JPH0221190A - High-temperature and high-pressure treatment device - Google Patents

High-temperature and high-pressure treatment device

Info

Publication number
JPH0221190A
JPH0221190A JP17035488A JP17035488A JPH0221190A JP H0221190 A JPH0221190 A JP H0221190A JP 17035488 A JP17035488 A JP 17035488A JP 17035488 A JP17035488 A JP 17035488A JP H0221190 A JPH0221190 A JP H0221190A
Authority
JP
Japan
Prior art keywords
pressure
temperature
inner cylinder
lid
upper lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17035488A
Other languages
Japanese (ja)
Inventor
Kazuo Kitagawa
北川 一男
Takeshi Kanda
剛 神田
Yasuhiko Inoue
康彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17035488A priority Critical patent/JPH0221190A/en
Publication of JPH0221190A publication Critical patent/JPH0221190A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Abstract

PURPOSE:To permit stabilized and safe high-temperature and high-pressure reaction treatment under a condition of high pressure and high temperature by a method wherein a high-temperature and high-pressure treating inner type is accommodated in a hot isotropic pressure molding device employed for the compression molding and the like of a solid phase molded form of metal, ceramics powder and the like. CONSTITUTION:A high-temperature and high-pressure treatment inner tube 6 is accommodated concentrically in the heating device 4 of a high-pressure vessel 1 and both of the axial ends of the high-temperature and high-pressure treatment inner tube 6 are connected to an upper lid 2 and a lower lid 3 under the condition of pressure sealing effected by seals 7, 8 while both of the ends of the inner tube 6 are communicated with the outlet and inlet ports 9, 10 of materials to be treated. Pressure medium is pressurized by a compressor 27 and is supplied through the pressure medium passage 25 of the high-pressure vessel 1 while flowable material to be treated, such as slurry type material consisting of gas, liquid or solid particles suspended in liquid medium or the like, is held in the high-temperature and high-pressure treatment inner tube 6 and a heating device 4 is started to heat the pressure medium and rise the temperature of the same.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気体、液体、スラリ一体等の流動可能である
各種被処理材料に対する高温高圧下での反応処理、例え
ば熱水反応の利用による材料合成、特定成分の分解、分
離、抽出等を行なうに当っての、改善された新しいかつ
連続的に高温高圧処理を行なう装置の提供に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to reaction treatment of various flowable materials such as gas, liquid, slurry, etc. under high temperature and high pressure, such as by utilizing hydrothermal reaction. The present invention relates to the provision of a new and improved apparatus that continuously performs high temperature and high pressure processing for material synthesis, decomposition, separation, extraction, etc. of specific components.

(従来の技術) 上記した高温高圧反応処理技術として、液相を保って反
応を行なわせる場合、最もよく知られているのはオート
クレーブ方式であり、密閉蓋を有する反応釜内に被処理
材料を収容し、所要の高温高圧処理を施すもので、これ
には静止型、撹拌型、回転型等の各タイプが存在するが
、ここには撹拌型の1例を第5図および第6図について
、その概要を説示する。第5図に示したものは縦形撹拌
式のものであり、電熱炉101に保持されて加熱可能な
オートクレーブ102には上部の密閉蓋を介して、ガス
入口103、ガス出口104、更には圧力計105、温
度計挿入口106、更には撹拌軸107等が配設され、
オートクレーブ102内に収容される液状、固体粒子を
液媒に懸濁させたスラリー状の流動可能な被処理材料に
対し、高圧ガスの供給、加熱昇温を介し高温高圧反応処
理に付するのであり、このさい撹拌軸107により内容
物の混合を均一にするもので、第6図に示したものは横
形撹拌式であり、同一符号は同一部材を示している。こ
の形式のものでは気−液反応時に気体を常に流通させる
ことができ、また撹拌効果は横形のものが優れており、
更に第6図に示したものにおいて、オートクレーブ10
2のみを軸ABを中心にして回動させる構造のものとす
れば、固体を液体やガスで処理するものや、液体にガス
を作用させるものに適した回転型オートクレーブとなる
ものである。
(Prior art) Among the above-mentioned high-temperature, high-pressure reaction treatment techniques, the most well-known method for carrying out a reaction while maintaining a liquid phase is the autoclave method, in which the material to be treated is placed in a reaction vessel with a closed lid. There are various types such as stationary type, stirring type, and rotating type.Here, an example of the stirring type is shown in Figures 5 and 6. , and its outline will be explained. The one shown in FIG. 5 is a vertical stirring type autoclave 102 which is held in an electric heating furnace 101 and can be heated. 105, a thermometer insertion port 106, a stirring shaft 107, etc. are arranged,
The flowable slurry-like material to be treated, which is made by suspending liquid or solid particles in a liquid medium, stored in the autoclave 102 is subjected to a high-temperature, high-pressure reaction treatment by supplying high-pressure gas and heating the material. At this time, a stirring shaft 107 is used to uniformly mix the contents.The one shown in FIG. 6 is a horizontal stirring type, and the same reference numerals indicate the same members. With this type, gas can be constantly circulated during the gas-liquid reaction, and the horizontal type has an excellent stirring effect.
Furthermore, in the one shown in FIG. 6, the autoclave 10
If only 2 is rotated around the axis AB, the rotary autoclave will be suitable for treating solids with liquids or gases, or for applying gases to liquids.

しかしながらこのオートクレーブ方式のものではバッチ
タイプであるとともに、外熱式圧力容器を用いて高温高
圧処理を行なうものでは、圧力容器における高温強度の
問題があり、安全性、耐圧性の上からも、達成可能な温
度、圧力条件には限界があり、これに代るものとして、
工業的量産、大量処理を目的としたパイプラインシステ
ムによる連続式オートクレーブ方式も開発されており、
これは水の臨界点付近を利用する熱水反応を工業的に行
なう場合、有効とされるもので、第7図についてその概
要を説示する。同図はパイプライン方式連続熱水反応系
の原理系統図であり、原料タンクからの試料の流れを図
に従い説明すると、コンプレッサによって原料タンクか
ら押出された原料は連続管Aを通り、逆止ボール弁Bか
らペーストポンプCに送られ、ここで−気に数百気圧で
圧入される。ペーストポンプCから送り出された試料は
、逆止ボール弁りを通って熱交換器0内で予熱され、反
応塔F内で所定温度が与えられる。反応塔内の通過時間
は、反応塔内の反応管長さと流速により決定されるので
、処理量を増大するためには、反応管を長くして流速を
大きくするか、反応温度を高くし、あるいは触媒を利用
して反応時間の短縮を図るのである。かくして反応塔F
から送出された試料は熱交換器0を通じて冷却と同時に
原料加熱を行ない、ボール弁Hを通って排出ポンプIに
入り、ここでの排出圧が注入時の圧に利用されるのであ
る。排出ポンプIから送出された生成物は、ボール弁J
を抜け、圧力制御パルプKを経て取出されるのであり、
流速、流量の調節は注入ポンプ回転数およびプランジャ
ポンプのビストンストローク長さにより一に節されるが
、内部圧力とも関連があり、圧力調整パルプを介し調整
可能としたものである。この他、高圧容器内において被
処理材料に対し高温高圧処理を行なうものとしては、周
知のように熱間静水圧(等方圧)成形装置が存在する。
However, this autoclave type is a batch type and uses an externally heated pressure vessel to perform high temperature and high pressure treatment, so there is a problem with the high temperature strength of the pressure vessel, and it is difficult to achieve this from the standpoint of safety and pressure resistance. There are limits to the possible temperature and pressure conditions, and as an alternative,
A continuous autoclave method using a pipeline system has also been developed for industrial mass production and mass processing.
This is considered to be effective when a hydrothermal reaction utilizing the vicinity of the critical point of water is carried out industrially, and its outline will be explained with reference to FIG. The figure is a principle system diagram of a pipeline-type continuous hydrothermal reaction system.The flow of the sample from the raw material tank is explained according to the diagram.The raw material pushed out from the raw material tank by the compressor passes through continuous pipe A, and passes through the check ball. The paste is sent from valve B to paste pump C, where it is pressurized with air at several hundred atmospheres. The sample sent out from paste pump C passes through a check ball valve, is preheated in heat exchanger 0, and is given a predetermined temperature in reaction column F. The passage time in the reaction tower is determined by the length of the reaction tube in the reaction tower and the flow rate, so in order to increase the throughput, the reaction tube must be made longer to increase the flow rate, the reaction temperature must be increased, or The catalyst is used to shorten the reaction time. Thus reaction tower F
The sample sent from the pump is cooled and heated at the same time through the heat exchanger 0, and then enters the discharge pump I through the ball valve H, where the discharge pressure is used as the pressure during injection. The product delivered from the discharge pump I is transferred to the ball valve J
It passes through the pressure-controlled pulp K and is taken out.
The flow rate and flow rate are controlled by the rotational speed of the injection pump and the piston stroke length of the plunger pump, but are also related to the internal pressure, which can be adjusted via the pressure regulating pulp. In addition, there is a well-known hot isostatic pressure (isostatic pressure) forming apparatus that performs high-temperature, high-pressure treatment on a material to be treated in a high-pressure container.

同装置は後に本発明においても詳述するように、軸方向
両端が開口された円筒容器の、前記開口に上蓋および下
蓋を圧密に閉鎖することによって構成した高圧容器内部
に圧媒ガス供給手段および通電ヒータ等による加熱昇温
手段を具備した炉室を設け、同炉室内に金属、セラミッ
クス等の粉末材料を装入セットし、超高圧、高温下に焼
結成形品の成形を行ない、あるいは鋳造品の欠陥除去を
行なう等、広く利用されているものであり、略称HIP
装置としてよく知られている。
As will be described later in detail in the present invention, the device is a cylindrical container that is open at both ends in the axial direction, and a means for supplying pressurized gas into the interior of a high-pressure container constructed by compressively closing an upper lid and a lower lid to the openings of the cylindrical container. A furnace chamber equipped with heating means such as an energized heater is provided, powder materials such as metals and ceramics are charged and set in the furnace chamber, and sintered products are formed under ultra-high pressure and high temperature. It is widely used for removing defects in cast products, and is abbreviated as HIP.
The device is well known.

(発明が解決しようとする課題) 上記した従来の高温高圧反応処理技術、特に液状、スラ
リー状等の流動可能な被処理材料に対するそれについて
は、次の点において問題がある。
(Problems to be Solved by the Invention) The conventional high-temperature, high-pressure reaction treatment techniques described above, particularly those for flowable materials to be treated such as liquids and slurries, have the following problems.

即ち単体の反応釜によるオートクレーブ方式においては
、バッチ弐による不利、更には達成可能な温度と圧力条
件に限界があり、しかもその限界が可成り低い範囲を余
儀なくされるのである。またパイプラインシステムによ
る連続式オートクレーブ方式は、高温高圧処理が連続的
に行なえる点において優れるが、その温度と圧力とにお
ける基本構成は従来の単一オートクレープと同じである
ため、達成し得る温度、圧力条件には同様の限界がある
That is, in the autoclave system using a single reaction vessel, there are disadvantages due to the number of batches, and furthermore, there are limits to the temperature and pressure conditions that can be achieved, and these limits are forced to be within a considerably low range. In addition, the continuous autoclave method using a pipeline system is superior in that high temperature and high pressure processing can be performed continuously, but the basic configuration of temperature and pressure is the same as that of a conventional single autoclave, so the temperature that can be achieved is , pressure conditions have similar limitations.

また熱間等方圧成形装置においては、その構造上、温度
、圧力条件においては申し分がないのであるが、かかる
HIP装置における対象材料は、何れもブロック状の固
体成形品であり、液状、スラリー状の流動可能な液相乃
至固液混合相の被処理材料には適用し難いうらみがあり
、またバッチタイプの不利もある。
In addition, hot isostatic pressing equipment is perfect in its structure, temperature, and pressure conditions, but the target materials in such HIP equipment are block-shaped solid molded products, liquid, slurry, etc. There are disadvantages in that it is difficult to apply to materials to be treated that are in a flowable liquid phase or a solid-liquid mixed phase, and there are also disadvantages to the batch type.

(課題を解決するための手段) 本発明は上記の問題点を解決するために、従来のオート
クレーブ方式による温度、圧力条件の限界を解消し、従
来の限界以上の温度、圧力領域内での、かつ連続的な高
温、高圧処理が確実かつ容易に得られるように、熱間等
方圧成形装置の内容を改良したものであり、具体的には
、軸方向両端に上蓋および下蓋が閉塞されるとともに圧
媒供給手段および加熱昇温手段を具備した高圧容器にお
いて、前記加熱昇温手段に囲まれてそ°の内側に上下両
端が前記上蓋および下蓋に圧力シール状態下に接続され
る高温高圧処理内筒を同心に内装し、かつ該内筒の上下
両端を前記上蓋および下蓋に設けられる被処理材料の出
入口と連通させ、加熱昇温手段に属する断熱層を上、下
蓋を含む前記高圧容器側または高温高圧処理内筒に圧力
シール状態下に保持することにある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention eliminates the limitations of temperature and pressure conditions in the conventional autoclave system, and enables The contents of the hot isostatic pressing device have been improved so that continuous high-temperature and high-pressure processing can be achieved reliably and easily. In a high-pressure vessel equipped with a pressure medium supply means and a heating temperature raising means, a high-temperature container is surrounded by the heating temperature raising means and has upper and lower ends connected to the upper lid and the lower lid under pressure sealing inside the container. A high-pressure processing inner cylinder is installed concentrically, and both upper and lower ends of the inner cylinder are communicated with the inlet/outlet for the material to be processed provided in the upper lid and the lower lid, and a heat insulating layer belonging to the heating temperature raising means is provided, including the upper and lower lids. The purpose is to maintain the high-pressure container side or the high-temperature and high-pressure processing inner cylinder under a pressure-sealed state.

(作 用) 本発明の上記した技術的手段によれば、第1図において
示すように、軸方向両端が開口されるとともに、両開口
に上M2および下M3が何れも圧力シール状態で開閉可
能に閉塞される高圧容器1において、同容器1の内部に
断熱層5を介して、通電ヒータ等の加熱装置4を内蔵し
、前記上M2に高圧容器1内部と連通ずる圧媒通路25
を設けることにより、既知の熱間等方圧成形装置が構成
される。このさい図示省略しであるが、既知のようにこ
の種の熱間等方圧成形装置においては、加圧成形時に生
(コる上下蓋側に掛かる軸力を上下蓋を挟持するプレス
フレームによって支えることはいうまでもない。本発明
においては、前記高圧容器1における加熱装置4の内側
に高温高圧処理内筒6を同心に内装し、かつこの高温高
圧処理内筒6の軸方向両端を前記上蓋2および下蓋3に
シール7およびシール8による圧力シール状態下で接続
するとともに、同内筒6の両端は上M2および下蓋3に
設けられる被処理材料の出入口9.lOと連通させであ
るので、下蓋3の出入口10に被処理材料の供給配管1
9を連結し、同配管19に被処理材料の供給タンク17
、同材料の圧送用圧媒ポンプ18を、塞止弁22および
圧力検出用の圧力計24と共に設け、また上蓋2の出入
口9には被処理材料の排出配管21を接続し、同配管1
9に塞止弁23、絞り弁20等の流路抵抗部材および回
収タンク41を設けることにより、先ず高圧容器lの内
部に圧媒通路25を介して、ガス集合装置26からコン
プレッサ27により圧媒(ガス)を供給配管28により
加圧供給し、気体、液体あるいは固体粒子を液媒に懸濁
させたスラリー状体等の流動可能な被処理材料を、高温
高圧処理内筒6における耐圧力の許容範囲内での内筒内
外の差圧を保ちつつ(熱間等方圧成形装置側の圧媒圧力
を常に高温高圧処理内筒6内の圧力より大とするのが好
ましい)、タンク17内の被処理材料を圧媒ポンプ18
により塞止弁22を開いて工大供給するのであり、この
さい上蓋2側の配管21における塞止弁23、絞り弁2
0は閉じた状態として、被処理材料を高温高圧処理内筒
6内に保持状態とし、加熱装置4を起動して圧媒の加熱
昇温を行ない、所定温度に到達後、圧媒ポンプ1日を連
続駆動し、かつ排出配管21側の塞止弁23、絞り弁2
0より連続的に加熱昇温下の材料排出を行ないつつ、所
定の温度、圧力条件による高温高圧反応処理を行なうこ
とができるのである。このさい断熱層5の下端を下蓋3
に対して、シール12を介し気密に保持させることによ
り、断熱層5の内外を循環する圧媒ガス流動を抑止し、
断熱機能を良好に発揮することができ、同時にまた加熱
昇温効果を増大させることができる。これにより従来の
熱間等方成形装置においては、粉末成形品、焼結晶、鋳
造品の欠陥除去等、ブロック状の固相材料を対象として
使用されるに止まる点を改良し、気体、液体、セラミッ
ク状体等の流動可能な被処理材料を対象として、これに
対する連続的な高温高圧反応処理が、従来のオートクレ
ーブ技術における温度、圧力条件よりも著しく大きな温
度、圧力条件下に連続処理することが可能となるのであ
り、同時にこの種等方圧成形装置におけるワンサイクル
終了毎に容器蓋を開いて材料の搬入、取出しを行なうバ
ッチタイプの非効率をなくし、気相、液相、気液混合相
を問うことな(、大量処理、量産プランを実現可能とす
るものである。
(Function) According to the above-described technical means of the present invention, as shown in FIG. 1, both ends in the axial direction are opened, and both the upper M2 and lower M3 can be opened and closed in a pressure-sealed state in both openings. In a high-pressure vessel 1 that is closed, a heating device 4 such as an energized heater is built into the vessel 1 via a heat insulating layer 5, and a pressure medium passage 25 communicating with the inside of the high-pressure vessel 1 is provided in the upper M2.
By providing the above, a known hot isostatic pressing apparatus is constructed. Although not shown in the figure, as is known, in this type of hot isostatic pressing apparatus, the axial force applied to the upper and lower lids during pressure molding is absorbed by the press frame that holds the upper and lower lids. In the present invention, a high-temperature and high-pressure processing inner cylinder 6 is installed concentrically inside the heating device 4 of the high-pressure vessel 1, and both axial ends of this high-temperature and high-pressure processing inner cylinder 6 are connected to the It is connected to the upper lid 2 and the lower lid 3 under a pressure-sealed state by the seals 7 and 8, and both ends of the inner cylinder 6 are communicated with the inlet/outlet 9.lO for the material to be processed provided in the upper lid M2 and the lower lid 3. Therefore, there is a supply pipe 1 for the material to be treated at the entrance/exit 10 of the lower cover 3.
9 is connected, and the supply tank 17 for the material to be treated is connected to the same pipe 19.
A pressure medium pump 18 for pressure feeding made of the same material is provided together with a blocking valve 22 and a pressure gauge 24 for pressure detection, and a discharge pipe 21 for the material to be treated is connected to the inlet/outlet 9 of the upper lid 2.
9 is provided with flow path resistance members such as a blocking valve 23 and a throttle valve 20, and a recovery tank 41. First, pressure medium is supplied from the gas collecting device 26 to the compressor 27 through the pressure medium passage 25 inside the high-pressure vessel l. (gas) is supplied under pressure through the supply pipe 28, and the flowable material to be processed, such as a slurry-like material in which gas, liquid, or solid particles are suspended in a liquid medium, is transferred to the high-temperature and high-pressure processing inner cylinder 6 under pressure resistance. While maintaining the differential pressure between the inside and outside of the inner cylinder within the allowable range (it is preferable that the pressure medium on the hot isostatic pressing device side is always higher than the pressure inside the high temperature and high pressure processing inner cylinder 6), the pressure inside the tank 17 is maintained. The material to be treated is transferred to the pressure medium pump 18.
The blocking valve 22 is opened to supply the engineering university, and at this time, the blocking valve 23 and throttle valve 2 in the pipe 21 on the upper cover 2 side are opened.
0 is in the closed state, the material to be processed is held in the high temperature and high pressure processing inner cylinder 6, the heating device 4 is started to heat the pressure medium to raise the temperature, and after reaching a predetermined temperature, the pressure medium pump is turned off for one day. is continuously driven, and the blocking valve 23 and throttle valve 2 on the discharge piping 21 side are operated continuously.
This makes it possible to carry out high-temperature, high-pressure reaction treatment under predetermined temperature and pressure conditions while continuously discharging materials under heating and temperature rise from zero. At this time, connect the lower end of the insulation layer 5 to the lower lid 3.
On the other hand, by keeping it airtight through the seal 12, the flow of the pressure medium gas circulating inside and outside the heat insulating layer 5 is suppressed,
It is possible to exhibit good heat insulation function, and at the same time, it is possible to increase the heating effect. This improves the point that conventional hot isostatic forming equipment is only used for block-shaped solid phase materials, such as removing defects in powder molded products, sintered crystals, and cast products. Continuous high-temperature, high-pressure reaction treatment of flowable materials such as ceramic bodies can be carried out under significantly higher temperature and pressure conditions than those of conventional autoclave technology. At the same time, it eliminates the inefficiency of batch-type isostatic pressure forming equipment in which the container lid is opened every time a cycle is completed to carry in and take out the material, and it is possible to This makes it possible to realize mass processing and mass production plans without asking any questions.

(実施例) 本発明に係る処理装置の適切な各実施例内容を、第1図
乃至第4図に亘って逐次説示する。第1図に例示したも
のは本発明装置の基本的タイプであり、同図において高
圧容器1は軸方向両端が開口された円筒状のものであり
、熱間等方圧成形装置の本体をなすものである。前記開
口には上M2および下M3がそれぞれ圧力シール状態下
で閉塞可能に嵌設される。高圧容器lの内部には既知の
ように断熱層5を介して通電ヒータ等の加熱装置4が設
けられ、両者4,5によって加熱昇温手段が構成される
。11は加熱昇温手段によって囲まれた炉室であり、同
炉室は本発明における高温高圧反応処理室11として働
くことになる。これらは従来の熱間等方圧成形装置とし
て既知構造である(軸力支持用のプレスフレームは図示
省略しである)が、本発明においては前記加熱袋M4の
内側に位置して軸方向上下両端が開口された円筒状の高
温高圧処理内筒6を同心に内装するのであり、実施例で
は内装に当り、内筒6の軸方向上端および下端は、何れ
もそれぞれシール7.8を介して上II2および下蓋3
に圧力シール状態下に接続するのである。このさい加熱
時の温度上昇に伴う内筒6の伸びを考慮すると、内筒6
の軸方向上端は上蓋2側に固定しても、軸方向下端は下
M3に対し軸方向スライド可能に密嵌させるように、一
端は軸方向可動に接続することが望ましい。またこの高
温高圧処理内筒6は上、下M2,3に接続されることに
より、上M2側に開設した被処理材料の出入口9および
下蓋3側に開設した同出入口10と連通され、これによ
って出入口9.10を上下に有する被処理材料の高温高
圧処理室が、高圧容器lの成形炉室11を共有して形成
されることになる。
(Embodiments) Contents of appropriate embodiments of the processing apparatus according to the present invention will be sequentially explained with reference to FIGS. 1 to 4. The example shown in Fig. 1 is the basic type of the apparatus of the present invention, and in the figure, the high-pressure vessel 1 is cylindrical with both ends opened in the axial direction, and forms the main body of the hot isostatic pressing apparatus. It is something. An upper M2 and a lower M3 are each fitted into the opening so as to be closable under a pressure-sealed condition. As is known, a heating device 4 such as an energized heater is provided inside the high-pressure container 1 via a heat insulating layer 5, and both 4 and 5 constitute heating and temperature raising means. Reference numeral 11 denotes a furnace chamber surrounded by heating and temperature increasing means, and this furnace chamber functions as the high temperature and high pressure reaction treatment chamber 11 in the present invention. These have a known structure as a conventional hot isostatic pressing device (the press frame for supporting the axial force is not shown), but in the present invention, they are located inside the heating bag M4 and are placed up and down in the axial direction. A cylindrical high-temperature, high-pressure processing inner cylinder 6 with both ends open is concentrically installed inside the cylinder, and in this embodiment, the inner cylinder 6 corresponds to the inner cylinder, and the upper and lower ends of the inner cylinder 6 in the axial direction are both sealed through seals 7 and 8. Upper II2 and lower lid 3
It is connected under pressure seal condition. At this time, considering the elongation of the inner cylinder 6 due to the temperature rise during heating, the inner cylinder 6
It is preferable that one end is movably connected in the axial direction so that even if the upper end in the axial direction is fixed to the upper lid 2 side, the lower end in the axial direction is tightly fitted to the lower M3 so as to be slidable in the axial direction. In addition, this high-temperature, high-pressure processing inner cylinder 6 is connected to the upper and lower M2 and 3, thereby communicating with the inlet/outlet 9 for the material to be processed opened on the upper M2 side and the same inlet/outlet 10 opened on the lower lid 3 side. As a result, a high-temperature, high-pressure treatment chamber for the material to be treated having entrances and exits 9 and 10 on the upper and lower sides is formed, sharing the forming furnace chamber 11 of the high-pressure vessel l.

断熱層5の設置に当っては、実施例においては下M3の
上面に対してシール12を介して気密に保持させる。こ
れは断熱層5の軸方向一端を気密に保持することにより
、断熱層の内外を循環する圧媒ガス流動を抑止し、断熱
機能を良好に発揮させる点において効果的である。この
圧媒ガス流動抑止手段としては、断熱層5の軸方向上端
を同じく上蓋2側にシールを介して気密に保持させても
よく、あるいは圧力容器Iの上端内壁面、または下端内
壁面に対し同じく気密に保持させてもよいし、更には高
温高圧処理内筒6の外周面上端あるいは下端に対し、同
じく気密に保持させることもできる。
When installing the heat insulating layer 5, in the embodiment, it is held airtight against the upper surface of the lower M3 via a seal 12. This is effective in keeping one end of the heat insulating layer 5 airtight in the axial direction, thereby suppressing the flow of the pressurized gas circulating inside and outside the heat insulating layer, and achieving a good heat insulating function. As this means for suppressing the flow of pressurized gas, the axially upper end of the heat insulating layer 5 may be held airtightly on the upper lid 2 side via a seal, or it may be held against the inner wall surface of the upper end or the inner wall surface of the lower end of the pressure vessel I. It may be held airtight in the same way, or furthermore, it may be held airtight at the upper or lower end of the outer peripheral surface of the high-temperature, high-pressure processing inner cylinder 6.

この実施例においては、構造上、他部分に比してより高
温になりがちの断熱層5上部側の断熱性を強化するため
に、高温高圧処理内筒6の軸方向上端側から断熱カバー
13を一体に張出形成し、更には上M2の内部にも冷却
水通路14を給水ボート14aとともに形成し、また高
温高圧処理内筒6内部においても、図示のように上蓋2
および下M3の端面を利用して断熱材15.16を出入
口9.IOとの連通孔15a、16aとともに取付ける
のであり、これらは高温高圧処理内筒6内の処理室にお
ける高温のロスのない集中と向上とに有効である。
In this embodiment, in order to strengthen the heat insulation properties of the upper part of the heat insulating layer 5, which tends to reach a higher temperature than other parts due to its structure, a heat insulating cover 13 is inserted from the upper end side in the axial direction of the high temperature and high pressure processing inner cylinder 6. Furthermore, a cooling water passage 14 is formed inside the upper M2 along with the water supply boat 14a, and also inside the high temperature and high pressure processing inner cylinder 6, the upper lid 2 is formed as shown in the figure.
Using the end face of the lower M3, insert the insulation material 15.16 into the entrance/exit 9. It is installed together with the communication holes 15a and 16a with the IO, and these are effective in concentrating and increasing the high temperature in the processing chamber in the high-temperature and high-pressure processing inner cylinder 6 without loss.

前記下蓋3における被処理材料の出入口10には同材料
の供給配管19が接続されるとともに、同配管19には
、気体、液体、スラリー状等の流動可能な単一材あるい
は複合材による被処理材料の収容タンク17、同タンク
17より被処理材料を圧送可能な圧媒ポンプ18、開閉
可能な塞止弁22および圧力検知用の圧力計24が付設
される。また上蓋2における被処理材料の出入口9には
同材料の排出配管21が塞止弁23、絞り弁20、更に
は回収タンク41とともに設けられるのであり、これに
よって被処理材料は供給配管19より出入口lO1高温
高圧処理内筒6、出入口9をへて排出配管21側に連続
的に圧送されかつ高温高圧処理内筒6内において高温高
圧反応処理を受けることが可能となるのである。
A supply pipe 19 for the material to be processed is connected to the inlet/outlet 10 for the material to be processed in the lower cover 3, and the pipe 19 is coated with a single material or a composite material that can flow, such as gas, liquid, or slurry. A storage tank 17 for processing material, a pressure medium pump 18 capable of pumping the material to be processed from the tank 17, a stop valve 22 that can be opened and closed, and a pressure gauge 24 for pressure detection are attached. In addition, a discharge pipe 21 for the same material is provided at the inlet/outlet 9 for the material to be treated in the upper lid 2 together with a blocking valve 23, a throttle valve 20, and a recovery tank 41. The lO1 is continuously pumped through the high-temperature, high-pressure treatment inner cylinder 6 and the inlet/outlet 9 to the discharge pipe 21 side, and can undergo high-temperature, high-pressure reaction treatment within the high-temperature, high-pressure treatment inner cylinder 6.

前記配管21における絞り弁20は被処理材料を加圧下
に保持しつつ取出すためのものであるが、これは絞り弁
に代替して固定絞りを用いてもよく、更には圧媒ポンプ
18と絞り弁20方式に代え、例えば第2図に示した実
施例のように、供給配管19側に加圧装置32、また排
出配管21側に背圧装置33を対向シリンダ形に介設し
ても同効である。
The throttle valve 20 in the piping 21 is used to take out the material to be treated while maintaining it under pressure, but a fixed throttle may be used instead of the throttle valve, and furthermore, the pressure medium pump 18 and the throttle may be used in place of the throttle valve. Instead of the valve 20 system, for example, as in the embodiment shown in FIG. 2, the same effect can be obtained by interposing a pressurizing device 32 on the supply piping 19 side and a back pressure device 33 on the discharge piping 21 side in the form of opposed cylinders. It is effective.

また熱間等方圧成形装置における上M2の圧媒通路25
には、圧媒(ガス)の加圧供給配管28を接続し、同配
管28にはガス集合装置26、コンプレッサ27、塞止
弁29,30および圧媒圧力検出のための圧力計31が
設けられる。
In addition, the upper M2 pressure medium passage 25 in the hot isostatic pressing device
A pressurized supply pipe 28 for pressure medium (gas) is connected to the pipe 28, and the pipe 28 is equipped with a gas collecting device 26, a compressor 27, blocking valves 29, 30, and a pressure gauge 31 for detecting the pressure of the pressure medium. It will be done.

上記した各構成を持つ実施例によれば、高温高圧処理内
筒6の耐圧力の許容する範囲内での、該内筒6内におけ
る圧力と高圧容器1側の圧媒圧力との差圧を保持しなが
ら、該内筒6内に圧入被処理材料を保持した状態で、加
熱装置4による加熱昇温を行なうのであり、かくして所
定温度に到達するとともに圧媒ポンプ18を連続駆動し
、絞り弁20により連続的に加圧下の排出を行ないつつ
、目的の温度、圧力条件下での高温高圧反応処理を行な
うのである。この際被処理材料の処理圧力、即ち前記内
筒圧力に対して高圧容器l側の圧媒圧力は所定差圧の範
囲内で、高圧容器l側の圧力が僅かに高くすることが、
前記内筒のシール破損に伴なう熱間等方圧成形装置側の
構成要素、特にその加熱装置4における電気的絶縁性破
壊等の損傷トラブルを防止する上から好ましいものであ
る。
According to the embodiments having the above-described configurations, the pressure difference between the pressure inside the high-temperature and high-pressure processing inner cylinder 6 and the pressure of the pressure medium on the high-pressure vessel 1 side is maintained within the range allowed by the pressure resistance of the high-temperature and high-pressure processing inner cylinder 6. While holding the material to be press-fitted in the inner cylinder 6, heating is performed by the heating device 4, and when the predetermined temperature is reached, the pressure medium pump 18 is continuously driven, and the throttle valve is opened. 20, while continuously discharging under pressure, a high temperature and high pressure reaction treatment is carried out under the desired temperature and pressure conditions. At this time, the pressure of the pressure medium on the high pressure vessel l side is within a predetermined differential pressure range with respect to the processing pressure of the material to be processed, that is, the inner cylinder pressure, and the pressure on the high pressure vessel l side is slightly higher.
This is preferable from the viewpoint of preventing damage troubles such as breakdown of electrical insulation in the components of the hot isostatic pressing apparatus, especially the heating device 4, due to damage to the seal of the inner cylinder.

第3図に示した実施例は、上記した高温高圧処理内筒6
の内圧と高圧容器1側の圧媒圧力(外圧)との間におけ
る内外差圧の制御調整を自動的に行なうための1例を示
したものであり、前記処理内筒6内の圧力検知用圧力計
24と、高圧容器1側の圧媒ガスの圧力検知用圧力計3
1との各圧力値を、差圧検出器34側に入力し、同検出
器34の出力値に基いて行なうもので、同出力に基き、
斉圧容器1側ではコンプレッサ27、また高温高圧処理
内筒6側では圧媒ポンプ18以下、図示のように各配管
28.19および21側における各塞止弁35,36,
37,38 、更には絞り弁39を個々にあるいは連動
制御して圧力調整を行なうことは容易である。
The embodiment shown in FIG.
This figure shows an example of automatically controlling and adjusting the internal and external pressure difference between the internal pressure of the high-pressure vessel 1 and the pressure medium pressure (external pressure) on the high-pressure vessel 1 side. A pressure gauge 24 and a pressure gauge 3 for detecting the pressure of the pressure medium gas on the high pressure vessel 1 side
Each pressure value of
A compressor 27 on the simultaneous pressure vessel 1 side, a pressure medium pump 18 and below on the high temperature and high pressure processing inner cylinder 6 side, and block valves 35, 36 on each piping 28, 19 and 21 side as shown in the figure.
It is easy to adjust the pressure by controlling the throttle valves 37, 38 and the throttle valve 39 individually or in conjunction with each other.

上記した圧力制御方式はもとより1例であって回倒のみ
に限定されるものでなく、その最も好ましい方式として
は、図示省略するが、内外差圧制御自体が自動的に行な
われるような内外圧バランス機構を設けることが好まし
いことはいうまでもない。
The above-mentioned pressure control method is of course only one example, and is not limited to rotation only; the most preferable method is, although not shown, an internal/external pressure control system in which the internal/external pressure differential control itself is automatically performed. Needless to say, it is preferable to provide a balance mechanism.

また第4図に示した実施例においては、高温高圧処理内
筒6を、高圧容器1側の上M2aに一体に組込んだタイ
プのものを示し、即ち同内筒6における軸方向の上端4
0を組込フランジ形状のものとして上l1t2a側に一
体化するのである。この構造形式によれば、高温高圧処
理内筒6内への被処理材料の出入は、上IE2aを開閉
することによって行なうことが可能となるものである。
In addition, the embodiment shown in FIG. 4 shows a type in which the high-temperature and high-pressure processing inner cylinder 6 is integrated into the upper M2a on the high-pressure container 1 side, that is, the upper end 4 of the inner cylinder 6 in the axial direction
0 is in the form of a built-in flange and is integrated into the upper l1t2a side. According to this structure, the material to be processed can be taken in and out of the high-temperature, high-pressure processing inner cylinder 6 by opening and closing the upper IE 2a.

(発明の効果) 本発明の高温高圧処理装置によれば、気体、液体、スラ
リー棒状の流動可能な被処理材料に対し、目的の高温高
圧反応処理を施すに当り、従来のオートクレーブ方式に
よって可能である温度、圧力条件の限界以上の高温、高
圧領域においてその高温高圧反応処理を連続的に行なえ
る点において大きな利点を生じるのである。このさい本
発明においては、従来金属、セラミックス粉末等による
固相成形品を圧縮成形等に利用されている熱間等方圧成
形装置における超高圧、高温環境に着目し、その装置本
体構造を高温高圧処理本体として用い、内部に高温高圧
処理内筒を内装することにより、より高度の圧力、温度
条件下に安定かつ安全に高温高圧反応処理を工業的量産
規模のもとに遂行可能であり、高温高圧下の反応合成、
熱水反応を利用した材料合成、各種有機、無機物質の分
解、分離あるいは特定成分、物質の抽出等、広汎な利用
分野を持つ高圧高温処理技術に新しい展開を与え、また
熱間等方圧成形装置の新しい利用方途として利点大であ
る。
(Effects of the Invention) According to the high-temperature and high-pressure treatment apparatus of the present invention, it is possible to perform the desired high-temperature and high-pressure reaction treatment on flowable materials such as gases, liquids, and slurry rods using a conventional autoclave method. A great advantage arises in that the high-temperature, high-pressure reaction treatment can be carried out continuously in a high-temperature, high-pressure region that exceeds the limits of certain temperature and pressure conditions. In this case, the present invention focuses on the ultra-high pressure and high temperature environment of hot isostatic pressing equipment, which is conventionally used for compression molding of solid phase molded products made of metal, ceramic powder, etc., and the main body structure of the equipment is By using it as a high-pressure processing body and installing a high-temperature and high-pressure processing inner cylinder inside, it is possible to perform high-temperature and high-pressure reaction processing stably and safely under higher pressure and temperature conditions on an industrial mass production scale. Reaction synthesis under high temperature and high pressure,
It provides a new development to high-pressure, high-temperature processing technology that has a wide range of applications, such as material synthesis using hydrothermal reactions, decomposition and separation of various organic and inorganic substances, or extraction of specific components and substances, and hot isostatic pressing. This is a great advantage as a new way to use the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は何れも本発明装置各実施例の縦断正
面図、第5.6図はバッチタイプオートクレーブ技術の
説明図、第7図は同パイプラインシステム連続式オート
クレーブ技術の説明図である。 ■・・・高圧容器、2・・・上蓋、3・・・下蓋、4・
・・加熱装置、5・・・断熱層、6・・・高温高圧処理
内筒、7,8゜12・・・シール、9.10・・・材料
出入口、11・・・炉室、13・・・断熱カバー、19
・・・被処理材料供給配管、21・・・被処理材料排出
配管、28・・・圧媒供給配管。 第 図 第 図 第 図
Figures 1 to 4 are longitudinal sectional front views of each embodiment of the apparatus of the present invention, Figures 5 and 6 are illustrations of the batch type autoclave technology, and Figure 7 is an illustration of the pipeline system continuous autoclave technology. It is. ■...High pressure container, 2...Top lid, 3...Lower lid, 4...
... Heating device, 5 ... Heat insulation layer, 6 ... High temperature and high pressure treatment inner cylinder, 7,8°12 ... Seal, 9.10 ... Material entrance and exit, 11 ... Furnace chamber, 13. ...Insulation cover, 19
...To-be-processed material supply piping, 21... To-be-processed material discharge piping, 28... Pressure medium supply piping. Figure Figure Figure Figure

Claims (6)

【特許請求の範囲】[Claims] (1)軸方向両端に上蓋および下蓋が閉塞されるととも
に圧媒供給手段および加熱昇温手段を具備した高圧容器
において、前記加熱昇温手段に囲まれてその内側に上下
両端が前記上蓋および下蓋に圧力シール状態下に接続さ
れる高温高圧処理内筒を同心に内装し、かつ該内筒の上
下両端を前記上蓋および上蓋に設けられる被処理材料の
出入口と連通させ、加熱昇温手段に属する断熱層を上、
下蓋を含む前記高圧容器側または高温高圧処理内筒に圧
力シール状態下に保持することを特徴とする高温高圧処
理装置。
(1) In a high-pressure container having an upper lid and a lower lid closed at both ends in the axial direction and equipped with a pressure medium supply means and a heating temperature raising means, the upper lid and the upper lid and the upper lid and the lower lid are located inside the heating temperature raising means and surrounded by the heating temperature raising means. A high-temperature, high-pressure processing inner cylinder connected under a pressure-sealed state is installed concentrically in the lower lid, and both upper and lower ends of the inner cylinder are communicated with the upper lid and an inlet/outlet for the material to be treated provided in the upper lid, and a heating temperature raising means is provided. The insulation layer on top, which belongs to
A high-temperature and high-pressure processing apparatus, characterized in that the high-pressure vessel side including the lower lid or the high-temperature and high-pressure processing inner cylinder is maintained under a pressure-sealed state.
(2)高温高圧処理内筒の一部が高圧容器蓋の一部を構
成し、該容器蓋の開閉を介し前記内筒への被処理材料の
出入が可能とされていることを特徴とする請求項(1)
記載の高温高圧処理装置。
(2) A part of the high-temperature, high-pressure processing inner cylinder constitutes a part of a high-pressure container lid, and the material to be processed can enter and exit the inner cylinder by opening and closing the container lid. Claim (1)
The high temperature and high pressure processing equipment described.
(3)高温高圧処理内筒の一端が軸方向にスライド可能
に設けられるていることを特徴とす請求項(1)、(2
)のいずれかに記載の高温高圧処理装置。
(3) High-temperature, high-pressure treatment Claims (1) and (2) characterized in that one end of the inner cylinder is provided so as to be slidable in the axial direction.
).The high-temperature, high-pressure treatment device according to any one of (1).
(4)高圧容器上蓋内に冷却水通路を設けたことを特徴
とする請求項(1)〜(3)のいずれかに記載の高温高
圧処理装置。
(4) The high-temperature, high-pressure processing apparatus according to any one of claims (1) to (3), characterized in that a cooling water passage is provided in the upper lid of the high-pressure container.
(5)被処理材料の加圧状態下の移送が搬出側に設ける
ノズル、絞り弁等の流路抵抗手段または背圧手段を介し
て行なわれることを特徴とする請求項(1)〜(4)の
いずれかに記載の高温高圧処理装置。
(5) Claims (1) to (4) characterized in that the material to be processed is transferred under pressure through a flow path resistance means such as a nozzle or a throttle valve or a back pressure means provided on the discharge side. ).The high-temperature, high-pressure treatment device according to any one of (1).
(6)熱間等方圧成形用圧媒圧力と高温高圧処理内筒内
の圧力との差圧を所定値以内に制御する手段を設けたこ
とを特徴とする請求項(1)〜(5)のいずれかに記載
の高温高圧処理装置。
(6) Claims (1) to (5) characterized in that means are provided for controlling the differential pressure between the pressure of the pressure medium for hot isostatic pressing and the pressure inside the high-temperature and high-pressure processing inner cylinder to within a predetermined value. ).The high-temperature, high-pressure treatment device according to any one of (1).
JP17035488A 1988-07-07 1988-07-07 High-temperature and high-pressure treatment device Pending JPH0221190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17035488A JPH0221190A (en) 1988-07-07 1988-07-07 High-temperature and high-pressure treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17035488A JPH0221190A (en) 1988-07-07 1988-07-07 High-temperature and high-pressure treatment device

Publications (1)

Publication Number Publication Date
JPH0221190A true JPH0221190A (en) 1990-01-24

Family

ID=15903379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17035488A Pending JPH0221190A (en) 1988-07-07 1988-07-07 High-temperature and high-pressure treatment device

Country Status (1)

Country Link
JP (1) JPH0221190A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180628B1 (en) 1998-12-17 2007-02-20 Ricoh Company, Ltd. Image formation apparatus and image formation system
US7433609B2 (en) 2004-12-24 2008-10-07 Ricoh Company, Ltd. Image forming apparatus with a plurality of image forming units
CN102765946A (en) * 2012-07-05 2012-11-07 中国科学院宁波材料技术与工程研究所 Current assisted method for quickly preparing powder
CN103978215A (en) * 2014-06-03 2014-08-13 中国工程物理研究院流体物理研究所 Method and device for manufacturing metal hydride electrode and using method of device
CN106440803A (en) * 2016-10-12 2017-02-22 安徽贝意克设备技术有限公司 Vertical vacuum tube type hot-press furnace
WO2018219445A1 (en) * 2017-05-31 2018-12-06 Quintus Technologies Ab Pressing arrangement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180628B1 (en) 1998-12-17 2007-02-20 Ricoh Company, Ltd. Image formation apparatus and image formation system
US7551307B2 (en) 1998-12-17 2009-06-23 Ricoh Company, Ltd. Image formation apparatus and image formation system
EP2254326A2 (en) 1998-12-17 2010-11-24 Ricoh Company, Ltd. Image formation apparatus and image formation system
US7433609B2 (en) 2004-12-24 2008-10-07 Ricoh Company, Ltd. Image forming apparatus with a plurality of image forming units
CN102765946A (en) * 2012-07-05 2012-11-07 中国科学院宁波材料技术与工程研究所 Current assisted method for quickly preparing powder
CN103978215A (en) * 2014-06-03 2014-08-13 中国工程物理研究院流体物理研究所 Method and device for manufacturing metal hydride electrode and using method of device
CN106440803A (en) * 2016-10-12 2017-02-22 安徽贝意克设备技术有限公司 Vertical vacuum tube type hot-press furnace
CN106440803B (en) * 2016-10-12 2018-08-21 安徽贝意克设备技术有限公司 A kind of vertical vacuum tubular type hot pressing furnace
WO2018219445A1 (en) * 2017-05-31 2018-12-06 Quintus Technologies Ab Pressing arrangement
JP2020529318A (en) * 2017-05-31 2020-10-08 キンタス・テクノロジーズ・エービーQuintus Technologies AB Press component
US11780192B2 (en) 2017-05-31 2023-10-10 Quintus Technologies Ab Pressing arrangement

Similar Documents

Publication Publication Date Title
US10265675B2 (en) Solid powder reactor
US6331271B1 (en) Method for hot-isostatic pressing of parts
EP0269257B1 (en) Apparatus & process for sterilization of spices and leafy herbs
CN105032306B (en) Solid-phase atmosphere reaction device
JPH0221190A (en) High-temperature and high-pressure treatment device
KR20210095715A (en) Apparatus and method for continuous high pressure treatment of bulk materials, and uses thereof
CN2497861Y (en) Low-temperature reactor device
US11413592B2 (en) Horizontal supercritical fluid foaming autoclave with internal stirring device
CN212882403U (en) Temperature control device of reaction kettle
CN110026251A (en) A kind of catalyst roasting apparatus
JPH02245146A (en) High-pressure treating device
CN216224335U (en) Temperature-adjustable reaction kettle for biomass MOFs adsorption-catalysis material
JPH07117345B2 (en) High temperature and high pressure processing method and apparatus
CN113457608A (en) Production and processing equipment and process of polyurethane waterproof coating
JPH0221192A (en) Method and device for high-temperature and high-pressure treatment
RU2076000C1 (en) Autoclave
CN217431649U (en) Polymeric pan feeding device of polymeric kettle
CN107164225A (en) Solid bacterium Slag treatment device and its application method
CN205443392U (en) Convertor
JPH0710921B2 (en) Lignocellulosic material liquefaction equipment
JPH0710920B2 (en) Lignocellulosic material liquefaction equipment
CN220573220U (en) Trimethylol propane light and heavy component mixing device
CN210700036U (en) Temperature-pressure-controllable supercritical reaction equipment
RU101256U1 (en) DEVICE FOR SUBMITTING URANIUM HEXAFLUORIDE FOR PROCESSING
JPH01293129A (en) Continuous high temperature and high pressure treatment device