JPH02212026A - Method and device for electric discharge machining - Google Patents

Method and device for electric discharge machining

Info

Publication number
JPH02212026A
JPH02212026A JP2760789A JP2760789A JPH02212026A JP H02212026 A JPH02212026 A JP H02212026A JP 2760789 A JP2760789 A JP 2760789A JP 2760789 A JP2760789 A JP 2760789A JP H02212026 A JPH02212026 A JP H02212026A
Authority
JP
Japan
Prior art keywords
machining
electrode
allowance
remaining
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2760789A
Other languages
Japanese (ja)
Other versions
JP2604461B2 (en
Inventor
Kiyoshi Kaneda
清 金田
Kazuhiko Ishikawa
和彦 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP1027607A priority Critical patent/JP2604461B2/en
Publication of JPH02212026A publication Critical patent/JPH02212026A/en
Application granted granted Critical
Publication of JP2604461B2 publication Critical patent/JP2604461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To perform electric discharge machining with good accuracy without any dispersion in dimension by providing a dividing means executing the specific dividing operation making the latest residual work allowance found by a residual work allowance arithmetic means at a numerator side and the difference in the maximum and minimum residual work allowances on the rocking movement route of just before one circulation found by the residual work allowance arithmetic means at a denumerator side. CONSTITUTION:The difference in the present position of a work electrode uptaken by a position uptaking means 24 and the position on the rocking route where the work electrode has to pass at the final work time is operated by a residual work allowance arithmetic means 20 to find the residual work allowance at each position. The specific dividing operation making the latest residual work allowance found by this arithmetic means 20 at a numerator side and the difference in the max. and min. residual work allowances on the rocking movement route of just before one circulation at a denumerator side is executed by a dividing means 28. The relative rocking speed of the work electrode and the body to be worked is controlled by a control means 30 according to this found quotient and the body to be worked is subjected to discharging with good accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、種々の電極形状を有した加工電極を用いる放
電加工方法と装置の改良に関し、特に、電極送り動作方
向に対して垂直な座標平面内で、加工電極中心を揺動動
作させることによって、放電加工による加工域を所望の
加工形状、寸法まで漸次に進捗、増加させる電極揺動型
の放電加工におき、放電加工終了時に被加工物のあらゆ
る被加工位置で、同時に、上記所望の加工形状、寸法に
対して精度の高い許容公差内で加工を終了し得るように
した高精度の放電加工方法と装置とに関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to improvements in electrical discharge machining methods and devices using machining electrodes having various electrode shapes, and in particular, the present invention relates to improvements in electrical discharge machining methods and devices that use machining electrodes having various electrode shapes, and in particular, In electrode oscillating type electrical discharge machining, the machining area by electrical discharge machining gradually progresses and increases to the desired machining shape and dimensions by oscillating the center of the machining electrode within a plane. The present invention relates to a high-precision electrical discharge machining method and apparatus that can simultaneously finish machining at any location on an object within highly accurate tolerances for the desired machining shape and dimensions.

〔従来の技術〕[Conventional technology]

被加工形状に従う種々の電極形状を有した放電加工電極
と被加工物との間で放電現象を利用することにより、被
加工物から加工屑を排除して当該被加工物内に所望の加
工形状、寸法を有した凹形又は凸形の加工部を形成する
放電加工方法は、周知である。また、この放電加工方法
には、加工電極を被加工物の内部に向かう送り方向にの
み漸次に送り動作させて、加工電極の形状に合同な加工
屑除去部分を被加工物内に形成するように放電加工を進
捗させ方法き、加工電極に上記の送り方向と共に当該送
り方向に対して垂直な座標平面内にふいても動作(揺動
動作)を付与し、漸次に放電加工を進捗させる揺動型の
放電加工方法とが従来より行われている。
By utilizing the electrical discharge phenomenon between the electrical discharge machining electrode, which has various electrode shapes according to the shape of the workpiece, and the workpiece, machining debris is removed from the workpiece and the desired machining shape is created within the workpiece. Electrical discharge machining methods for forming concave or convex machined portions having dimensions of , are well known. In addition, this electric discharge machining method involves gradually feeding the machining electrode only in the feeding direction toward the inside of the workpiece, and forming a machining waste removal part in the workpiece that conforms to the shape of the machining electrode. There is a method for progressing electrical discharge machining, and a swinging motion (oscillating motion) is given to the machining electrode in the above-mentioned feeding direction as well as in a coordinate plane perpendicular to the feeding direction to gradually progress electrical discharge machining. A dynamic electrical discharge machining method has been conventionally used.

後者の揺動型放電加工方法と、その実施装置の周知例は
、例えば、特公昭55−16773号公報に開示されて
いる。即ち、この特公昭55−16773号公報に開示
の揺動型放電加工方法と装置とは、加工電極を被加工物
に対して接近する送り方向に対して垂直な座標平面内で
同加工電極に更に揺動遅動を与えて放電加工を進捗させ
、被加工物の被加工輪郭と加工電極との間の加工間隙を
勘案して揺動運動自体の速度の増減を図るもので、揺動
型放電加工方法の原理的技術を示しているに過ぎない。
A well-known example of the latter oscillating electric discharge machining method and its implementation apparatus is disclosed in, for example, Japanese Patent Publication No. 16773/1983. That is, the oscillating electric discharge machining method and apparatus disclosed in Japanese Patent Publication No. 55-16773 is such that the machining electrode is moved to the workpiece within a coordinate plane perpendicular to the feeding direction in which the machining electrode approaches the workpiece. Furthermore, the oscillating motion is slowed down to advance electrical discharge machining, and the speed of the oscillating motion itself is increased or decreased in consideration of the machining gap between the contour of the workpiece and the machining electrode. It merely shows the fundamental technology of the electrical discharge machining method.

他方、上記特公昭55−16773号公報に開示の揺動
型放電加工方法を発展させた近時の放電加工方法では、
加工電極の電極中心が揺動軌跡に沿って変位する速度を
一定の速度にする方式か、加工電極による単位時間当た
りの加工量(加工屑除去量)を一定にするように例えば
、放電電流値を監視して放電電流レベルを一定にするよ
うに揺動させる方式等が採用されている。
On the other hand, in a recent electric discharge machining method that is a development of the oscillating electric discharge machining method disclosed in the above-mentioned Japanese Patent Publication No. 55-16773,
Either the rate at which the electrode center of the machining electrode is displaced along the oscillation locus is set at a constant speed, or the discharge current value is set so that the amount of machining (amount of machining debris removed) per unit time by the machining electrode is constant. A method has been adopted in which the discharge current level is monitored and oscillated to keep the discharge current level constant.

このような、周知の揺動型放電加工方法の原理を更に簡
単図示例により説明すると、第5(A)図に図示のごと
く、被加工物2の加工領域穴(加工電極4を被加工物2
内に送り動作させて形成した穴または予めフライス加工
法等で加工した穴)内で一例として長方形の形状を有し
た加工電極4を、第5(B)図に示す様な座標平面内に
おける軌跡Cに沿って揺動動作をさせると、被加工物2
の放電加工領域は漸次に進捗、増加し、被加工物2の内
部に矩形状の凹形被加工領域3が形成される。この場合
に、第5(A)図の紙面に関し、その紙面に垂直な方向
に被加工物2及び加工電極4は共に厚み寸法を有してい
るから、加工電極4と被加工物2の上記凹形被加工領域
3は面対面で対向している。つまり、加工電極4の長辺
側の大面積の電極面4 a s 4 cと短辺側の小面
積の電極面4b、4dとに対し、凹形被加工領域3の長
辺側の大きな被加工面3a、3cと短辺側の小さな被加
工面3b、3dが対向して放電加工され、放、電加工電
源から加工電極4と被加工物2との放電間隙を介してパ
ルス電圧が印加されることにより、放電加工が進捗する
ものである。
To further explain the principle of such a well-known oscillating electric discharge machining method using a simple illustrated example, as shown in FIG. 2
A machining electrode 4, which has a rectangular shape, for example, is placed in a hole formed by a feeding operation or a hole previously machined by a milling method, etc., in a coordinate plane as shown in FIG. 5(B). When the swinging motion is made along C, the workpiece 2
The electric discharge machining area gradually progresses and increases, and a rectangular concave machining area 3 is formed inside the workpiece 2. In this case, since both the workpiece 2 and the processing electrode 4 have thickness dimensions in the direction perpendicular to the paper surface of FIG. 5(A), the The concave processed regions 3 face each other face-to-face. In other words, compared to the electrode surface 4 a s 4 c having a large area on the long side of the processing electrode 4 and the electrode surfaces 4 b and 4 d having a small area on the short side, the large area on the long side of the concave processing area 3 is The machining surfaces 3a and 3c and the small machining surfaces 3b and 3d on the shorter side are subjected to electric discharge machining while facing each other, and a pulse voltage is applied from the electric discharge and electric machining power supply through the discharge gap between the machining electrode 4 and the workpiece 2. By doing so, electrical discharge machining progresses.

然るに、このように、加工電極4の電極形状に大きな面
積を有した長辺側電極面4as4cと小さな面積を有し
た短辺側電極面4b、4dとがあるき、このような加工
電極4を揺動軌跡Cに沿って1周回させると、上述のよ
うに放電加工電源からのパルス加工電圧の印加により、
加工電極4の小面積の電極面4b、4dが小面積の被加
工面3b、3dを加工するときには、加工電極40大面
積の電極面4a、4cが大面積の被加工面3a。
However, when the electrode shape of the machining electrode 4 has the long side electrode surface 4as4c having a large area and the short side electrode surfaces 4b and 4d having a small area, it is difficult to shake the machining electrode 4. When it makes one revolution along the moving trajectory C, as mentioned above, by applying the pulse machining voltage from the electrical discharge machining power source,
When the small-area electrode surfaces 4b and 4d of the processing electrode 4 process the small-area work surfaces 3b and 3d, the large-area electrode surfaces 4a and 4c of the work electrode 40 work as the large-area work surface 3a.

3cを加工するときに比べて単位面積当たりの放電エネ
ルギーレベルが高く、従って、加工屑除去量が多くなり
、電極中心から見て深く放電加工が進捗してしまう。こ
のような放電加工過程を継続していると、必然的に、被
加工物2の大面積の被加工面3a、3cが所要の最終形
状、寸法に到達する以前に同加工物2の小面積の被加工
面3b。
The discharge energy level per unit area is higher than when machining 3c, so the amount of machining debris removed increases, and the discharge machining progresses deeply when viewed from the center of the electrode. If such electrical discharge machining process is continued, inevitably, the small area of the workpiece 2 will be reduced before the large-area workpiece surfaces 3a and 3c of the workpiece 2 reach the required final shape and dimensions. Processed surface 3b.

3dでは所望の最終寸法に到達してしまう現象が発生す
る。
In 3D, a phenomenon occurs in which the desired final dimension is reached.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の様な現象が発生すると、最終寸法に到達するのが
遅れた大面積の被加工面3 a % 3 cを所望の最
終形状、寸法値に到達させるために加工電極4の揺動動
作を継続させて放電加工の進捗を続ける間に、速く最終
の形状、寸法に到達した小面積の被加工面3b、3dで
も、加工電極4からの放電が持続して放電加工が進捗し
てしまい一1結局、余分に放電加工が行われてしまう問
題がある。つまり、小面積の被加工面3b、3dは所望
の最終寸法をオーバーした寸法値となり、許容公差を逸
脱したり、許容公差の限界値にまで達してしまう等の精
度低下を来たす問題が生ずる。
When the above-mentioned phenomenon occurs, the machining electrode 4 must be oscillated in order to reach the desired final shape and dimensions of the large-area workpiece surface 3a%3c, which has been delayed in reaching its final dimensions. While the electrical discharge machining continues to progress, the electrical discharge from the machining electrode 4 continues and the electrical discharge machining progresses, even on the small-area machined surfaces 3b and 3d that quickly reach the final shape and dimensions. 1. As a result, there is a problem in that extra electrical discharge machining is performed. In other words, the small-area processed surfaces 3b and 3d have dimensional values that exceed the desired final dimensions, resulting in a problem of deterioration of accuracy, such as deviating from the allowable tolerance or reaching the limit value of the allowable tolerance.

また、このような、精度低下を防止すべく、作業者が介
在して加工電極4の揺動軌跡を修正する等を行うと、放
電加工能率の低下を来し、更に、放電加工装置の自動機
能に制限が生ずる問題も発生する。
In addition, if an operator intervenes to correct the swing trajectory of the machining electrode 4 in order to prevent such a decrease in accuracy, the efficiency of electrical discharge machining will decrease, and furthermore, the automatic discharge machining device will Problems such as functional limitations may also occur.

以上の具体例は、加工電極の形状が電極中心に関して放
電加工作用面積に極端な差異がある、言わば、異形形状
であることに起因して被加工物の夫々の被加工面で異な
る時点に最終寸法に到達するものであるが、その他に、
加工電極の電極中心が被加工物の放電加工領域の中心部
からずれた位置より放電加工が開始されることにより、
加工電極の各部分により加工される加工代にバラツキが
あると同様の問題が発生する。
In the above specific example, the shape of the machining electrode has an extreme difference in the electrical discharge machining action area with respect to the center of the electrode. In addition to reaching the dimensions,
By starting electrical discharge machining at a position where the electrode center of the machining electrode is shifted from the center of the electrical discharge machining area of the workpiece,
A similar problem occurs if there are variations in the machining allowance for each part of the machining electrode.

また、放電間隙において短絡等の異常が検出された時は
、揺動経路を所定の揺動軌跡から中心方向に適宜変更し
て、異常状態から回復させるように制御するものにおい
ても、同じように、被加工面の各面で最終寸法値に達す
る時間に差異が生ずる結果が発生し、上述と同様な問題
点が生ずる。
In addition, when an abnormality such as a short circuit is detected in the discharge gap, the swing path is appropriately changed from a predetermined swing trajectory toward the center to recover from the abnormal state. This results in a difference in the time taken to reach the final dimension value on each side of the machined surface, resulting in the same problem as described above.

依って、本発明の目的は、上述の問題に鑑みて揺動型放
電加工法における上述の問題点を解決することを主たる
目的とするものである。
Therefore, in view of the above-mentioned problems, the main object of the present invention is to solve the above-mentioned problems in the oscillating electric discharge machining method.

また、本発明の他の目的は、加工電極の形状、電極中心
と被加工物の放電加工部の中心との心ずれ、放電間隙に
おける放電々正異常等に基づくサーボ動作等に左右され
ること無く、被加工物のあらゆる放電加工位置で所望の
形状、寸法に同時に、しかも高い精度の許容寸法公差内
で放電加工が終了し得るようにする高精度の放電加工方
法と、その方法を実施可能な放電加工装置とを提供せん
とするものである。
Another object of the present invention is to solve the problem that the servo operation is affected by the shape of the machining electrode, the misalignment between the center of the electrode and the center of the electrical discharge machining part of the workpiece, abnormalities in electrical discharge in the electrical discharge gap, etc. A high-precision electrical discharge machining method that enables electrical discharge machining to be completed simultaneously at any electrical discharge machining position of a workpiece to the desired shape and dimensions, and within highly accurate dimensional tolerances, and the method can be implemented. The present invention aims to provide an electric discharge machining apparatus that is suitable for use in electrical discharge machining.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、被加工物と加工電極との間で所定の揺動軌跡
に沿って相対的な揺動運動を行って、被加工物の凹部ま
たは穴の壁面や底面を含めた内側面を所望の放電加工形
状、寸法に放電加工するに当たり、放電間隙において短
絡等の異常が検出された時は、揺動経路を所定の揺動軌
跡から中心方向に一時的に変位させるものにおいて、上
記内側面のあらゆる位置で当該所望の放電加工形状、寸
法に加工が完了する理想的な最終揺動運動経路を定め、
現在の揺動経路における刻々の加工電極の現在位置と、
その刻々の加工電極の位置に対応した上記最終揺動運動
経路の位置との間で、経路をよぎる方向に見た差を残余
の加工代(以下、単に残加工代と言う。)として捉え、
該残加工代をパラメータにして現在の位置における揺動
運動速度を残加工代の均一化が得られるように増減制御
してあらゆる加工面において最終の1周回の揺動経路を
通過後に残加工代が無くなるようにするものである。
The present invention performs a relative oscillating motion between a workpiece and a processing electrode along a predetermined oscillation locus, so that the inner surface of the recess or hole of the workpiece, including the wall and bottom surface, can be moved as desired. When an abnormality such as a short circuit is detected in the discharge gap during electrical discharge machining to the shape and dimensions of Determine the ideal final oscillating motion path to complete machining to the desired electrical discharge machining shape and dimensions at any position,
The current position of the machining electrode moment by moment on the current swing path,
The difference between the position of the final oscillating movement path corresponding to the position of the machining electrode at each moment, as seen in the direction across the path, is regarded as the residual machining allowance (hereinafter simply referred to as the residual machining allowance),
Using the remaining machining allowance as a parameter, the oscillating movement speed at the current position is controlled to increase or decrease so as to equalize the remaining machining allowance, and the remaining machining allowance is calculated after passing through the final oscillation path of one revolution on every machining surface. This is to ensure that there are no more.

即ち、本発明によれば、加工電極と被加工物とを相対的
に揺動させながら凹部又は穴の内側面を加工する放電加
工方法に右いて、前記加工電極の刻々の位置と最終加工
時に通るべき理想位置との差から求まる残加工代を演算
し、鎖側々の残加工代を記憶して行き、現在の揺動運動
の周回経路に対する直前1周回の揺動運動の周回経路に
おける残加工代の大小の分布状態を求め、前記刻々求ま
る現在の残加工代が前記直前1周回の揺動運動の経路に
おける残加工代の大小の分布状態における大きな残加工
代に該・当している加工位置では前記揺動速度を遅く、
小さな残加工代に該当している加工位置では前記揺動速
度を速くするように制御し、最終加工時の周回経路に沿
う揺動運動により、残加工代を一斉に解消するようにし
た放電加工方法が提供される。
That is, according to the present invention, in the electric discharge machining method in which the inner surface of a recess or hole is machined while relatively rocking the machining electrode and the workpiece, the position of the machining electrode at every moment and the final machining are controlled. Calculate the remaining machining allowance found from the difference from the ideal position that the chain should pass, store the remaining machining allowance on each side of the chain, and calculate the remaining machining allowance on the circular path of the previous one revolution with respect to the circular path of the current oscillating movement. The distribution state of the size of the machining allowance is determined, and the current remaining machining allowance determined moment by moment corresponds to the large remaining machining allowance in the distribution state of the size of the remaining machining allowance on the path of the previous one revolution of the oscillating motion. At the processing position, the swing speed is slowed down,
Electrical discharge machining in which the oscillating speed is controlled to be faster at machining positions where there is a small remaining machining allowance, and the oscillating movement along the circular path during final machining eliminates the remaining machining allowance all at once. A method is provided.

又、本発明によれば、放電加工の揺動経路における刻々
の加工電極の位置を取出す位置取出手段と、該位置取出
手段で取出した前記加工電極の現在位置と最終加工時に
前記加工電極が通るべき揺動経路上の位置との差を演算
して各位置における残加工代を求める残加工代演算手段
と、該残加工代演算手段で求めた最新の残加工代を分子
側に、また前記残加工代演算手段で求めた直前の1周回
の揺動運動経路に右ける最大残加工代と最小残加工代と
の差を分母側にした所定の割算演算を実行する割算手段
と、該割算手段で求めた商に応じて前記揺動速度を制御
する速度制御手段とを具備した放電加工装置が提供され
る。
Further, according to the present invention, there is provided a position extracting means for extracting the position of the machining electrode moment by moment in the swing path of electric discharge machining, and a current position of the machining electrode taken out by the position extracting means, and a position that the machining electrode passes during final machining. a residual machining allowance calculation means for calculating the residual machining allowance at each position by calculating the difference between the position on the oscillation path and the remaining machining allowance at each position; a division means for executing a predetermined division operation in which the denominator is the difference between the maximum remaining machining allowance and the minimum remaining machining allowance based on the oscillating motion path of one revolution immediately before, which is determined by the remaining machining allowance calculation means; An electric discharge machining apparatus is provided, comprising speed control means for controlling the swing speed according to the quotient obtained by the dividing means.

〔作用〕[Effect]

上述の本発明による放電加工方法と装置によれば、被加
工物の凹形部ないし穴部の内側面を放電加工する加工電
極は、両者の相対揺動運動の過程で、該揺動運動の経路
上を進む時々刻々の間に、最終加工時に電極中心が通過
する揺動運動の経路と現在の電極中心位置との差として
定めた残加工代が大きい地点ではゆっくりした加工速度
で進み、残加工代が小さい地点では、速い加工速度で進
むから、被加工物の被加工内側面における残加工代1大
あらゆる位置でムラ無く、漸次に放電加工が進み、従っ
て、最終の揺動経路の周回が終了するとき、あらゆる位
置で、所望の厳しい許容公差内に収まる形状、寸法によ
り放電加工を終了させることができ、故に、高い加工精
度による放電加工を達成できるのである。以下、本発明
を実施例に基づいて、更に、詳細に説明する。
According to the electrical discharge machining method and apparatus according to the present invention described above, the machining electrode that performs electrical discharge machining on the inner surface of the concave portion or hole of the workpiece, during the relative rocking motion between the two, As the electrode moves along the path, at points where the remaining machining allowance is large, which is defined as the difference between the path of the oscillating movement that the electrode center passes during final machining and the current electrode center position, the machining speed is slow. At points where the machining allowance is small, machining proceeds at a fast machining speed, so electrical discharge machining progresses gradually and evenly at all positions on the inner surface of the workpiece with a large remaining machining allowance, and therefore the final rotation of the oscillation path When this process is completed, electrical discharge machining can be completed at any position with a shape and size that fall within desired strict tolerances, and therefore, electrical discharge machining with high machining accuracy can be achieved. Hereinafter, the present invention will be explained in more detail based on examples.

〔実施例〕〔Example〕

第1図は、本発明による放電加工方法の遂行時における
基本的な作用手段の作用と加工々程の推移とを示したフ
ローチャート、第21!Iは被加工物と放電加工電極と
の間における電極送り方、向に対して垂直な座標平面内
における相対的な揺動運動の進捗過程における両者の位
置的関係を代表例により説明する平面図、第3図は、本
発明による放電加工方法を直接実施する放電加工装置の
要部構成の1例を示すブロックダイヤグラム、第4図は
本発明による放電加工方法において実施される残加工代
をパラメータとした加工電極の揺動運動速度の増減制御
方法を説明するグラフ図である。
FIG. 1 is a flowchart showing the actions of the basic action means and the progress of the machining process when carrying out the electric discharge machining method according to the present invention, No. 21! I is a plan view illustrating the electrode feeding direction between the workpiece and the electric discharge machining electrode, and the positional relationship between the two in the progress process of relative rocking motion in a coordinate plane perpendicular to the direction, using a representative example. , FIG. 3 is a block diagram showing an example of the configuration of main parts of an electrical discharge machining apparatus that directly implements the electrical discharge machining method according to the present invention, and FIG. FIG. 3 is a graph diagram illustrating a method for controlling the increase/decrease of the swinging motion speed of the processing electrode.

さて、先ず、第2図を参照すると、同図は、前述した第
5図に示した従来の放電加工方法における被加工物と加
工電極との位置的相対関係を示した平面図2同様に、本
発明による放電加工方法における被加工物と加工電極と
の相対的揺動運動の遂行過程を解説する平面図である。
Now, first of all, referring to FIG. 2, this figure is similar to the plan view 2 showing the relative positional relationship between the workpiece and the machining electrode in the conventional electric discharge machining method shown in FIG. FIG. 3 is a plan view illustrating a process of relative oscillating motion between a workpiece and a machining electrode in the electrical discharge machining method according to the present invention.

同図において、被加工物10は、その凹形部又は穴v&
12の内側面を加工電極14により放電加工するもので
、ここでは、加工電極14は1例として、矩形形状を有
し、従って、この加工電極14により放電加工される被
加工物10の上記内側面(加工電極14の電極表面に対
向した壁面、底面を含んだ内側向きの面を指す。)も矩
形形状に加工されることを示している。
In the figure, the workpiece 10 has a concave portion or hole v&
The inner surface of the workpiece 12 is subjected to electric discharge machining using a machining electrode 14. Here, the machining electrode 14 has a rectangular shape, for example. The side surface (referring to the inward facing surface including the wall surface and bottom surface of the processing electrode 14 facing the electrode surface) is also shown to be processed into a rectangular shape.

本発明の前提として、被加工物10と加工電極14とは
、第2図の紙面に平行な座標平面内におき、放電間隙を
介して両者間で相対的な揺動運動を行うことによって、
漸次的に放電加工領域を所望の形状、寸法へ増大させて
行く方法をとるから、上記相対的揺動運動は、例えば、
電動サーボモータ等の適宜の駆動源を加工電極14のア
クチュエータにして上記座標平面内で、該加工電極14
の中心(加工電極の座標面内における動作中心を言う。
The premise of the present invention is that the workpiece 10 and the machining electrode 14 are placed in a coordinate plane parallel to the plane of the paper in FIG.
Since the method of gradually increasing the electrical discharge machining area to the desired shape and dimensions is used, the above-mentioned relative oscillation motion is, for example,
A suitable drive source such as an electric servo motor is used as an actuator for the machining electrode 14, and the machining electrode 14 is moved within the coordinate plane.
(the center of operation in the coordinate plane of the processing electrode)

)を、揺動中心Gを中心として被加工物10に対して揺
動経路または軌跡に沿い揺動運動をさせるか、又は、座
標平面内で静止状態の加工電極14の電極中心に対して
被加工物10を揺動中心Gに関して同座標平面内の直交
2軸方向に送り作用を与え、その合成動作結果として揺
動運動を行わせるか何れかの構成が取られる。
) with respect to the workpiece 10 along a swinging path or trajectory around the swinging center G, or with respect to the electrode center of the machining electrode 14 in a stationary state within the coordinate plane. A configuration is adopted in which a feed action is applied to the workpiece 10 in two orthogonal axes directions within the same coordinate plane with respect to the swing center G, and a swing motion is performed as a result of the combined action.

更に、第2図の図示例では、上記相対的な揺動運動にお
いて、加工電極14の中心が、現在通過している揺動経
路または揺動軌跡16aと、同じく加工電極14の中心
が、被加工物10の所望の最終形状、寸法を有する被加
工面10e(−点破線で図示。)を加工、形成するため
に最終的に通過する理想的な揺動経路16eが図示され
ており、揺動経路16aから揺動経路16eに放電加工
が進捗すると、上記被加工物10の所望の最終形状、寸
法を有する被加工面10eの放電加工が終了するもので
ある。
Furthermore, in the illustrated example of FIG. 2, in the above-mentioned relative rocking motion, the center of the machining electrode 14 is aligned with the currently passing rocking path or rocking trajectory 16a, and the center of the machining electrode 14 is also An ideal rocking path 16e is shown, which is ultimately passed through in order to process and form a workpiece surface 10e (indicated by a - dotted line) having the desired final shape and dimensions of the workpiece 10. When the electrical discharge machining progresses from the moving path 16a to the swinging path 16e, the electrical discharge machining of the workpiece surface 10e having the desired final shape and dimensions of the workpiece 10 is completed.

このとき、本発明では、加工電極14の中心の現在位置
、例えば揺動経路16a上の一点14aと上記最終的に
通過する理想的な揺動経路16eにおける加工電極14
の中心が通過すべき理想的な通過点14eとの両点を結
び、かつ、両揺動軌跡16a、16eを過る方面に見た
寸法、つまり、現時点以降に放電加工すべき加工代を残
加工代Eと言う概念を導入、定義し、この残加工代Eを
制御パラメータにして後述する放電加工作用の制御を行
なうのである。ここで、加工電極14が現在通過してい
る揺動経路16aは加工作用の進捗に応じて最終の揺動
経路16e側へ漸次に移行せしめられるから、当然に、
上記残加工代Eは一定不変の量では無く、また、加工電
極14の電極中心位置が、同じ揺動経路16aの種々の
位置を順次に辿るとき各点毎に、その点における残加工
代Eが定義され、他の点における残加工代Eとの間では
同一量の一定値として一致するものでない。但し、第2
図に図示の如く、揺動経路16a、16eを過る線上で
見た加工電極14の中心の現在位置と最終位置との差に
よる残加工代Eの値と、被加工物10の所望の最終被加
工面LDeと現在まで放電加工された被加工面10aと
の差の値である残存加工代の値とは当然に等しい。
At this time, in the present invention, the current position of the center of the processing electrode 14, for example, a point 14a on the swing path 16a, and the ideal swing path 16e that the processing electrode 14 finally passes through
The dimension connecting the ideal passing point 14e that the center of A concept called a machining allowance E is introduced and defined, and this remaining machining allowance E is used as a control parameter to control the electric discharge machining operation described later. Here, since the swinging path 16a that the processing electrode 14 is currently passing through is gradually moved to the final swinging path 16e according to the progress of the processing operation, naturally,
The remaining machining allowance E is not a constant amount, and when the electrode center position of the machining electrode 14 sequentially traces various positions on the same swing path 16a, the remaining machining allowance E at each point changes. is defined, and the remaining machining allowance E at other points does not match as a constant value of the same amount. However, the second
As shown in the figure, the value of the remaining machining allowance E due to the difference between the current position of the center of the machining electrode 14 and the final position as seen on a line passing through the swing paths 16a and 16e, and the desired final machining amount of the workpiece 10. Naturally, the value of the remaining machining allowance, which is the difference between the machined surface LDe and the machined surface 10a that has been subjected to electric discharge machining up to now, is equal.

さて、上述した残加工代Eを制御パラメータとした本発
明による揺動運動型の放電加工方法と装置とを以下に第
1図から第4図に基づいて、説明する。
Now, the oscillating motion type electric discharge machining method and apparatus according to the present invention using the above-mentioned remaining machining allowance E as a control parameter will be explained below with reference to FIGS. 1 to 4.

さて、上述した第2図と共に第1図を参照すると、本発
明に係る放電加工方法を実施するための機能手段として
、上述した残加工代Eを放電加工過程で刻々に演算する
ために、残加工代演算手段20、被加工物10に所望の
加工形状、寸法の凹部又は穴12を放電加工するための
加工プログラムに基づき、所定の形状を有した加工電極
14が辿るべき揺動経路のプログラムを予め記憶すると
共に上記残加工代演算手段20に最終的に辿る揺動軌跡
16eの情報を供給する揺動プログラム記憶手段22、
放電加工の過程における加工電極14の電極中心が現在
時点で通過している揺動経路16a上の位置を揺動プロ
グラムの実行手段又は電極駆動用アクチュエータに具備
された検出器、被加工物送り機構の検出器等から取出す
現在電橋位置取出手段24、上記残加工代演算手段20
が演算した最終的揺動経路16eにおけ4理想的通過点
の位置14eと現在時点の電極揺動経路16a上の現在
時点の電極位置14aとの差を現在時点の残加工代E 
(14e−14a=E)として逐次記憶すると共に加工
電極14の揺動運動が現在の揺動経路16aから次の周
回の揺動経路(図示略)に進んだときに、現在の電極位
置を直前の周回の揺動経路を通過中における残加工代E
の値としてデータ供給可能な残加工代記憶手段26、上
記残加工代演算手段20で演算した残加工代Eと、上記
残加工代記憶手段26に記憶された直前の周回の揺動経
路上における残加工代Eの記憶値とから下記の割算演算
、即ち、 ((現在の残加工代E)−(直前周回中の最小残加工代
E″□ヨ))+((直前の周回中の最終被加工面E′□
、)−(直前の周回中の最終被加工面E’ mtm )
 )を行う割算手段28、該割算手段28の演算結果に
基づいて、加工電極!4の現在の揺動経路における通過
速度を増減制御して、放電加工による加工屑除去量を適
正レベルに調節せしめるようにする揺動速度制御手段3
0の諸手段を具備している。即ち、上記諸機能手段20
〜3Dを具備することにより、本発明の放電加工装置が
構成されるのである。 ここで、上記割算手段28が行
う割算の商の技術的意義は、現在の残加工代Eが、直前
の周回の揺動経路を加工電極14が通過した時に各電極
位置毎に演算された残加工代E°の大小の分布状態(上
記の演算の分母部分の意@)に対して現在の電極位置に
おける残加工代Eはどの程度の大きさであるかの傾向を
知り、比較的大きな残加工代値であれば、加工代を減少
させるべく加工電極14をゆっくり揺動経路16a上を
通過させるようにし、以て放電間隙を介して進捗する放
電加工作用を促進し、逆に、比較的小さな残加工代値で
あれば、加工代の減少を抑制すべく比較的早い速度で加
工電極14を通過させるようにし、放電加工作用の進捗
を抑制するようにする判断のためのパラメータDを演算
している意義を有するのである。
Now, referring to FIG. 1 together with the aforementioned FIG. The machining allowance calculating means 20, based on a machining program for electrical discharge machining a recess or hole 12 of a desired machining shape and size on the workpiece 10, programs a swing path that a machining electrode 14 having a predetermined shape should follow. an oscillation program storage means 22 for storing in advance and supplying information on the oscillation trajectory 16e to be finally traced to the remaining machining allowance calculation means 20;
The position on the swing path 16a through which the electrode center of the machining electrode 14 is currently passing in the process of electrical discharge machining is detected by a swing program execution means, a detector provided in the electrode drive actuator, or a workpiece feed mechanism. The current electric bridge position extracting means 24 is extracted from a detector, etc., and the remaining machining allowance calculating means 20 is
The difference between the position 14e of the four ideal passing points on the final swinging path 16e calculated by and the current electrode position 14a on the electrode swinging path 16a at the current point is calculated as the remaining machining allowance E at the current point in time.
(14e-14a=E), and when the swinging motion of the processing electrode 14 advances from the current swinging path 16a to the next rotational swinging path (not shown), the current electrode position is Remaining machining allowance E while passing through the orbital oscillation path of
The remaining machining allowance storage means 26 is capable of supplying data as the value of the remaining machining allowance E calculated by the remaining machining allowance calculation means 20 and the remaining machining allowance E calculated by the remaining machining allowance calculation means 20, and the remaining machining allowance E calculated by the remaining machining allowance calculation means 20, and From the stored value of remaining machining allowance E, perform the following division operation: Final processed surface E'□
, ) - (Final workpiece surface E' mtm during the previous revolution)
), based on the calculation result of the dividing means 28, the processing electrode! Rocking speed control means 3 for increasing or decreasing the passing speed in the current rocking path of No. 4 to adjust the amount of machining debris removed by electrical discharge machining to an appropriate level.
It is equipped with 0 means. That is, the various functional means 20
The electrical discharge machining apparatus of the present invention is configured by including the 3D. Here, the technical significance of the quotient of the division performed by the dividing means 28 is that the current remaining machining allowance E is calculated for each electrode position when the machining electrode 14 passes through the swing path of the previous revolution. To find out the tendency of the size of the remaining machining allowance E° at the current electrode position with respect to the distribution state of the size of the remaining machining allowance E° (meaning the denominator part of the above calculation), it is possible to compare If the remaining machining allowance is large, the machining electrode 14 is slowly passed over the swinging path 16a in order to reduce the machining allowance, thereby promoting the electric discharge machining action that progresses through the discharge gap, and conversely, If the remaining machining allowance value is relatively small, the machining electrode 14 is passed at a relatively fast speed to suppress the decrease in the machining allowance, and the progress of the electric discharge machining action is suppressed using the parameter D. It has the meaning of calculating .

そして、このようにして割算演算により得られた判断パ
ラメータに基づき、各位置における残加工代が等しくな
る傾向に向けて加工電極14による放電加工作用を制御
させれば、最終的な揺動経路16eを加工電極14が通
過することにより、被加工物10の最終被加工面10e
は加工代のバラツキを残すことなく、所定の許容公差内
の寸法に一度で加工が終了するのである。
Based on the judgment parameters obtained by the division calculation in this way, if the electric discharge machining action by the machining electrode 14 is controlled so that the remaining machining allowance at each position tends to be equal, the final swing path 16e, the final processed surface 10e of the workpiece 10 is
This allows machining to be completed in one go to the dimensions within the predetermined tolerance without leaving any variations in the machining allowance.

第3図は、上述した諸機能手段20〜30を具備した本
発明に係る放電加工装置の具体的な実施例の構成を示し
たブロック図である。
FIG. 3 is a block diagram showing the configuration of a specific embodiment of the electrical discharge machining apparatus according to the present invention, which is equipped with the various functional means 20 to 30 described above.

同図に示す実施例は、被加工物の加工プログラムを周知
の数値制御装置(NC装置)から自動供給して実施する
例であり、NC装置40は、被加工物lOの所望の形状
、寸法に応じたNCプログラムを数値制御データとして
記憶したプログラム部41、該プログラム°部41のN
Cプログラムに従ってNG制御を実行するNC加工プロ
グラムを作成、送出するNC実行部42、同NG実行部
42からのNG加工プログラムによりNC加工を実行す
る際のサーボ動作に↓ける補間機能プログラムを作成、
送出する加工サーボ補間部43とを有して構成されてい
る。
The embodiment shown in the figure is an example in which a machining program for a workpiece is automatically supplied and executed from a well-known numerical control device (NC device). A program unit 41 that stores an NC program corresponding to the numerical control data as numerical control data;
An NC execution unit 42 creates and sends out an NC machining program that executes NG control according to the C program, creates an interpolation function program for servo operation when executing NC machining using the NG machining program from the NG execution unit 42,
It is configured to include a processing servo interpolation section 43 that sends out data.

放電加工装置は、上記NC装置40から供給される加工
プログラムに基づいて加工電極14(第2図)に揺動運
動を付与して放電加工を制御するための構成を有し、従
フて、上記NG実行部42から揺動プログラムを取出し
て揺動経路を作成、送出する揺動補間部51、該揺動補
間部51と上記NC装置40の加工サーボ補間部43と
の出力に従って加工電極14を3次元方向に駆動する各
軸の駆動モータ(本例は加工電極14が揺動運動する例
でX軸、Y軸、Z軸方向に夫々の駆動モータで加工電極
14が動作するものとする。)に供給する揺動駆動用の
駆動パルスの合成を行うパルス合成部52、同パルス合
成部52の駆動パルスを逐次に送出する出力パルス部5
3、上記パルス合成部52の駆動パルスから加工電極1
4の現在位置を取出す電極現在位置取出部54、上述し
た残加工代演算手段20と割算手段28の演算機能を実
行する演算857と、上記揺動速度制御手段300機能
を実行し、演算結果の商から揺動速度の増減調節速度を
演算する揺動速度演算部58とを備えたCPU55、該
CPU55が行う演算結果としての残加工代Eや割算の
商を記憶する周知のRAM手段から成る記憶部56とを
備えている。
The electric discharge machining apparatus has a configuration for controlling electric discharge machining by applying a swinging motion to the machining electrode 14 (FIG. 2) based on a machining program supplied from the NC device 40, and A swing interpolation unit 51 extracts a swing program from the NG execution unit 42 and creates and sends a swing path, and a processing electrode 14 according to the outputs of the swing interpolation unit 51 and the processing servo interpolation unit 43 of the NC device drive motors for each axis to drive in three-dimensional directions (in this example, the machining electrode 14 moves in oscillating motion, and the machining electrode 14 is operated by each drive motor in the X-axis, Y-axis, and Z-axis directions). ), a pulse synthesizing section 52 that synthesizes drive pulses for oscillating drive to be supplied to
3. Processing electrode 1 from the drive pulse of the pulse synthesis unit 52
The electrode current position extraction unit 54 extracts the current position of No. 4, the calculation 857 performs the calculation functions of the above-mentioned remaining machining allowance calculation means 20 and the division means 28, and the function of the above-mentioned swing speed control means 300, and calculates the calculation result. A CPU 55 equipped with an oscillating speed calculating section 58 that calculates an increase/decrease adjustment speed of the oscillating speed from the quotient of , and a well-known RAM means that stores the remaining machining allowance E and the quotient of division as the calculation results performed by the CPU 55. A storage unit 56 consisting of:

なお、既述の第1の構成における揺動プログラム記憶手
段22は、本例ではNC装置40に具備されており、現
在電極位置取出手段24はパルス合成部52により作成
される駆動パルスより定まる揺動経路から現在電極位置
を取出す手段として電極現在位置取出手段54が設けら
れている。
Note that the swing program storage means 22 in the first configuration described above is included in the NC device 40 in this example, and the current electrode position extraction means 24 uses the swing program storage means 22 determined by the drive pulse created by the pulse synthesis section 52. Current electrode position extraction means 54 is provided as a means for extracting the current electrode position from the moving path.

以上の構成から成る本発明の放電加工方法と装置におい
ては、加工電極14の揺動経路における通過速度を残加
工代Eを制御パラメータにして演算された判断パラメー
タD(既述の割算の商)に従って増減調節制御すること
により、放電加工作用の進捗を制御するが、実際には、
例えば、第4図に示すように、上記判断パラメータDの
値に対応して揺動速度をVIAIとV wtxとの間で
段階的に変化させても、最終加工経路を通過後における
加工代のバラツキ解消効果は著しく、実験例では、第2
図に示すような矩形凹部12の放電加工に当たり、長辺
側と短辺側との最終加工寸法で従来では両者間で10ミ
クロンから15ミクロンのバラツキ差として存在したが
、本発明の放電加工方法によれば、それが、2ミクロン
ないし3ミクロンに低減された結果が得られた。
In the electric discharge machining method and apparatus of the present invention having the above-described configuration, the passing speed of the machining electrode 14 in the swing path is calculated using the remaining machining allowance E as a control parameter, and the determination parameter D (the above-mentioned division quotient) is used. ), the progress of the electrical discharge machining action is controlled by controlling the increase/decrease according to
For example, as shown in Fig. 4, even if the swing speed is changed stepwise between VIAI and Vwtx in accordance with the value of the judgment parameter D, the machining allowance after passing through the final machining path will be reduced. The effect of eliminating variations is remarkable, and in the experimental example, the second
In electric discharge machining of a rectangular recess 12 as shown in the figure, conventionally there was a difference of 10 to 15 microns in final machining dimensions between the long side and the short side, but the electric discharge machining method of the present invention According to the authors, results were obtained in which it was reduced to 2 to 3 microns.

〔発明の効果〕〔Effect of the invention〕

以上の説明から理解できるように、本発明による揺動運
動型の放電加工方法及び装置によれば、残加工代という
放電加工作用上の演算値を採り入れ、この残加工代をパ
ラメータにして制御用の判断パラメータを演算し、その
判断パラメータに従って揺動経路ないし軌跡を移行する
加工電極の中心の移動速度を制御して放電加工作用の進
捗を加減制御するようにし、残加工代が加工プログラム
に従う最終の揺動経路を通過して加工終了点に達したと
き、被加工物の被加工面のあらゆる位置における寸法が
所定の許容公差内にあって加工を終了することになるか
ら最終加工面の寸法が加工超過に成ったり、加工不足に
成ったりして寸法のバラツキを発生することが無く、故
に、極めて高い加工精度の放電加工結果が得られるとい
う効果を得ることができるのである。
As can be understood from the above explanation, according to the oscillating motion type electric discharge machining method and apparatus according to the present invention, a calculated value on the electric discharge machining action called the residual machining allowance is adopted, and this residual machining allowance is used as a parameter for control purposes. The progress of the electrical discharge machining operation is controlled by calculating the judgment parameters and controlling the moving speed of the center of the machining electrode that moves along the swing path or trajectory according to the judgment parameters, so that the remaining machining allowance is adjusted according to the machining program. When the machining end point is reached after passing through the swing path of the workpiece, the dimensions at all positions on the machined surface of the workpiece are within the predetermined tolerance and the machining is completed, so the dimensions of the final machined surface There is no possibility of dimensional variations due to over-machining or under-machining, and therefore it is possible to obtain electrical discharge machining results with extremely high machining accuracy.

また、本発明は、放電加工開始時に加工電極の電極中心
が加工領域の中心に設定されていない心ずれ状態から開
始され、従って、残加工代が揺動経路上の各点で大きく
バラツキが有る状態であっても、最終加工時点では、所
望の寸法、形状にバラツキ無く、しかも同時期に加工を
終了するという効果も得ることができる。
Furthermore, in the present invention, when electric discharge machining is started, the electrode center of the machining electrode is not set at the center of the machining area. Therefore, the remaining machining allowance varies greatly at each point on the swing path. Even if it is in the same state, there is no variation in the desired dimensions and shape at the time of final processing, and it is also possible to complete the processing at the same time.

同様に加工電極の形状が実施例の如く、矩形形状を有す
ることにより、被加工面と対向する加工面積に大きなバ
ラツキが有る形状の場合にも被加工物の被加工面はあら
ゆる位置で、高い加工精度により、放電加工を達成でき
る効果を有しているのである。
Similarly, since the shape of the machining electrode is rectangular as in the example, even if the machining area facing the workpiece surface has a large variation, the workpiece surface will be high at every position. The machining accuracy has the effect of achieving electrical discharge machining.

更に、従来の定速揺動式の放電加工では、加工途中に作
業者が介入して加工精度をチエツクし、加工条件を調整
する等の人的作用の介入を回避出来なかったが、本発明
では、斯かる人的作用の介入を廃することが可能となり
、故に、放電加工の自動化率を益々向上させることがで
きる。
Furthermore, in conventional constant-speed oscillating electric discharge machining, it was not possible to avoid human intervention such as the operator's intervention during machining to check machining accuracy and adjust machining conditions. Now, it is possible to eliminate such human intervention, and therefore the automation rate of electric discharge machining can be further improved.

また、従来、被加工物の被加工凹部の隅部等では残加工
代が最後まで残り、他の部分の加工終了後にも隅部の加
工のみをなお、遂行しなければ成らないため、加工電極
は無駄な揺動運動を追加的に行う必要があったが、本発
明は、揺動運動経路が漸次に移行する過程で徐々にあら
ゆる加工面位置での残加工代を解消させる傾向に向けて
放電作用を制御するから、隅部だけに残加工代が最後ま
で残ると言う不利が無くなり、加工電極の無駄な揺動作
用は解消されるから、結果的に加工精度の向上と同時に
加工能率の向上も得られる。
In addition, conventionally, the remaining machining allowance remains until the end at the corners of the concave parts of the workpiece, and even after machining other parts, only the corners have to be machined, so the machining electrode However, the present invention aims to gradually eliminate the remaining machining allowance at every machining surface position in the process of gradual transition of the oscillating motion path. Since the electric discharge action is controlled, the disadvantage of remaining machining allowance remaining only at the corners is eliminated, and unnecessary swinging motion of the machining electrode is eliminated, resulting in improved machining accuracy and machining efficiency. You can also get improvements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による放電加工方法の遂行時における
基本的な作用手段の作用と加工々程の推移とを示したフ
ローチャート、第2図は被加工物と放電加工電極との間
にふける電極送り方向に対して垂直な座標平面内におけ
る相対的な揺動運動の進捗過程における両者の位置的関
係を代表例により説明する平面図、第3図は、本発明に
よる放電加工方法を直接実施する放電加工装置の要部構
成の1例を示すブロックダイヤグラム、第4図は本発明
による放電加工方法において実施される残加工代をパラ
メータとした加工電極の揺動運動速度の増減制御方法を
説明するグラフ図、第5(^)図、第5(B)図は従来
の放電加工作用を説明する平面図。 10・・・被加工物、12・・・凹部または穴部、14
・・・加工電極、16a・・・現在の揺動経路、16a
・・・最終の理想的揺動経路、20・・・残加工代演算
手段、22・・・揺動プログラム記憶手段、24・・・
現在電極位置取出手段、26・・・残加工代記憶手段、
28・・・割算手段、30・・・揺動速度制御手段、4
0・・・NG装置、55・・・CPU、56・・・記憶
部。
FIG. 1 is a flowchart showing the actions of the basic operating means and the progress of the machining process when carrying out the electric discharge machining method according to the present invention, and FIG. FIG. 3 is a plan view illustrating the positional relationship between the two in the progress process of relative oscillating motion in the coordinate plane perpendicular to the electrode feeding direction, using a representative example. FIG. 4 is a block diagram illustrating an example of the main configuration of an electrical discharge machining apparatus, and FIG. 4 explains a method for controlling the increase/decrease of the oscillating motion speed of the machining electrode using the remaining machining allowance as a parameter, which is carried out in the electrical discharge machining method according to the present invention. 5(^) and 5(B) are plan views for explaining the conventional electrical discharge machining action. 10... Workpiece, 12... Recess or hole, 14
... Processing electrode, 16a... Current swing path, 16a
. . . Final ideal swing path, 20 . . . Remaining machining allowance calculation means, 22 .
Current electrode position retrieval means, 26... remaining machining allowance storage means,
28... Division means, 30... Rocking speed control means, 4
0...NG device, 55...CPU, 56...Storage unit.

Claims (1)

【特許請求の範囲】 1、加工電極と被加工物とを相対的に揺動させながら凹
部又は穴の内側面を加工する放電加工方法において、前
記加工電極の刻々の位置と最終加工時に通るべき理想位
置との差から求まる残加工代を演算し、該刻々の残加工
代を記憶して行き、現在の揺動運動の周回経路に対する
直前1周回の揺動運動の周回経路における残加工代の大
小の分布状態を求め、前記刻々求まる現在の残加工代が
前記直前1周回の揺動運動の経路における残加工代の大
小の分布状態における大きな残加工代に該当している加
工位置では前記揺動速度を遅く、小さな残加工代に該当
している加工位置では前記揺動速度を速くするように制
御し、 最終加工時の周回経路に沿う揺動運動により、残加工代
を一斉に解消するようにしたことを特徴とした放電加工
方法。 2、放電加工の揺動経路における刻々の加工電極の位置
を取出す位置取出手段と、 該位置取出手段で取出した前記加工電極の現在位置と最
終加工時に前記加工電極が通るべき揺動経路上の位置と
の差を演算して各位置における残加工代を求める残加工
代演算手段と、 該残加工代演算手段で求めた最新の残加工代を分子側に
、また前記残加工代演算手段で求めた直前の1周回の揺
動運動経路における最大残加工代と最小残加工代との差
を分母側にした所定の割算演算を実行する割算手段と、 該割算手段で求めた商に応じて前記揺動速度を制御する
揺動速度制御手段とを 具備した放電加工装置。 3、前記位置取出手段は、前記被加工物の加工プログラ
ムと前記加工電極の揺動運動プログラムとから定まる前
記加工電極の揺動経路から現在時点の該加工電極の位置
を取出す手段である請求項2に記載の放電加工装置。 4、前記位置取出手段は、前記加工電極を前記揺動経路
に沿って運動させる動作アクチュエータの位置検出手段
が検出した現在時点における前記加工電極の位置を読み
取る読取手段である請求項2に記載の放電加工装置。
[Scope of Claims] 1. In an electric discharge machining method in which the inner surface of a recess or hole is machined while relatively rocking the machining electrode and the workpiece, the position of the machining electrode at every moment and the area to be passed during final machining are determined. Calculate the remaining machining allowance determined from the difference from the ideal position, store the remaining machining allowance moment by moment, and calculate the remaining machining allowance in the circular path of the previous one revolution of the oscillating motion with respect to the circular path of the current oscillating motion. The size distribution state is determined, and at the machining position where the current remaining machining allowance determined moment by moment corresponds to a large remaining machining allowance in the size distribution state of the remaining machining allowance on the path of the previous one revolution of the oscillating motion, The oscillating speed is controlled to be slow and the oscillating speed is increased at machining positions where there is a small remaining machining allowance, and the oscillating movement along the circumferential path during final machining eliminates the remaining machining allowance all at once. An electrical discharge machining method characterized by: 2. A position extracting means for extracting the position of the machining electrode moment by moment on the oscillating path of electric discharge machining, and a current position of the machining electrode extracted by the position extracting means and a position on the oscillating path that the machining electrode should pass during final machining. a residual machining allowance calculation means for calculating the residual machining allowance at each position by calculating the difference from the position; A dividing means for executing a predetermined division operation in which the denominator is the difference between the maximum remaining machining allowance and the minimum remaining machining allowance in the immediately preceding one-round oscillating motion path, and a quotient obtained by the dividing means. An electric discharge machining apparatus comprising: a swing speed control means for controlling the swing speed according to the swing speed. 3. The position extracting means is a means for extracting the current position of the machining electrode from a swing path of the machining electrode determined from a machining program of the workpiece and a swing movement program of the machining electrode. 2. The electric discharge machining apparatus according to 2. 4. The position extracting means is a reading means for reading the current position of the processing electrode detected by a position detection means of an operation actuator that moves the processing electrode along the swing path. Electrical discharge machining equipment.
JP1027607A 1989-02-08 1989-02-08 Electric discharge machining method and apparatus Expired - Fee Related JP2604461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027607A JP2604461B2 (en) 1989-02-08 1989-02-08 Electric discharge machining method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027607A JP2604461B2 (en) 1989-02-08 1989-02-08 Electric discharge machining method and apparatus

Publications (2)

Publication Number Publication Date
JPH02212026A true JPH02212026A (en) 1990-08-23
JP2604461B2 JP2604461B2 (en) 1997-04-30

Family

ID=12225615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027607A Expired - Fee Related JP2604461B2 (en) 1989-02-08 1989-02-08 Electric discharge machining method and apparatus

Country Status (1)

Country Link
JP (1) JP2604461B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580049B1 (en) 1999-07-12 2003-06-17 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining method and device
US6667453B1 (en) 1999-12-20 2003-12-23 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining method and apparatus with control of rocking function parameters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779244B2 (en) * 2018-01-31 2020-11-04 株式会社ソディック Wire remaining amount detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171596A (en) * 1974-11-14 1976-06-21 Charmilles Sa Ateliers Hodenkakoho oyobi sochi
JPS55157437A (en) * 1979-05-21 1980-12-08 Mitsubishi Electric Corp Electric discharge machining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171596A (en) * 1974-11-14 1976-06-21 Charmilles Sa Ateliers Hodenkakoho oyobi sochi
JPS55157437A (en) * 1979-05-21 1980-12-08 Mitsubishi Electric Corp Electric discharge machining device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580049B1 (en) 1999-07-12 2003-06-17 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining method and device
DE19983533B4 (en) * 1999-07-12 2010-02-25 Mitsubishi Denki K.K. Electro-erosion machining method and apparatus
US6667453B1 (en) 1999-12-20 2003-12-23 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining method and apparatus with control of rocking function parameters

Also Published As

Publication number Publication date
JP2604461B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
CN107797515B (en) Control device, control method, and computer-readable medium for machine tool
JP2017207806A (en) Servo controller of machine tool performing oscillation cutting, control method and computer program
JP2016099824A (en) Numerical control equipment that protects tool and workpiece
Sun et al. An on-line tool path smoothing algorithm for 6R robot manipulator with geometric and dynamic constraints
CN111752214B (en) Servo control device
JPWO2004102290A1 (en) Numerical controller
US20200306915A1 (en) Servo controller
JPS6161932B2 (en)
JPH02212026A (en) Method and device for electric discharge machining
JP5908552B1 (en) Machine tool controller
JP2020170365A (en) Numerical control device
JPWO2021177449A5 (en)
US20230116068A1 (en) Numerical controller
JP6441416B1 (en) Control device
US20240142947A1 (en) Numerical control device and machining method
JPH03149137A (en) Swivel machining method for electric discharge machine
JP2002205243A (en) Machining method with rotating tool
JPH04176516A (en) Second cut machining method and second cut machining controller in wire electric discharge machining
JPS63120304A (en) Production of involute curve
JP2612364B2 (en) Numerical control unit
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine
Tong et al. On-Machine Process of Rough-And-Finishing SS-3D Micro EDM
JPH0230468A (en) Control method for chopping
JPH08300223A (en) Electric discharge machining device
CN117631607A (en) Sealing ring mold processing method, device, numerical control equipment, numerical control system and medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees