JPH0221284A - Particle beam detector - Google Patents

Particle beam detector

Info

Publication number
JPH0221284A
JPH0221284A JP63171262A JP17126288A JPH0221284A JP H0221284 A JPH0221284 A JP H0221284A JP 63171262 A JP63171262 A JP 63171262A JP 17126288 A JP17126288 A JP 17126288A JP H0221284 A JPH0221284 A JP H0221284A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
particle beam
electrode layer
junction
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63171262A
Other languages
Japanese (ja)
Inventor
Yasushi Okuda
寧 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63171262A priority Critical patent/JPH0221284A/en
Publication of JPH0221284A publication Critical patent/JPH0221284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To achieve higher resolutions by arranging a construction which includes a semiconductor substrate, insulating members for separating the substrate electrically into a plurality of areas with insulating bodies and an electrode layer formed on the surface of the areas separated of the semiconductor substrate. CONSTITUTION:A p-type semiconductor 1 and an n<+> type semiconductor substrate are separated with insulating members 3 into a plurality of fine areas to form an electrode layer 4 on the n<+> type semiconductor 2. Aluminum or gold is used beneath the p-type semiconductor 1 to form a metal deposited film 6. When a reverse bias is applied to a junction of the p-type semiconductor 1 and the n<+> semiconductor 2 through the electrode layer 4 and the metal deposited film 6, a depletion layer is formed within the semiconductor substrate to generate a high electric field. Here, for example, when a alpha beam is incident into the semiconductor substrate, numerous electron-hole pairs are created to be collected to the electrode layer 4 and detected as pulse signal. In this case, as the semiconductor substrate is separated into fine areas with insulating members 3, it is possible to improve resolutions in the measurement of an incident position of the alpha beam.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒子線検出装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a particle beam detection device.

従来の技術 原子核物理学や放射線関連分野の研究の進展に伴い、粒
子線の検出技術も向−卜されてきた。粒子線検出装置に
は、電離箱・比例計数管・半導体検出器・泡箱なと様々
な種類があるが、中でも半導体検出器は、半導体基板内
のp−n接合やp−1−n接合に逆バイアスを印加して
、粒子線が入射した時に空乏層内で作られた電子−正孔
対を高電界で加速して電子を陽極に収集することによっ
て粒子線を検出するものである。
BACKGROUND OF THE INVENTION With the progress of research in nuclear physics and radiation-related fields, particle beam detection technology has also been developed. There are various types of particle beam detection devices, such as ionization chambers, proportional counters, semiconductor detectors, and bubble chambers. Among them, semiconductor detectors use p-n junctions and p-1-n junctions in semiconductor substrates. The particle beam is detected by applying a reverse bias to the particle beam, accelerating the electron-hole pairs created in the depletion layer when the particle beam is incident with a high electric field, and collecting the electrons at the anode.

発明が解決しようとする課題 前述の半導体検出器に用いられる半導体基板は直径が数
十ミリ程度あるが、この基板内に入射する粒子線の入射
位置と入射方法については半導体基板の面積によって制
限されて十分な分解能が得られない。又、入射方向が異
なると半導体基板内はを粒子線が通過する距離が変化す
る為に空乏層内で作られる電子−正孔対が変化するので
、収集される電荷量にバラツキを生じ粒子線の入射エネ
ルギーの測定分解能を落とす。
Problems to be Solved by the Invention The semiconductor substrate used in the aforementioned semiconductor detector has a diameter of about several tens of millimeters, but the incident position and method of the particle beam entering the substrate are limited by the area of the semiconductor substrate. sufficient resolution cannot be obtained. Furthermore, if the direction of incidence is different, the distance that the particle beam passes through the semiconductor substrate changes, and the electron-hole pairs created in the depletion layer change, resulting in variations in the amount of charge collected and the particle beam The measurement resolution of the incident energy is reduced.

又、前述の半導体検出器では、半導体基板上に形成した
電極に収集された電荷を同軸ケーブル等により外部に取
り出し、コンデンサを介してパルス信号に変換し、更に
増幅器でパルス信号を増幅して検出する。従って、同軸
ケーブルの容量や抵抗によりパルス信号の波高や波形が
変化するために、入射粒子線のエネルギーと時間の測定
分解能が悪くする。
In addition, in the semiconductor detector mentioned above, the electric charge collected on the electrode formed on the semiconductor substrate is taken out to the outside through a coaxial cable, etc., converted to a pulse signal via a capacitor, and then the pulse signal is amplified with an amplifier and detected. do. Therefore, the wave height and waveform of the pulse signal change due to the capacitance and resistance of the coaxial cable, which deteriorates the measurement resolution of the energy and time of the incident particle beam.

その他、前述の従来の半導体検出器に同時に異なる粒子
線、例えばアルファ線とガンマ線が入射した場合も2つ
粒子線は区別されず粒子線の入射エネルギーが正確に測
定されない。
In addition, even if different particle beams, for example alpha rays and gamma rays, are incident on the conventional semiconductor detector described above at the same time, the two particle beams are not distinguished and the incident energy of the particle beams cannot be accurately measured.

以上のように、前述の半導体検出器は入射粒子線のエネ
ルギー・位置・時間の測定分解能が十分に得られないと
いう課題をかかえている。本発明は、上述の課題を解決
し入射粒子線のエネルギー・位置・時間について優れた
測定分解能をもつ粒子線検出装置を提供することを目的
としている。
As described above, the semiconductor detector described above has the problem of not being able to obtain sufficient resolution for measuring the energy, position, and time of the incident particle beam. SUMMARY OF THE INVENTION An object of the present invention is to provide a particle beam detection device that solves the above-mentioned problems and has excellent measurement resolution for the energy, position, and time of an incident particle beam.

課題を解決するための手段 本発明は、上述の課題を解決するため、半導体基板と、
この基板を複数の領域に電気的に分離する絶縁体と、こ
の絶縁体によって複数に分離された前記半導体基板のそ
れぞれのp−n接合あるいはp−1−n接合を含む領域
の表面上に形成された電極層を含む構造を備えたもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a semiconductor substrate;
an insulator that electrically isolates this substrate into a plurality of regions, and a region formed on the surface of each region including a p-n junction or a p-1-n junction of the semiconductor substrate separated into a plurality of regions by this insulator. It has a structure including an electrode layer.

作   用 半導体基板を絶縁体で複数の微小な領域に分離すること
によって、入射粒子線の入射位置の測定分解能を向上さ
せる。又、粒子線が複数の領域を横切るように斜めに入
射した場合にも各領域における収集電荷を解析すること
によって、入射粒子線のエネルギー・位置・入射角度の
測定分解能が向上する。
By separating the working semiconductor substrate into multiple small regions using an insulator, the measurement resolution of the incident position of the incident particle beam is improved. Furthermore, even when a particle beam is incident obliquely across a plurality of regions, the measurement resolution of the energy, position, and angle of incidence of the incident particle beam can be improved by analyzing the collected charges in each region.

実  施  例 本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described with reference to the drawings.

尚、図面では +−n接合をもつ半導体を用いた粒子線
検出装置を示しているが、 +−n接合あるいはp−1
−n接合をもつ半導体を用いた場合も可能である。
Note that although the drawing shows a particle beam detection device using a semiconductor with a +-n junction,
It is also possible to use a semiconductor having a -n junction.

(第1実施例) 本発明の特許請求の範囲第1項の実施例を第1図および
断面図である第2図を参照しながら説明する。
(First Embodiment) An embodiment of claim 1 of the present invention will be described with reference to FIG. 1 and FIG. 2 which is a sectional view.

p型半導体1とn+型半導体2とからなる半導体基板を
絶縁体3により複数の微小な領域に分離し、n+型半導
体2上に電極層4を形成する。
A semiconductor substrate consisting of a p-type semiconductor 1 and an n+-type semiconductor 2 is separated into a plurality of minute regions by an insulator 3, and an electrode layer 4 is formed on the n+-type semiconductor 2.

又、p型半導体1の下にアルミまたは金を用い金属蒸着
膜6を形成する。電極層4と金属蒸着膜6を介してp型
半導体1とn+半導体2との接合に対して逆バイアスを
印加すると、半導体基板内に空乏層が形成され高電界を
生じる。そこで、半導体基板内に例えばアルファ線が入
射すると、多数の電子−正孔対が作られ、移動度の大き
い電子が高電界によりいち早(陽極側である電極層4に
収集されパルス信号として検出される。この際、アルフ
ァ線の入射エネルギーと電極層4に収集される電子の数
には単調な相関があるのでアルファ線の入射エネルギー
が測定できるが、本実施例のように半導体基板を絶縁体
3により微小な領域に分離することにより、アルファ線
の入射位置の測定分解能が著しく向上すると共に、アル
ファ線が第2図のように入射した場合にも各電極層4に
収集された電荷を解析することにより、アルファ線の入
射エネルギーと入射角度について優れた測定分解能が得
られる。
Further, a metal vapor deposition film 6 is formed using aluminum or gold under the p-type semiconductor 1. When a reverse bias is applied to the junction between the p-type semiconductor 1 and the n+ semiconductor 2 via the electrode layer 4 and the metal vapor deposited film 6, a depletion layer is formed in the semiconductor substrate and a high electric field is generated. Therefore, when alpha rays, for example, enter a semiconductor substrate, a large number of electron-hole pairs are created, and electrons with high mobility are quickly collected by a high electric field (collected on the electrode layer 4 on the anode side and detected as a pulse signal). At this time, since there is a monotonous correlation between the incident energy of alpha rays and the number of electrons collected in the electrode layer 4, the incident energy of alpha rays can be measured. By separating the alpha rays into minute regions using 3, the measurement resolution of the incident position of the alpha rays is significantly improved, and even when the alpha rays are incident as shown in Figure 2, the charges collected on each electrode layer 4 can be analyzed. By doing so, excellent measurement resolution can be obtained for the incident energy and angle of incidence of alpha rays.

(第2実施例) 本発明の特許請求の範囲第2項の実施例を第3図を参照
しながら説明する。
(Second Embodiment) An embodiment of the second claim of the present invention will be described with reference to FIG.

p型半導体1とn+型半導体2からなる半導体基板上に
電極層4を形成し、更に電極層4の上に例えばシリコン
酸化膜からなる絶縁層7をはさんで電極層8を形成する
ことにより、半導体基板上にコンデンサを形成する。半
導体基板内の高電界によって、粒子線の入射により作ら
れた電子と正孔が電極層4および金属蒸着膜5に収集さ
れるが、電子の移動度は、正孔の移動度の3倍程度であ
り、電子の方がいち早(電極層4に収集される。
By forming an electrode layer 4 on a semiconductor substrate made of a p-type semiconductor 1 and an n+ type semiconductor 2, and further forming an electrode layer 8 on top of the electrode layer 4 with an insulating layer 7 made of, for example, a silicon oxide film. , forming a capacitor on a semiconductor substrate. Due to the high electric field within the semiconductor substrate, electrons and holes created by the incident particle beam are collected in the electrode layer 4 and the metal vapor deposited film 5, but the mobility of the electrons is about three times that of the holes. Therefore, electrons are collected earlier (collected in the electrode layer 4).

ここで電子の収集時間tes正孔の収集時間をt。Here, the electron collection time tes and the hole collection time t.

とすると1e< 1.であるが、ここで電極層4の抵抗
値Rとコンデンサの容1cをt、<RC<thとなるよ
うにすれば、信号線6に得られるパルス電位■は、電極
層4に収集される電子の総電荷量Qにより、V=Q/C
と与えられるため、粒子線の入射エネルギーをパルス信
号Vsにより分解能よく測定できる。また、半導体基板
上に直接コンデンサを形成するため、上述の測定分解能
が安定して得られる。
Then 1e<1. However, if the resistance value R of the electrode layer 4 and the capacitance 1c of the capacitor are set so that t<RC<th, then the pulse potential ■ obtained on the signal line 6 will be collected on the electrode layer 4. Due to the total charge Q of electrons, V=Q/C
Therefore, the incident energy of the particle beam can be measured with good resolution using the pulse signal Vs. Furthermore, since the capacitor is formed directly on the semiconductor substrate, the above-mentioned measurement resolution can be stably obtained.

(第3実施例) 本発明の特許請求の範囲第3項の実施例を第4図参照し
ながら説明する。
(Third Embodiment) An embodiment of claim 3 of the present invention will be described with reference to FIG.

半導体基板9の中央部に粒子線検出部として第1実施例
に記載の粒子線検出装置10を形成し、半導体基板9の
周辺部に粒子線の検出位置と検出電荷を読み出すための
信号読み出し回路11と検出電荷をパルス増幅する信号
増幅回路12を形成し、検出装置全体を集積化すること
によって検出時間の測定分解能を向上させる。尚、検出
装置は集積化することによって小型化・軽量化し汎用性
を増すという利点を合わせ持つ。
The particle beam detection device 10 described in the first embodiment is formed as a particle beam detection section in the center of the semiconductor substrate 9, and a signal readout circuit for reading out the detection position of the particle beam and the detected charge is formed in the periphery of the semiconductor substrate 9. 11 and a signal amplification circuit 12 for pulse-amplifying the detected charge, and by integrating the entire detection device, the measurement resolution of the detection time is improved. Incidentally, by integrating the detection device, it has the advantage of being smaller and lighter, and increasing its versatility.

(第4実施例) 本発明の特許請求の範囲第4項の実施例を第5図を参照
しながら説明する。
(Fourth Embodiment) An embodiment of claim 4 of the present invention will be described with reference to FIG.

p型半導体1とn+型半導体2とからなる半導体基板と
、その上に形成された電極層4とを含む粒子線検出装置
と、粒子線の入射径路中に設けた気体層13を含むこの
粒子線検出装置は、例えばアルファ線とガンマ線といっ
た異なる種類の粒子線が入射窓16を通して同時に入射
した場合、質量および電荷量の大きいアルファ線は気体
層9での散乱によるエネルギー損失が大きく、気体層9
の厚さや圧力を調節することにより気体層9内で完全に
止めることができる。一方ガンマ線の気体層9でのエネ
ルギー損失は小さいため、同時に入射したアルファ線と
ガンマ線のうちガンマ線のみが気体層9を通過して半導
体基板を用いた粒子線検出装置によって検出される。こ
のように選択的に粒子線を検出することで、目標とする
粒子線を測定分解能よく検出することが可能となる。尚
、この際に気体層9に例えばアルゴン70%とイソブタ
ン30%の混合気体を用いると荷電粒子の入射による電
離特性がよいので、気体層9内にバイアス印加のための
電極15と信号線14を設は信号線14から電極15に
高電界をかけるとアルファ線や陽子の入射により励起さ
れた電子群が信号線14に収集されるので、気体層9内
で止まる粒子線の検出もできる。又、気体層9の変わり
にフッ化すチウム膜を入射径路中に設けると、中性子線
が入射した際にリチウムとの核反応により放出されるア
ルファ線を後方の粒子線検出装置で検出することができ
る。ところで、第5図に用いられている半導体粒子検出
装置は、特許請求の範囲′tJ%1項および第2項に記
載の粒子線検出装置を組み合わせることによって、より
優れたエネルギー・位置の測定分解能が得られるもので
ある。
A particle beam detection device including a semiconductor substrate consisting of a p-type semiconductor 1 and an n+ type semiconductor 2, an electrode layer 4 formed thereon, and a gas layer 13 provided in the incident path of the particle beam. When different types of particle beams, such as alpha rays and gamma rays, enter simultaneously through the entrance window 16, the alpha rays, which have a large mass and a large amount of charge, have a large energy loss due to scattering in the gas layer 9,
It can be completely stopped within the gas layer 9 by adjusting the thickness and pressure of the gas. On the other hand, since the energy loss of gamma rays in the gas layer 9 is small, of the alpha rays and gamma rays incident at the same time, only the gamma rays pass through the gas layer 9 and are detected by a particle beam detection device using a semiconductor substrate. By selectively detecting the particle beam in this way, it becomes possible to detect the target particle beam with good measurement resolution. At this time, if a mixed gas of, for example, 70% argon and 30% isobutane is used in the gas layer 9, the ionization characteristics due to the incidence of charged particles will be good. When a high electric field is applied from the signal line 14 to the electrode 15, a group of electrons excited by the incidence of alpha rays or protons are collected in the signal line 14, so that particle beams that stop within the gas layer 9 can also be detected. Furthermore, if a fluoride lithium film is provided in the incident path instead of the gas layer 9, the alpha rays emitted by the nuclear reaction with lithium when the neutron beam is incident can be detected by the particle beam detector at the rear. can. By the way, the semiconductor particle detection device used in FIG. is obtained.

発明の効果 以上の説明から明らかなように、本発明は特許請求の範
囲第1項から第4項に記載の構造を有する粒子線検出装
置によって、入射粒子線のエネルギー・位置・時間につ
いて優れた測定分解能が得られるという効果を有するも
のである。
Effects of the Invention As is clear from the above explanation, the present invention provides excellent energy, position, and time of incident particle beams by using a particle beam detection device having the structure described in claims 1 to 4. This has the effect of providing measurement resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はそれぞれ、本発明粒子線検出装置の第
1実施例の斜視図と断面図、第3図は、本発明粒子線検
出装置の第2実施例の断面図、第4図は本発明粒子線検
出装置の第3実施例の構成図、第5図は第4の実施例に
於ける粒子線検出装置の一構成の断面構造図である。 1・・・・・・p型半導体、2・・・・・・n+型半導
体、3・・・・・・絶縁体、4・・・・・・電極層、5
・・・・・・金属蒸着膜、6・・・・・・信号線。
1 and 2 are respectively a perspective view and a sectional view of the first embodiment of the particle beam detection device of the present invention, and FIG. 3 is a sectional view of the second embodiment of the particle beam detection device of the present invention. The figure is a configuration diagram of a third embodiment of the particle beam detection device of the present invention, and FIG. 5 is a cross-sectional structural diagram of one configuration of the particle beam detection device in the fourth embodiment. DESCRIPTION OF SYMBOLS 1...p-type semiconductor, 2...n+ type semiconductor, 3...insulator, 4...electrode layer, 5
...Metal deposited film, 6...Signal line.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板と、この基板を複数の領域に電気的に
分離する絶縁体と、この絶縁体によって複数に分離され
た前記半導体基板のそれぞれのp−n接合あるいはp−
i−n接合を含む領域の表面上に形成された電極層を含
む構造を有することを特徴とする粒子線検出装置。
(1) A semiconductor substrate, an insulator that electrically isolates this substrate into a plurality of regions, and a p-n junction or p-n junction of each of the semiconductor substrates separated into a plurality of regions by the insulator.
A particle beam detection device characterized by having a structure including an electrode layer formed on the surface of a region including an i-n junction.
(2)p−n接合あるいはp−i−n接合を含む半導体
基板と、この基板上に形成された電極層と、この電極層
上に更に絶縁層と電極層を形することによって形成され
たコンデンサを含む構造を有することを特徴とする粒子
線検出装置。
(2) A semiconductor substrate including a p-n junction or a pin junction, an electrode layer formed on this substrate, and an insulating layer and an electrode layer formed on this electrode layer. A particle beam detection device characterized by having a structure including a capacitor.
(3)同一半導体基板上に形成された信号読み出し回路
と信号増幅回路を含む構造を有することを特徴とする特
許請求の範囲第1項あるいは第2項に記載の粒子線検出
装置。
(3) The particle beam detection device according to claim 1 or 2, which has a structure including a signal readout circuit and a signal amplification circuit formed on the same semiconductor substrate.
(4)p−n接合あるにはp−i−n接合を含む半導体
基板と、この基板上に形成された電極層を含み、更に前
記半導体基板を特定の気体層あるいは液体層に封入する
か、又は粒子線の入射径路中に特定の気体層あるいは液
体層あるいは固体層を設けるという構造を有することを
特徴とする粒子線検出装置。
(4) A p-n junction includes a semiconductor substrate including a p-i-n junction and an electrode layer formed on this substrate, and the semiconductor substrate is further encapsulated in a specific gas layer or liquid layer. , or a particle beam detection device characterized by having a structure in which a specific gas layer, liquid layer, or solid layer is provided in the incident path of the particle beam.
JP63171262A 1988-07-08 1988-07-08 Particle beam detector Pending JPH0221284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171262A JPH0221284A (en) 1988-07-08 1988-07-08 Particle beam detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171262A JPH0221284A (en) 1988-07-08 1988-07-08 Particle beam detector

Publications (1)

Publication Number Publication Date
JPH0221284A true JPH0221284A (en) 1990-01-24

Family

ID=15920069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171262A Pending JPH0221284A (en) 1988-07-08 1988-07-08 Particle beam detector

Country Status (1)

Country Link
JP (1) JPH0221284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523438A (en) * 2002-04-18 2005-08-04 フォルシェングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Position-sensitive germanium detector with microstructure on both contact surfaces
JP2007298285A (en) * 2006-04-27 2007-11-15 Hitachi Ltd Apparatus for measuring charged particle
KR20160086780A (en) * 2016-06-28 2016-07-20 한국원자력연구원 A monolithic radiation sensor to detect multiple radiation and method of producing the same
CN108139488A (en) * 2015-10-14 2018-06-08 深圳帧观德芯科技有限公司 It is capable of the X-ray detector of limiting carrier diffusion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523438A (en) * 2002-04-18 2005-08-04 フォルシェングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Position-sensitive germanium detector with microstructure on both contact surfaces
JP2007298285A (en) * 2006-04-27 2007-11-15 Hitachi Ltd Apparatus for measuring charged particle
CN108139488A (en) * 2015-10-14 2018-06-08 深圳帧观德芯科技有限公司 It is capable of the X-ray detector of limiting carrier diffusion
US11353603B2 (en) 2015-10-14 2022-06-07 Shenzhen Xpectvision Technology Co., Ltd. X-ray detectors capable of limiting diffusion of charge carriers
KR20160086780A (en) * 2016-06-28 2016-07-20 한국원자력연구원 A monolithic radiation sensor to detect multiple radiation and method of producing the same

Similar Documents

Publication Publication Date Title
US8461541B2 (en) Radiation detector, method of manufacturing a radiation detector and use of the detector for measuring radiation
Amman et al. Three-dimensional position sensing and field shaping in orthogonal-strip germanium gamma-ray detectors
US6771730B1 (en) Boron-carbide solid state neutron detector and method of using the same
JP4170411B2 (en) High-speed radiation detector
US6350989B1 (en) Wafer-fused semiconductor radiation detector
US20060118728A1 (en) Wafer bonded silicon radiation detectors
CN113009542A (en) Radiation detection device and chip
JPS5917500B2 (en) Neutral particle detection device
US3415992A (en) Extended area semiconductor radiation detectors and a novel readout arrangement
Kenney et al. Observation of beta and X rays with 3-D-architecture silicon microstrip sensors
Yamamoto et al. New structure of two-dimensional position sensitive semiconductor detector and application
CN211603563U (en) Array type photoelectric detection device
JPH0221284A (en) Particle beam detector
O'Neill et al. Compton recoil electron tracking with silicon strip detectors
Macri et al. Development of an orthogonal-stripe CdZnTe gamma radiation imaging spectrometer
Macri et al. Single-sided CZT strip detectors
JPH0546709B2 (en)
JPS603792B2 (en) Multichannel semiconductor radiation detector
JPH01138486A (en) Multichannel type semiconductor radiation detector
EP3971997B1 (en) Low-penetrating particles low-gain avalanche detector
JP2005191136A (en) Semiconductor detector
Beaver et al. Counting image tube photoelectrons with semiconductor diodes
Luke Low noise germanium radial drift detector
Kenney et al. Performance of a monolithic pixel detector
Hartmann First steps with silicon sensors: Na11 (proof of principle)