JPH02212291A - Vane pitch control method for propeller - Google Patents

Vane pitch control method for propeller

Info

Publication number
JPH02212291A
JPH02212291A JP3199789A JP3199789A JPH02212291A JP H02212291 A JPH02212291 A JP H02212291A JP 3199789 A JP3199789 A JP 3199789A JP 3199789 A JP3199789 A JP 3199789A JP H02212291 A JPH02212291 A JP H02212291A
Authority
JP
Japan
Prior art keywords
propeller
vane
angle
distribution
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3199789A
Other languages
Japanese (ja)
Inventor
Toshio Maeda
俊夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3199789A priority Critical patent/JPH02212291A/en
Publication of JPH02212291A publication Critical patent/JPH02212291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To prevent change in thrust force originating from the following wake distribution by displacing an applicable propeller vane or vanes in the circumferential direction with respect to adjoining vane in correspondence to a following wake flowing to the surface of this applicable vane when a screw propeller is rotating. CONSTITUTION:In a screw propeller concerned 1, the spacing of propeller vanes 2 is adjustable and they are installed on a propeller hub 3. Therein the change distribution of following wake (w) over the propeller disc surface is measured previously. According to the distribution of the following wake (w) measured as above, determination is made about the change amount theta of the inter-vane angle theta to be controlled during one turn of the propeller vane 2 with the aid of the velocity diagram for a vane element, as illustrated, in order to eliminate change in the angle of attack alpha during one turn of propeller vane 2. On the basis of distribution of the abovementioned change amount theta the angle thetabetween propeller vanes 2 is controlled while the propeller is in rotation, and thereby change in the angle of attack alpha at the propeller vane 2 is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、船舶の船体後流中などのような均一でない流
れ内で作動するスクリュープロペラの翼間間隔制御方法
に関し、特に舶用スクリュー10ベラにおける伴流分布
に基づく推力変動およびトルク変動ならびにキャビテー
ション発生を防止するためのプロペラ翼の翼間間隔制御
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the blade spacing of a screw propeller that operates in a non-uniform flow such as in the wake of a ship's hull. This invention relates to a method for controlling the spacing between propeller blades to prevent thrust fluctuations and torque fluctuations based on wake distribution and cavitation.

〔従来の技術〕[Conventional technology]

従来の舶用スクリュープロペラ1は、第1図(正面図)
に示すように、複数のプロペラ翼2が等間隔でプロペラ
ハブ3から半径方向に突出して固設されて、エンジンで
回転駆動されることにより推力を発生するよう構成され
ている。
A conventional marine screw propeller 1 is shown in Figure 1 (front view).
As shown in FIG. 2, a plurality of propeller blades 2 are fixedly protruding from a propeller hub 3 in the radial direction at equal intervals, and are configured to generate thrust by being rotationally driven by an engine.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、プロペラディスク面における伴流分布は第3
図の等−ake線が示すように一様でなく、プロペラE
2が位置する場所で変化している。このように翼素の速
度線図を示す第2図において、−で示した伴流速度がプ
ロペラ×2が位置する場所で変化するので、プロペラ2
の一回転中に迎角α(プロペラに流れ込む流れ方向とプ
ロペラピッチ角とのなす角度)は、変動する。この変動
をグラフで示すと第7図のごとくなる。
By the way, the wake distribution on the propeller disk surface is the third
As the iso-ake line in the figure shows, it is not uniform, and the propeller E
It changes depending on where 2 is located. In Figure 2, which shows the velocity diagram of the blade elements, the wake velocity indicated by - changes at the location where propeller x 2 is located, so propeller 2
During one rotation of the propeller, the angle of attack α (the angle between the direction of flow flowing into the propeller and the propeller pitch angle) changes. This fluctuation is shown in a graph as shown in FIG.

一方、上述のような従来のスクリュープロペラでは、伴
流に対して各プロペラ翼の回転周期は軸回転数が一定の
場合には同一となり、推力変動やトルク変動あるいはキ
ャビテーション発生の抑制は不可能であるという問題点
がある。
On the other hand, in the conventional screw propeller described above, the rotation period of each propeller blade relative to the wake is the same when the shaft rotation speed is constant, making it impossible to suppress thrust fluctuations, torque fluctuations, or cavitation. There is a problem.

本発明は、このような問題点の解決をはかろうとするも
のである。すなわち、プロペラが一回転する間に多翼の
発生する揚力、抗力、モーメントは翼に対する流れの流
入角に依存するが、これはプロペラディスク面での伴流
分布およびプロペラ回転速度の関数である。
The present invention attempts to solve these problems. That is, the lift, drag, and moment generated by the multiple blades during one revolution of the propeller depend on the angle of flow inlet to the blade, which is a function of the wake distribution on the propeller disk surface and the propeller rotation speed.

したがって、プロペラ回転速度のほかに円周方向速度を
もたすことにより、流入迎角を制御して多翼の一回転す
る間の揚力、抗力、およびモーメントの変化を平滑化す
ることが考えられる。
Therefore, it is conceivable to control the inlet angle of attack and smooth the changes in lift, drag, and moment during one rotation of the multiblade by providing a circumferential speed in addition to the propeller rotational speed. .

本発明は所要のプロペラ翼を、各伴流分布位置に応じて
円周方向に動かして、流入角の変化を少なくしたもので
ある。
The present invention moves required propeller blades in the circumferential direction according to each wake distribution position to reduce changes in the inflow angle.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するため、本発明のプロペラ翼の翼間
間隔制御方法は、スクリュープロペラの回転作動時に、
所要のプロペラ翼を、その翼面へ流入する伴流に対応さ
せて、隣り合うプロペラ翼に対し相対的に円周方向へ変
位させることにより、伴流分布に基づく推力変動、トル
ク変動ならびにキャビテーション発生を防止することを
特徴としている。
In order to achieve the above-mentioned object, the propeller blade spacing control method of the present invention, when the screw propeller rotates,
By displacing the required propeller blades in the circumferential direction relative to adjacent propeller blades in response to the wake flowing into the blade surface, thrust fluctuations, torque fluctuations, and cavitation are generated based on the wake distribution. It is characterized by preventing

〔作  用〕[For production]

上述の本発明のプロペラ翼の翼間間隔制御方法では、ス
クリュープロペラを構成するプロペラ翼のうち、所要の
プロペラ翼をその翼面へ流入する伴流に対応させて、隣
り自らプロペラ翼に対して相対的に円周方向へ変位させ
ることにより、そのプロペラ翼の迎角を一回転中はぼ一
定の保つことができる。
In the above-mentioned method for controlling the spacing between propeller blades of the present invention, the required propeller blades among the propeller blades constituting the screw propeller are made to correspond to the wake flowing into the blade surface, and the adjacent propeller blades are aligned with respect to each other. By relatively displacing them in the circumferential direction, the angle of attack of the propeller blades can be kept approximately constant during one revolution.

〔実 施 例〕〔Example〕

以下、図面により本発明の一実施例としてのプロペラ翼
の翼間間隔制御方法について説明すると、第4図はプロ
ペラの正面図、第5図は翼素の速度線図、第6図は舶用
プロペラとしての適用時における船尾付近の側面図であ
る。
Hereinafter, a method for controlling the spacing between propeller blades as an embodiment of the present invention will be explained with reference to the drawings. Fig. 4 is a front view of the propeller, Fig. 5 is a speed diagram of the blade element, and Fig. 6 is a marine propeller. FIG. 3 is a side view of the vicinity of the stern when applied as

この実施例の場合には、スクリュープロペラ1は複数の
プロペラ翼2がプロペラハブ3上に、各プロペラ′IX
2間の間隔が調整可能に設けられている。
In this embodiment, the screw propeller 1 has a plurality of propeller blades 2 on a propeller hub 3, each propeller 'IX'
The interval between the two is adjustable.

そして、プロペラディスク面における伴流速度−の変動
分布をあらかじめ計測し、第5図に示した翼素の速度線
図により、プロペラ翼の一回転中における迎角αの変動
をなくすために、翼間角度θが同プロペラ真の一回転中
に制御されるべき変化量Δθを、上述の計測された伴流
速度−の分布に対応して求める。
The fluctuation distribution of the wake velocity on the propeller disk surface was measured in advance, and based on the speed diagram of the blade elements shown in Figure 5, the blade The amount of change Δθ by which the angle θ should be controlled during one rotation of the propeller is determined in accordance with the distribution of the measured wake velocity described above.

そして、上述の60分布に基づいてプロペラ翼間の角度
θをプロペラの回転作動時に制御することによりそのプ
ロペラ翼の迎角αの変動をなくすことができる。すなわ
ち、第5図において、−が変動しても、翼間角度θをそ
の変化量Δθの時間αをほぼ一定に保つことができる。
By controlling the angle θ between the propeller blades during rotation of the propeller based on the above-mentioned 60 distribution, it is possible to eliminate fluctuations in the angle of attack α of the propeller blades. That is, in FIG. 5, even if - changes, the time α of the change amount Δθ of the interblade angle θ can be kept almost constant.

このことは第5図の記載から明らかである。This is clear from the description in FIG.

この結果、迎角αを第8[21に示すように、プロペラ
−回転中はぼ一定にすることができてプロペラ翼αに作
用する変動圧力、変動力、変動モーメントを少なくし、
さらにプロペラx2に作用する変動圧力によって生じて
いたキャビテーションを無くすることができる。
As a result, as shown in No. 8 [21], the angle of attack α can be kept almost constant during propeller rotation, reducing the fluctuating pressure, fluctuating force, and fluctuating moment acting on the propeller blade α.
Furthermore, cavitation caused by fluctuating pressure acting on the propeller x2 can be eliminated.

なお、上述の実施例は、舶用プロペラについて述べられ
ているが、均一でない流れの中に設置される例えば冷却
ファンについても同様の作用効果が得られることは言う
までもない。
Although the above-mentioned embodiments have been described with respect to a marine propeller, it goes without saying that similar effects can be obtained with, for example, a cooling fan installed in a non-uniform flow.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のプロペラ翼の翼間間隔制
御方法によれば、次のような効果ないし利点が得られる
As described in detail above, according to the method for controlling the spacing between propeller blades of the present invention, the following effects and advantages can be obtained.

(1)プロペラ翼の推力変動やトルク変動およびモーメ
ント変動をなくすことができる。
(1) Thrust fluctuations, torque fluctuations, and moment fluctuations of propeller blades can be eliminated.

(2)上述の理由により、プロペラの振動や騒音の発生
およびキャビテーションの発生を少なくすることができ
る。
(2) For the above-mentioned reasons, it is possible to reduce the vibration and noise of the propeller and the occurrence of cavitation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は従来のスクリュープロペラを示すもので、
第1図はその正面図、第2図は翼素の速度線図であり、
第3図通常の船舶におけるプロペラディスク面上の伴流
分布図であり、第4〜6図は本発明の一実施例としての
プロペラ真の翼間間隔制御方法を説明するためのもので
、第4図はスクリュープロペラの正面図、第5図は翼素
の速度線図、第6図は舶用プロペラとしての適用時にお
ける船尾付近の側面口であり、第7,8図はプロペラ−
回転中における迎角のαの変動を示すグラフで、第7図
は従来のものについてのグラフであり、第8図は本発明
のものについてのグラフである。 1 ・スクリュープロペラ、2・・プロペラ×、3・プ
ロペラハブ。 代理人 弁理士 飯 沼 義 彦 第 図 3プロ゛、Cラハフ
Figure 1.2 shows a conventional screw propeller.
Figure 1 is its front view, Figure 2 is the velocity diagram of the blade element,
Fig. 3 is a wake distribution diagram on the propeller disk surface of a normal ship, and Figs. Figure 4 is a front view of the screw propeller, Figure 5 is a speed diagram of the blade elements, Figure 6 is the side port near the stern when used as a marine propeller, and Figures 7 and 8 are the propeller.
FIG. 7 is a graph showing the variation of the angle of attack α during rotation; FIG. 7 is a graph for the conventional one, and FIG. 8 is a graph for the one according to the present invention. 1. Screw propeller, 2. Propeller x, 3. Propeller hub. Agent: Patent attorney Yoshihiko Iinuma, Figure 3, C Rahaf

Claims (1)

【特許請求の範囲】[Claims] スクリュープロペラの回転作動時に、所要のプロペラ翼
を、その翼面へ流入する伴流に対応させて、隣り合うプ
ロペラ翼に対し相対的に円周方向へ変位させることによ
り、伴流分布に基づく推力変動、トルク変動ならびにキ
ャビテーション発生を防止することを特徴とする、プロ
ペラ翼の翼間間隔制御方法。
When the screw propeller rotates, the required propeller blades are displaced in the circumferential direction relative to adjacent propeller blades in response to the wake flowing into the blade surface, thereby generating thrust based on the wake distribution. A method for controlling the spacing between propeller blades, which is characterized by preventing fluctuations, torque fluctuations, and cavitation.
JP3199789A 1989-02-10 1989-02-10 Vane pitch control method for propeller Pending JPH02212291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3199789A JPH02212291A (en) 1989-02-10 1989-02-10 Vane pitch control method for propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3199789A JPH02212291A (en) 1989-02-10 1989-02-10 Vane pitch control method for propeller

Publications (1)

Publication Number Publication Date
JPH02212291A true JPH02212291A (en) 1990-08-23

Family

ID=12346552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3199789A Pending JPH02212291A (en) 1989-02-10 1989-02-10 Vane pitch control method for propeller

Country Status (1)

Country Link
JP (1) JPH02212291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875006A (en) * 1991-03-19 1999-02-23 Hitachi, Ltd. Method for projecting image obtained by using liquid crystal panels and display apparatus for realizing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859134A (en) * 1981-09-28 1983-04-08 Mitsui Eng & Shipbuild Co Ltd Marine propeller
JPS6042195A (en) * 1983-08-15 1985-03-06 Mitsubishi Heavy Ind Ltd Propeller having automatically variable pitch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859134A (en) * 1981-09-28 1983-04-08 Mitsui Eng & Shipbuild Co Ltd Marine propeller
JPS6042195A (en) * 1983-08-15 1985-03-06 Mitsubishi Heavy Ind Ltd Propeller having automatically variable pitch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875006A (en) * 1991-03-19 1999-02-23 Hitachi, Ltd. Method for projecting image obtained by using liquid crystal panels and display apparatus for realizing the same

Similar Documents

Publication Publication Date Title
US5215439A (en) Arbitrary hub for centrifugal impellers
JPH06508319A (en) Propulsion thrust ring system
EA002323B1 (en) Improved fluid displacing blade and rotodynamic machine
JPH03121992A (en) Noise reducing method
US4599041A (en) Variable camber tandem blade bow for turbomachines
US5209642A (en) Modified optimum pitch propeller
KR890002884B1 (en) Driving arrangement for water craff
US6106232A (en) Propeller structure
CA1057250A (en) Twisted flex fan
JPH02212291A (en) Vane pitch control method for propeller
JPS62157891A (en) Flow feed straightening blade
US4932908A (en) Energy efficient asymmetric pre-swirl vane and twisted propeller propulsion system
GB2055981A (en) Flexible fan
WO1991001247A1 (en) Fluid dynamic surfaces
JP2017150359A (en) Centrifugal compressor impeller
EP3424811A1 (en) Horizontal axis rotor and boat equipped with said rotor
JPH069999B2 (en) Variable Pitch Propeller for Marine
JPH1081299A (en) Marine rotary thruster
US3129767A (en) Torque converting propeller
US3575526A (en) Ship{3 s propeller and method of changing the pitch thereof
JPS5933841Y2 (en) radial turbine wheel
JPS59183099A (en) Axial flow fan
JP7524805B2 (en) Pump, pump design method, and pump manufacturing method
JPH0811786A (en) Skewed propeller
JPS6226311Y2 (en)