかった。
The discharge characteristics of this battery were inferior in flatness compared to Example 1,
The time it took for the battery voltage to reach 57% was also as short as 80 minutes.

また、充放電試験の結果、放電容量の低下は実施例1に
比べ急激であり、放電容量が初期の電池容量の60%を
下回るまでの充放電サイクルは400サイクルであった
Further, as a result of the charge/discharge test, the decrease in discharge capacity was more rapid than in Example 1, and the number of charge/discharge cycles until the discharge capacity fell below 60% of the initial battery capacity was 400 cycles.

比較例2 実施例1において、製造例1で得られたチタニアの代わ
りに、市販のチタニア微粒子(デグサ社製、 P−25
)を用いたこと以外は実施例1と同様にしてチタニア含
有不織布からなるセパレータを作製した。なお、この市
販のチタニア微粒子を電子!i徹鏡により観察したとこ
ろ、−水粒子径(平均粒子径)350人、粒径分布50
〜500人であった。
Comparative Example 2 In Example 1, commercially available titania fine particles (manufactured by Degussa, P-25) were used instead of the titania obtained in Production Example 1.
) A separator made of a titania-containing nonwoven fabric was produced in the same manner as in Example 1, except that the titania-containing nonwoven fabric was used. In addition, this commercially available titania fine particle is an electronic! When observed with a translucent mirror, - water particle size (average particle size) was 350 people, particle size distribution was 50
There were ~500 people.

また、このもののX線回折パターンを調べた結果、その
主成分はアナターゼ型の二酸化チタンであることが確認
された。さらに、窒素ガスを用いBET法にて比表面積
を調べた結果、50■’/gであった。
Furthermore, as a result of examining the X-ray diffraction pattern of this material, it was confirmed that its main component was anatase-type titanium dioxide. Furthermore, the specific surface area was examined by the BET method using nitrogen gas and was found to be 50 .mu.'/g.

次いで、このセパレータを用いたこと以外は実施例1と
同様にしてニッケル−カドミウム密閉型蓄電池を作製し
、放電特性試験を行ない、さらにセパレータおよび電池
の特性を調べた。結果を第1図および第1表に示す。
Next, a nickel-cadmium sealed storage battery was produced in the same manner as in Example 1 except that this separator was used, a discharge characteristic test was conducted, and the characteristics of the separator and battery were investigated. The results are shown in FIG. 1 and Table 1.

この電池の放電特性は比較例1に比べ優れた平坦性を示
したが、実施例1はどの平坦性は示さず、電池電圧が5
7%となる時間は90分であった。
The discharge characteristics of this battery showed superior flatness compared to Comparative Example 1, but Example 1 did not show any flatness and the battery voltage was 5.
The time to reach 7% was 90 minutes.

また、充放電試験の結果、放電容量の低下は比較例1に
比べると優れていたが、実施例1はどの性能を示さず、
放電容量が初期の電池容量の60%を下回るまでの充放
電サイクルは500サイクルであつた。
In addition, as a result of the charge/discharge test, the reduction in discharge capacity was superior to Comparative Example 1, but Example 1 did not show any performance.
The number of charging and discharging cycles until the discharge capacity fell below 60% of the initial battery capacity was 500 cycles.

実施例2 実施例1で得られた単三型のニッケル−カドミウム密閉
型蓄電池について、電池充放電装置(実施例1で用いた
と同じもの、以下同じ)を用い、0℃および60℃にて
放電電流密度2.5m^/cm2としたときの放電特性
試験を行なった。この電池の放電特性は優れた平坦性を
示し、電池電圧が57%(1,4V−0,8V)となる
時間は0℃、H℃の場合ともに130分であり、室温の
場合(132分)とほぼ同等の性能を示した。
Example 2 The AA type nickel-cadmium sealed storage battery obtained in Example 1 was discharged at 0°C and 60°C using a battery charging/discharging device (same as used in Example 1, the same applies hereinafter). A discharge characteristic test was conducted at a current density of 2.5 m^/cm2. The discharge characteristics of this battery show excellent flatness, and the time for the battery voltage to reach 57% (1.4 V - 0.8 V) is 130 minutes at both 0°C and H°C, and 132 minutes at room temperature. ) showed almost the same performance.

このように非晶質であり、高比表面積を有する超微粒子
を含有したセパレータを備えたニッケル−カドミウム密
閉型蓄電池は0℃から60℃の広い使用温度範囲で、安
定した放電特性を示すことが判フた。
In this way, a nickel-cadmium sealed storage battery equipped with a separator containing ultrafine particles that are amorphous and have a high specific surface area can exhibit stable discharge characteristics over a wide operating temperature range of 0°C to 60°C. It turned out to be wrong.

比較例3 比較例1で得られた阜三型のニッケル−カドミウム密閉
型蓄電池について、電池充放電装置を用い、0℃および
60℃での放電特性試験を行なった。0℃では電池電圧
が57%となる時間は65分と大きく減少した。一方、
60℃では電池電圧が57%となる時間は87分と延長
された。放電特性の電圧平坦性は室温の場合と同様に0
℃および60℃のいずれにおいても実施例1,2には劣
っていた。
Comparative Example 3 The Fusan type nickel-cadmium sealed storage battery obtained in Comparative Example 1 was subjected to a discharge characteristic test at 0°C and 60°C using a battery charging/discharging device. At 0°C, the time required for the battery voltage to reach 57% was significantly reduced to 65 minutes. on the other hand,
At 60°C, the time required for the battery voltage to reach 57% was extended to 87 minutes. The voltage flatness of the discharge characteristics is 0 as at room temperature.
It was inferior to Examples 1 and 2 both at 60°C and 60°C.

このようにチタニアを用いないニッケル−カドミウム密
閉型蓄電池では、使用温度によりその性能が大きく変化
し、特に低温域での放電時間が著しく減少した。
As described above, the performance of a nickel-cadmium sealed storage battery that does not use titania changes greatly depending on the operating temperature, and the discharge time is particularly significantly reduced in a low temperature range.

第1表 ψl:30℃のso1量%にOH水溶液中で測定中2 
: 50重量%KOH水溶液をセパレータに滴下して行
き、にOH水溶液がセパレータからしたたり落ちるまで
に要した量 中3二80℃の501量%KOH*溶液中に5時間浸漬
後の状態および重量減少率 傘4:ニッケル極板にセパレータをはさんだものを、5
0重量%に0日水溶液に浸し、200g+Aにて電圧を
かけ1ケ月間酸素ガスを発生させた後の重量減少率 ◆5:45℃、相対湿度gO%、120日間貯蔵による
試験における電池100個中の濡液個数中6二室温で2
.0m^/cm”の充電電流密度で3時間充電した直後
%2,5■A/cm’の放電電流密度で電池電圧の低下
率57%(1,4V−0,8V)の充放電試験を繰り返
した。
Table 1 ψl: 2 during measurement in OH aqueous solution at 30℃ so1%
: A 50% by weight KOH aqueous solution was dropped onto the separator, and the amount required for the OH aqueous solution to drip from the separator was 32. Condition and weight after immersion in a 501% by weight KOH* solution at 80°C for 5 hours. Reduction rate umbrella 4: A separator sandwiched between nickel electrode plates, 5
Weight loss rate after immersing 0% in an aqueous solution for 0 days and applying a voltage of 200g+A to generate oxygen gas for 1 month ◆5: 100 batteries in a test at 45℃, relative humidity gO%, and storage for 120 days The number of wet liquid inside is 62 and 2 at room temperature.
.. Immediately after charging for 3 hours at a charging current density of 0 m^/cm', a charge/discharge test was performed at a discharge current density of %2,5 A/cm' with a battery voltage drop rate of 57% (1,4 V - 0,8 V). repeated.

実施例3 製造例1で得られたチタニアを7重量%、ポリビニルア
ルコール(PVA)を7重量%およびカルボキシメチル
セルロース(CMC)を2重量%含有する懸濁水溶液内
に、ナイロン66製不織布長尺物をくぐらせた後、12
0℃で2時間加熱乾燥した。得られたチタニア含有不織
布のチタニア含有量は5重量%であった。
Example 3 A long nonwoven fabric made of nylon 66 was placed in an aqueous suspension solution containing 7% by weight of titania obtained in Production Example 1, 7% by weight of polyvinyl alcohol (PVA), and 2% by weight of carboxymethylcellulose (CMC). After passing through, 12
It was heated and dried at 0°C for 2 hours. The titania content of the obtained titania-containing nonwoven fabric was 5% by weight.

次いで、このチタニア含有不織布をセパレータとし、電
解液として40%KOH溶液、極板としてニッケル板お
よび亜鉛板を使用して、単三型の500*Ahの容量を
有するニッケル−亜鉛密閉型蓄電池を作製した。
Next, using this titania-containing nonwoven fabric as a separator, a 40% KOH solution as an electrolyte, and a nickel plate and a zinc plate as electrode plates, an AA-sized nickel-zinc sealed storage battery with a capacity of 500*Ah was fabricated. did.

このニッケル−亜鉛密閉型蓄電池について、電池充放電
装置(北斗電工株式会社製、 HJ−2018型)を用
い、室温(20±2℃)にて放電電流密度5.01^/
C12としたときの放電特性試験を行なった。この結果
を′s2図に示す、放電特性は優れた平坦性を長時間維
持し、電池電圧が33%(3,OV→1.OV)となる
時間は67分であった。
For this nickel-zinc sealed storage battery, a discharge current density of 5.01^// was measured at room temperature (20±2°C) using a battery charging/discharging device (manufactured by Hokuto Denko Co., Ltd., model HJ-2018).
A discharge characteristic test was conducted when the battery was set to C12. The results are shown in the 's2 diagram. The discharge characteristics maintained excellent flatness for a long time, and the time for the battery voltage to reach 33% (3.OV→1.OV) was 67 minutes.

また、充電電流密度2.O1^/cm”で3時間の充電
と、放電電流密度5.0−^/C112にて電池電圧3
3%の充放電試験を繰り返したところ、放電容量の低下
は非常に緩やかであり、放電容量が初期の電池容量の6
0%を下回るまで400サイクルの充放電を繰り返すこ
とができた。
In addition, charging current density 2. Charging for 3 hours at 01^/cm'' and battery voltage 3 at discharge current density 5.0-^/C112
When the 3% charge/discharge test was repeated, the decrease in discharge capacity was very gradual, and the discharge capacity was 6% of the initial battery capacity.
It was possible to repeat 400 cycles of charging and discharging until the voltage dropped below 0%.

第2表にセパレータおよび電池の特性を示す。Table 2 shows the characteristics of the separator and battery.

本実施例3は、後述する比較例4.5に比べ、セパレー
タの電気抵抗、液保持性、耐アルカリ性。
Example 3 has better electrical resistance, liquid retention, and alkali resistance of the separator than Comparative Example 4.5, which will be described later.

耐酸化性、電池の液もれ性、内部抵抗に優れており、こ
れらの因子により優れた電池特性(放電特性および繰り
返し寿命)を示すものと考えられる。
It has excellent oxidation resistance, battery leakage, and internal resistance, and is thought to exhibit excellent battery characteristics (discharge characteristics and repeated life) due to these factors.

比較例4 実施例3において、実施例3で用いたと同じナイロン6
6製不織布をセパレータとし、チタニアを用いなかった
こと以外は実施例3と同様にしてニッケル−亜鉛密閉型
蓄電池を作製し、放電特性試験を行ない、さらにセパレ
ータおよび電池の特性を調べた。結果を第2図および第
2表に示す。
Comparative Example 4 In Example 3, the same nylon 6 used in Example 3 was used.
A nickel-zinc sealed storage battery was prepared in the same manner as in Example 3, except that a nonwoven fabric made by A.6 was used as a separator and titania was not used. A discharge characteristic test was conducted, and the characteristics of the separator and battery were also investigated. The results are shown in FIG. 2 and Table 2.

この電池の放電特性は実施例3に比べ、平坦性に劣り、
電池電圧が33%となる時間も50分と短かかった。
The discharge characteristics of this battery were inferior in flatness compared to Example 3;
The time it took for the battery voltage to reach 33% was also as short as 50 minutes.

また、充放電試験の結果、放電容量の低下は実施例3に
比べ急激であり、放電容量が初期の電池容量の80%を
下回るまでの充放電サイクルは30Gサイクルであった
Further, as a result of the charge/discharge test, the decrease in discharge capacity was more rapid than in Example 3, and the charge/discharge cycle until the discharge capacity fell below 80% of the initial battery capacity was 30 G cycles.

比較例5 実施例3において、製造例1で得られたチタニアの代わ
りに、市販のチタニア微粒子(デグサ社製、 P−25
)  (比較例2で用いたと同じもの)を用いたこと以
外は実施例3と同様にしてチタニア含有不織布からなる
セパレータを作製し、ざらにニッケル−亜鉛密閉型蓄電
池を作製して、放電特性試験を行ない、さらにセパレー
タおよび電池の特性を調べた。結果を第2図および第2
表に示す。
Comparative Example 5 In Example 3, commercially available titania fine particles (manufactured by Degussa, P-25) were used instead of the titania obtained in Production Example 1.
) (same as used in Comparative Example 2) A separator made of a titania-containing nonwoven fabric was produced in the same manner as in Example 3, and a nickel-zinc sealed storage battery was produced, and a discharge characteristic test was conducted. The characteristics of the separator and battery were further investigated. The results are shown in Figure 2 and
Shown in the table.

この電池の放電特性は比較例4に比べ優れた平坦性を示
したが、実施例3はどの平坦性は示さず、電池電圧が3
3%となる時間は57分であった。
The discharge characteristics of this battery showed superior flatness compared to Comparative Example 4, but Example 3 did not show any flatness and the battery voltage was 3.
The time to reach 3% was 57 minutes.

また、充放電試験の結果、放電容量の低下は比較例4に
比べると優れていたが、実施例3はどの性能を示さず、
放電容量が初期の電池容量の60%を下回るまでの充放
電サイクルは350サイクルであった。
In addition, as a result of the charge/discharge test, the reduction in discharge capacity was superior to Comparative Example 4, but Example 3 did not show any performance.
The number of charging and discharging cycles until the discharge capacity fell below 60% of the initial battery capacity was 350 cycles.

′!J2表 IIN拳5:第1表の傘1〜中5と同じ中6:室温で2
.0■A/cm’の充電電流密度で3時間充電した直後
、5.0■^/C■2の放電電流密度で電池電圧の低下
率33%(3,OV→1.OV)の充放電試験を繰り返
した。
′! J2 Table IIN Fist 5: Same as Umbrella 1 to 5 in Table 1 Medium 6: 2 at room temperature
.. Immediately after charging for 3 hours at a charging current density of 0 A/cm', charging and discharging resulted in a battery voltage drop rate of 33% (3.OV→1.OV) at a discharge current density of 5.0 ■^/C■2. The test was repeated.

[発明の効果] 本発明のセパレータは、電解液保持能力が向上し、耐ア
ルカリ性が改善され、充電時のガス溜まりが低減された
ものである。
[Effects of the Invention] The separator of the present invention has improved electrolyte retention ability, improved alkali resistance, and reduced gas accumulation during charging.

しかも本発明のセパレータは、電気抵抗が減少し、耐酸
化性が向上し、さらにデンドライトの防止されたもので
ある。
In addition, the separator of the present invention has reduced electrical resistance, improved oxidation resistance, and is prevented from forming dendrites.

したがって、本発明のセパレータによれば、繰り返し充
放電回数が増加し、電池容量が増加し、電圧の平坦性が
向上した二次電池が得られる。
Therefore, according to the separator of the present invention, a secondary battery can be obtained in which the number of times of repeated charging and discharging is increased, the battery capacity is increased, and the flatness of the voltage is improved.

しかも本発明のセパレータによれば温度特性が改善され
、内部抵抗が減少し、さらに耐液もれ性の改善された二
次電池が得られる。
Moreover, according to the separator of the present invention, a secondary battery with improved temperature characteristics, reduced internal resistance, and improved leakage resistance can be obtained.

このように本発明のセパレータによれば二次電池の性能
を向上させることができ、アルカリ二次電池用セパレー
タとして、特にニッケル−カドミウム密閉型アルカリ二
次電池、ニッケル−亜鉛密閉型アルカリ二次電池等の如
きアルカリ二次電池用のセパレータとして有効に利用す
ることができる。
As described above, the separator of the present invention can improve the performance of secondary batteries, and is particularly useful as a separator for alkaline secondary batteries, such as nickel-cadmium sealed alkaline secondary batteries and nickel-zinc sealed alkaline secondary batteries. It can be effectively used as a separator for alkaline secondary batteries such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例および比較例にお
ける放電特性試験の結果を示す特性図であり、第1図は
ニッケル−カドミウム密閉型蓄電池について、42図は
ニッケル−亜鉛密閉型蓄電池について、それぞれ放電特
性を示したものである。 特許出願人  有限会社 小 坂商会
Figures 1 and 2 are characteristic diagrams showing the results of discharge characteristic tests in Examples and Comparative Examples of the present invention. Figure 1 is for a nickel-cadmium sealed storage battery, and Figure 42 is for a nickel-zinc sealed storage battery. The discharge characteristics are shown for each. Patent applicant: Kosaka Shokai Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)一次粒子径が500Å以下であり、その結晶形態
が非晶質であり、その比表面積が100m^2/g以上
の酸化チタンおよび/または水和酸化チタンからなる超
微粒子を、セパレータ基材に対し0.1〜10重量%含
有させてなるアルカリ二次電池用セパレータ。
(1) Ultrafine particles made of titanium oxide and/or hydrated titanium oxide with a primary particle diameter of 500 Å or less, an amorphous crystalline form, and a specific surface area of 100 m^2/g or more are placed on a separator group. A separator for an alkaline secondary battery containing 0.1 to 10% by weight based on the material.
(2)アルカリ二次電池が、ニッケル−カドミウム密閉
型アルカリ二次電池またはニッケル−亜鉛密閉型アルカ
リ二次電池である請求項1記載のセパレータ。
(2) The separator according to claim 1, wherein the alkaline secondary battery is a nickel-cadmium sealed alkaline secondary battery or a nickel-zinc sealed alkaline secondary battery.
(3)請求項1記載のセパレータを用いてなるアルカリ
二次電池。
(3) An alkaline secondary battery using the separator according to claim 1.
JP1030984A 1989-02-13 1989-02-13 Separator for alkaline secondary battery Pending JPH02213047A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1030984A JPH02213047A (en) 1989-02-13 1989-02-13 Separator for alkaline secondary battery
US07/472,945 US5026617A (en) 1989-02-13 1990-01-31 Separator for alkaline cell and alkaline cell prepared by using this separator
EP19900102339 EP0383161A3 (en) 1989-02-13 1990-02-07 Separator for alkaline cell and alkaline cell prepared by using this separator
MYPI90000205A MY104822A (en) 1989-02-13 1990-02-08 Separator for alkaline cell and alkaline cell prepared by using this separator.
CA002009933A CA2009933A1 (en) 1989-02-13 1990-02-13 Separator for alkaline cell and alkaline cell prepared by using this separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1030984A JPH02213047A (en) 1989-02-13 1989-02-13 Separator for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH02213047A true JPH02213047A (en) 1990-08-24

Family

ID=12318897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030984A Pending JPH02213047A (en) 1989-02-13 1989-02-13 Separator for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH02213047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508885A (en) * 1999-09-02 2003-03-04 インターナショナル フュエル セルズ,エルエルシー Porous carbon body with improved wettability to water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508885A (en) * 1999-09-02 2003-03-04 インターナショナル フュエル セルズ,エルエルシー Porous carbon body with improved wettability to water

Similar Documents

Publication Publication Date Title
EP3331066B1 (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
CN112750999B (en) Cathode material, preparation method thereof and lithium ion battery
US6753111B2 (en) Positive active material for rechargeable lithium batteries and method for preparing same
WO2023024651A1 (en) Lithium iron manganese phosphate precursor, lithium iron manganese phosphate positive electrode material and preparation method therefor, electrode material, electrode, and lithium-ion battery
TWI290781B (en) Electrode active material with multi-element based oxide layers and preparation method thereof
JP6815977B2 (en) Lithium secondary battery containing nickel-based active material for lithium secondary battery, its manufacturing method, and positive electrode containing it
JPH10236826A (en) Two-layer structure particulate composition and lithium ion secondary cell
EP3875434A1 (en) Composite positive electrode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery including positive electrode including the same
JP2000515300A (en) Electrode materials for rechargeable batteries and their preparation
WO2015094847A1 (en) Improved lithium metal oxide cathode materials and method to make them
JP2001291518A (en) Positive active material for lithium secondary battery
KR102580242B1 (en) Cobalt oxide for lithium secondary battery, lithium cobalt oxide for lithium secondary battery formed from the same, preparing method of the lithium cobalt oxide, and lithium secondary battery including positive electrode comprising the lithium cobalt oxide
JP7186800B2 (en) Lithium secondary battery containing inorganic electrolyte
US7306779B2 (en) Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell
US5026617A (en) Separator for alkaline cell and alkaline cell prepared by using this separator
EP1107338B1 (en) Lithium manganese compound oxide and non-aqueous electrolyte secondary battery
JP2022534939A (en) Cathode materials for composite lithium-ion batteries, lithium-ion batteries and automobiles
US20210083287A1 (en) Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US6348284B1 (en) Non-sintered nickel electrode for a secondary electro-chemical cell having an alkaline electrolyte
US11038169B2 (en) Cobalt oxide for lithium secondary battery, preparing method thereof, lithium cobalt oxide for lithium secondary battery formed from the cobalt oxide, and lithium secondary battery including positive electrode comprising the lithium cobalt oxide
KR20150007805A (en) Positive active material, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
TW571456B (en) Positive electrode material for lithium secondary battery and manufacturing method thereof
WO2024093074A1 (en) Composite-coated modified positive electrode material, preparation method therefor and use thereof
JPH02213047A (en) Separator for alkaline secondary battery
EP3932872A2 (en) Nickel-based lithium metal composite oxide, preparing method thereof, and lithium secondary battery including positive electrode including the same