JPH02210718A - Gaseous phase growing method for oxide superconductor - Google Patents

Gaseous phase growing method for oxide superconductor

Info

Publication number
JPH02210718A
JPH02210718A JP1031329A JP3132989A JPH02210718A JP H02210718 A JPH02210718 A JP H02210718A JP 1031329 A JP1031329 A JP 1031329A JP 3132989 A JP3132989 A JP 3132989A JP H02210718 A JPH02210718 A JP H02210718A
Authority
JP
Japan
Prior art keywords
oxygen
gas
thin film
reactor
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1031329A
Other languages
Japanese (ja)
Inventor
Takatoshi Nakanishi
中西 隆敏
Kazuhiro Eguchi
和弘 江口
Toshie Sato
利江 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1031329A priority Critical patent/JPH02210718A/en
Priority to EP89313578A priority patent/EP0387456B1/en
Priority to DE89313578T priority patent/DE68909395T2/en
Publication of JPH02210718A publication Critical patent/JPH02210718A/en
Priority to US07/701,587 priority patent/US5164363A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable sufficient oxidation of the film even at low temperature by increasing the chance of exposure of the growing surface to oxygen when an oxide superconductive film is grown through organic metal chemical gas phase growing process. CONSTITUTION:In MOCVD process for a superconductor, wherein an organic metal gas containing a metal element constructing an oxide superconductor, and an oxygen series gas consisting of oxygen or an oxidizer containing oxygen, are introduced into a reaction furnace 10 in which a base member 11 to be treated is received, and these are thermally decomposed to deposit a film on the base member, the introduction of the organic metal gas and the oxygen series gas is carried out selectively. Accordingly, the chance of exposure of the growing surface of oxygen can be increased so that oxidation of the growing film surface can proceed to the necessary and sufficient extent. Thus, an oxide superconductor film can be obtained at low temperature.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、有機金属化学気相成長法(MOCVD法)に
より酸化物高温超伝導体薄膜を製造する方法に係わり、
特に酸素系ガスの供給方式の改良をはかった酸化物超伝
導体の気相成長方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing an oxide high temperature superconductor thin film by metal organic chemical vapor deposition (MOCVD).
In particular, the present invention relates to a method for vapor phase growth of oxide superconductors with an improved method of supplying oxygen-based gas.

(従来の技術) 近年、YB a 2 Cu C)t−a 。(Conventional technology) In recent years, YB a 2 Cu C) ta.

Bi、5r2CaCu20.等に代表される酸化物超伝
導体が発見され、注目を集めている。
Bi, 5r2CaCu20. Oxide superconductors such as these have been discovered and are attracting attention.

従来の超伝導体は、Nb、Gaのように金属間化合物で
あり、その超伝導特性の指標である臨界温度(Tc)は
、高々20Kに過ぎない。このため、高価な液体ヘリウ
ム(4,2K)冷媒による冷却下でしか超伝導特性を示
さず、超伝導体の用途が著しく制限されていた。
Conventional superconductors are intermetallic compounds such as Nb and Ga, and their critical temperature (Tc), which is an indicator of their superconducting properties, is only 20K at most. For this reason, superconductors only exhibit superconducting properties when cooled with an expensive liquid helium (4.2K) refrigerant, severely limiting the applications of superconductors.

これに対し、上記酸化物超伝導体のTcはLOOKを越
えており、工業的に安価に製造されている液体窒素(7
7K )による冷却下で超伝導特性を示す。従って、従
来の用途は勿論のこと、77にで動作する超高速論理素
子等の電子デバイス等、新しい用途への適用が期待され
る。
On the other hand, the Tc of the above-mentioned oxide superconductor exceeds LOOK, and liquid nitrogen (7
It exhibits superconducting properties when cooled to 7K). Therefore, it is expected to be applied not only to conventional applications but also to new applications such as electronic devices such as ultra-high-speed logic elements that operate at 77 MHz.

酸化物超伝導体が工業的に使用されるためには、組成の
制御された欠陥の少ない酸化物結晶体が再現性良く作成
できることが不可欠である。
In order for oxide superconductors to be used industrially, it is essential that oxide crystals with controlled composition and few defects can be produced with good reproducibility.

特に、超高速論理素子等の電子デバイスに適用するには
、酸化物単結晶の平坦な薄膜が必要不可欠となる。
In particular, flat thin films of oxide single crystals are essential for application to electronic devices such as ultrahigh-speed logic elements.

従来、酸化物超伝導体薄膜の作成には、スパッタリング
や電子ビーム蒸着等の物理的手法が用いられている。こ
れらの方法は、比較的単純な装置で薄膜が得られるもの
の、酸化物超伝導体薄膜を構成する元素の供給量を独立
に精密制御することが難しい。さらに、上記構成元素供
給量がスパッタリングターゲット或いは蒸着源の形状に
左右される。このため、酸化物超伝導体を所望の組成で
再現性良く堆積することは困難であった。
Conventionally, physical methods such as sputtering and electron beam evaporation have been used to create oxide superconductor thin films. Although these methods allow thin films to be obtained using relatively simple equipment, it is difficult to independently and accurately control the supply amount of the elements constituting the oxide superconductor thin film. Furthermore, the supply amount of the above-mentioned constituent elements depends on the shape of the sputtering target or vapor deposition source. For this reason, it has been difficult to deposit an oxide superconductor with a desired composition with good reproducibility.

そこで最近、CVD技術の一種である有機金属の熱分解
反応を利用したM OCV D (Metalorga
nic CV D )法を利用して、酸化物超伝導体を
作成する技術が開発されている。MOCVD法は、上記
物理的方法とは異なり化学気相成長法であり、゛酸化物
構成元素原料の供給量を独立に精密制御することができ
る。このため、酸化物超伝導体の薄膜組成の制御性を向
上させることができる。
Therefore, recently, MOCVD (Metalorga
Techniques have been developed to create oxide superconductors using the nic CV D ) method. Unlike the above-mentioned physical methods, the MOCVD method is a chemical vapor deposition method, and it is possible to independently and precisely control the supply amount of the oxide constituent element raw material. Therefore, the controllability of the thin film composition of the oxide superconductor can be improved.

しかしながら、この種の方法にあっては次のような問題
があった。即ち、従来のMOCVD法で堆積した薄膜は
、成長温度が600℃或いはそれ以下である場合、超伝
導相とは別の多結晶相、又は非晶質相で構成されており
、このままでは超伝導特性を示さない。堆積後800℃
以上の高温で空気又は純酸素雰囲気中で酸化並びに結晶
化熱処理を施したとき始めて超伝導特性を示すことが報
告されている。このようにして得られた薄膜は多結晶体
であり、しかも堆積した結晶組成とは別の超伝導体相を
、より高温で結晶化して得る工程を含むため、得られた
薄膜表面の平坦性が非常に悪く、超高速電子デバイス等
に用いることは到底できない。
However, this type of method has the following problems. That is, when the growth temperature is 600°C or lower, the thin film deposited by the conventional MOCVD method is composed of a polycrystalline phase or an amorphous phase that is different from the superconducting phase, and if it remains as it is, it will not become superconducting. Shows no characteristics. 800℃ after deposition
It has been reported that superconducting properties are exhibited only when oxidation and crystallization heat treatment is performed at higher temperatures in air or pure oxygen atmosphere. The thin film obtained in this way is polycrystalline, and since it includes a step of crystallizing a superconductor phase different from the deposited crystal composition at a higher temperature, the surface flatness of the obtained thin film is improved. This is extremely poor, making it completely impossible to use it for ultra-high-speed electronic devices.

堆積後の酸化並びに結晶化熱処理を省略しようとすると
、堆積温度を少なくとも800℃以上にしなければ所望
の超伝導相が得られず、またこの場合にも薄膜表面の平
坦性が極めて悪い。
If the oxidation and crystallization heat treatments after deposition are to be omitted, the desired superconducting phase cannot be obtained unless the deposition temperature is at least 800° C., and also in this case, the flatness of the thin film surface is extremely poor.

さらに、堆積並びに事後の熱処理温度が高いことは、基
板と薄膜との反応による膜質の劣化を引き起こす虞れが
ある。つまり、従来のMOCVD法では、薄膜堆積後に
酸素又は空気中で高温熱処理しなければ所望の超伝導体
相が得られないこと、高温熱処理を省略しようとすると
堆積温度を高めなければならないことがあり、低温では
薄膜の酸化が不十分に進行することを示しており、何等
かの方法で酸化の程度を高めなければ、より低温で所望
の超伝導体結晶相を得ることができないという問題をか
かえていた。
Furthermore, high deposition and subsequent heat treatment temperatures may cause deterioration of film quality due to reaction between the substrate and the thin film. In other words, in the conventional MOCVD method, the desired superconductor phase cannot be obtained unless high-temperature heat treatment is performed in oxygen or air after thin film deposition, and if the high-temperature heat treatment is to be omitted, the deposition temperature may have to be increased. This shows that the oxidation of thin films does not proceed sufficiently at low temperatures, and the problem is that the desired superconductor crystal phase cannot be obtained at lower temperatures unless the degree of oxidation is increased in some way. was.

また、従来のMOCVD法による酸化物超伝導体薄膜の
堆積では、有機金属原料の混合蒸気と酸素ガスを同時に
反応炉に導入していたが、この方法では酸素供給量を増
加しても酸素が有機金属蒸気気相中で反応し、所望の堆
積物以外の化合物として消費される。このため、堆積中
の薄膜表面に酸素が十分に供給され難く、その程度は低
温堆積時はど顕著に現われ易かった。
In addition, in the conventional MOCVD method for depositing oxide superconductor thin films, a mixed vapor of organometallic raw materials and oxygen gas were introduced into the reactor at the same time. It reacts in the organometallic vapor gas phase and is consumed as a compound other than the desired deposit. For this reason, it is difficult to sufficiently supply oxygen to the surface of the thin film being deposited, and the extent of this problem tends to become more noticeable during low-temperature deposition.

(発明が解決しようとする課題) このように、MOCVD法で酸化物超伝導体薄膜を堆積
する場合、低温では薄膜の酸化の程度が不十分なため超
伝導相が得られず、逆に堆積温度を高めると超伝導相は
得られるものの薄膜表面が平坦にならないという問題が
あった。
(Problems to be Solved by the Invention) As described above, when depositing an oxide superconductor thin film using the MOCVD method, a superconducting phase cannot be obtained because the degree of oxidation of the thin film is insufficient at low temperatures; Although a superconducting phase can be obtained by increasing the temperature, there is a problem in that the surface of the thin film does not become flat.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、表面の平坦性の優れた酸化物超伝導
体薄膜をより低温で成長することができ、超高速電子デ
バイス等に適した酸化物超伝導体の気相成長方法を提供
することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to enable oxide superconductor thin films with excellent surface flatness to be grown at lower temperatures, and to enable ultrafast electronic devices, etc. An object of the present invention is to provide a method for vapor phase growth of an oxide superconductor suitable for.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、MOCVD法で酸化物超伝導薄膜を成
長する際に、成長表面が酸素に晒されている機会を増大
させる、又は供給する酸素ガスを励起して活性度を高め
ることにより、薄膜の酸化を低温でも十分に行わせるこ
とにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to increase the chance that the growth surface is exposed to oxygen when growing an oxide superconducting thin film by the MOCVD method, or to supply oxygen. The aim is to oxidize the thin film sufficiently even at low temperatures by exciting the oxygen gas to increase its activity.

即ち本発明は、被処理基体を収容した反応炉内に、酸化
物超伝導体を構成する金属元素を含む有機金属ガスと酸
素若しくは酸素を含む酸化剤からなる酸素系ガスとを導
入し、これらを熱分解して該基体上に薄膜を堆積する酸
化物超伝導体の気相成長方法において、■反応炉内への
有機金属ガスと酸素系ガスとの導入を選択的に行う、よ
うにした方法である。
That is, in the present invention, an organometallic gas containing a metal element constituting an oxide superconductor and an oxygen-based gas consisting of oxygen or an oxidizing agent containing oxygen are introduced into a reactor containing a substrate to be treated. In the vapor phase growth method for oxide superconductors in which a thin film is deposited on the substrate by thermally decomposing the metal, organic metal gas and oxygen-based gas are selectively introduced into the reactor. It's a method.

また本発明は、上記■の代わりに、■反応炉内へ導入す
る酸素系ガスを反応炉とは別の領域で予め活性化して導
入する、ようにした方法である。さらに本発明は、上記
■■の両方を採用するようにした方法である。
Furthermore, the present invention is a method in which, instead of (1) above, (2) the oxygen-based gas to be introduced into the reactor is activated in advance in a region separate from the reactor. Furthermore, the present invention is a method that employs both of the above items.

(作用) 本発明によれば、■又は■の工程を行うことにより、成
長しつつある薄膜表面の酸化を必要にして十分な程度に
進行させることが可能となり、その結果、従来より低温
で酸化物超伝導体薄膜を得ることができる。さらに、成
長温度が低温であり、その後に高温熱処理を施す必要も
ないので、薄膜表面の平坦性を向上させることができ、
超高速電子デバイスの実現に寄与することが可能となる
(Function) According to the present invention, by performing the step ① or ②, it is possible to oxidize the surface of the growing thin film to a sufficient degree, and as a result, oxidation can be carried out at a lower temperature than before. A superconductor thin film can be obtained. Furthermore, since the growth temperature is low and there is no need for subsequent high-temperature heat treatment, the flatness of the thin film surface can be improved.
It will be possible to contribute to the realization of ultra-high-speed electronic devices.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例方法に使用した気相成長装置
を示す概略構成図である。図中10は反応管(反応炉)
であり、この反応管10内には基板(被処理基体)11
を保持するサセプタ12が収容されている。反応管10
の周囲には、反応管10内を加熱するための赤外ランプ
等のヒータ13が設置されている。そして、反応管10
内には、ガス導入口14を介して後述する有機金属原料
ガス等が導入され、反応管10内のガスはロータリーポ
ンプ15を介して排気されるものとなっている。なお、
反応管l。
FIG. 1 is a schematic diagram showing a vapor phase growth apparatus used in an embodiment of the present invention. 10 in the figure is a reaction tube (reactor)
In this reaction tube 10, a substrate (substrate to be processed) 11 is placed.
A susceptor 12 holding the susceptor 12 is housed therein. Reaction tube 10
A heater 13 such as an infrared lamp is installed around the reaction tube 10 to heat the inside of the reaction tube 10. And reaction tube 10
An organometallic raw material gas, which will be described later, is introduced into the reaction tube 10 through a gas inlet 14, and the gas inside the reaction tube 10 is exhausted through a rotary pump 15. In addition,
Reaction tube l.

内の基板11の温度は熱電対等の温度センサ16より検
出され、さらに反応管lO内の圧力は圧力センサ17に
より検出されるものとなっている。
The temperature of the substrate 11 inside is detected by a temperature sensor 16 such as a thermocouple, and the pressure inside the reaction tube IO is detected by a pressure sensor 17.

一方、21はArガスを充填した高圧容器であり、この
高圧容器21からのArガスは流量制御器としてのマス
フローコントローラ(以下、MFCと略記する)35に
より流量を制御されて反応管10内に導入される。また
、高圧容器21からのArガスはMFC31,32,3
3を介して原料容器41,42.43にそれぞれ供給さ
れる。原料容器41,42.43は、それぞれイツトリ
ウム(Y)、バリウム(Ba)。
On the other hand, 21 is a high-pressure container filled with Ar gas, and the flow rate of the Ar gas from this high-pressure container 21 is controlled by a mass flow controller (hereinafter abbreviated as MFC) 35 as a flow rate controller, and the Ar gas flows into the reaction tube 10. be introduced. Furthermore, Ar gas from the high pressure container 21 is supplied to the MFCs 31, 32, 3
3 to raw material containers 41, 42, and 43, respectively. The raw material containers 41, 42, and 43 contain yttrium (Y) and barium (Ba), respectively.

銅(Cu)の有機原料を収容するものであり、原料容器
41には Y (02C11H19) s Y (DPM) 3 
、容器42には Ba (02CIIHI9) 28a (DPM) 2
 、容器43には Cu (02CIIH19) z Cu (D PM)
 2を収容した。ここで、DPMは CHiC(CHi) 2C(0)CHC(0)C(CH
I)2CH3である。
It stores an organic raw material for copper (Cu), and the raw material container 41 contains Y (02C11H19) s Y (DPM) 3
, the container 42 contains Ba (02CIIHI9) 28a (DPM) 2
, the container 43 contains Cu (02CIIH19) z Cu (D PM)
It accommodated 2. Here, DPM is CHiC(CHi) 2C(0)CHC(0)C(CH
I) 2CH3.

原料容器41,42.43にArガスが供給されると、
原料容器から有機金属原料の蒸気が導出され、これらの
原料蒸気は3方弁51,52.53を介して反応管10
に導入される。また、22は02ガスを充填した高圧容
器であり、この高圧容器22からの0□ガスはMFC3
4により流量を制御された後、3方弁54を介して反応
管10内に導入される。
When Ar gas is supplied to the raw material containers 41, 42, and 43,
Organic metal raw material vapor is led out from the raw material container, and these raw material vapors are passed through three-way valves 51, 52, and 53 to the reaction tube 10.
will be introduced in Further, 22 is a high pressure container filled with 02 gas, and the 0□ gas from this high pressure container 22 is supplied to the MFC3.
After the flow rate is controlled by 4, it is introduced into the reaction tube 10 via the three-way valve 54.

また、各3方弁51〜54の一方の通路は上記したよう
に反応管10側であるが、他方の通路はそれぞれ共通接
続されて図示しない排気管等に接続されている。また、
原料容器41〜43とMFC31〜33及び3方弁51
〜53、MFC34と3方弁54.3方弁51〜54と
反応管10のガス導入口14、MFC35と反応管10
のガス導入口14は、それぞれ配管及び継手等により接
続されている。
Further, one passage of each of the three-way valves 51 to 54 is on the reaction tube 10 side as described above, but the other passage is connected in common to an exhaust pipe or the like (not shown). Also,
Raw material containers 41 to 43, MFCs 31 to 33, and three-way valve 51
~53, MFC34 and 3-way valve 54. 3-way valves 51-54 and gas inlet 14 of reaction tube 10, MFC35 and reaction tube 10
The gas inlet ports 14 are connected to each other by pipes, joints, etc.

なお、原料容器41.42.43はそれぞれ140℃、
250℃、150℃に保温されている。配管は全てステ
ンレス製であり、有機金属原料蒸気が凝結しないように
ヒータ(図示せず)によって280℃に保温されている
。3方弁51〜54は電磁弁であり、全てシーケンスコ
ントローラによって総括されており、3方弁51〜54
の開閉タイミングと保持時間を予めプログラムできるよ
うになっている。
In addition, raw material containers 41, 42, and 43 are respectively 140°C,
The temperature is kept at 250℃ and 150℃. All piping is made of stainless steel, and is kept at 280° C. by a heater (not shown) to prevent condensation of organic metal raw material vapor. The three-way valves 51 to 54 are solenoid valves, and are all controlled by a sequence controller.
The opening/closing timing and holding time can be programmed in advance.

〈実施例1〉 上記装置を用いた酸化物超伝導体薄膜 (YB a2 Cu307−J )の製造方法について
説明する。
<Example 1> A method for producing an oxide superconductor thin film (YBa2 Cu307-J) using the above-mentioned apparatus will be described.

まず、化学エツチングにより表面を正常化した(100
)方位のチタン酸ストロンチウム(S r T i O
3)基板結晶11を前記サセプタ12上に載置する。反
応管10には高圧容器21から高純度A「ガスを配管系
を通じて供給し、反応管10内の空気を置換する。次い
で、ロータリーポンプ15を作動させ、圧力計17を見
ながら反応管10内の圧力を5〜78Torrの範囲で
調節する。その後、高圧容器22から高純度02ガスを
供給し、ヒータ13によりサセプタ12並びに基板結晶
11を800〜850℃の範囲の所定の温度で加熱し、
基板結晶11の表面の清浄化を行う。0□ガスの供給停
止は、3方弁54を素早く切り替えて排気経路に排出す
ることにより行い、流路遮断による一時的な流量変動を
少なくするようにした。表面の清浄化を実施している間
に高圧容器21からMFC31〜33を経由して流量を
調節されたA「ガスを各原料容器41〜43に50c■
3/分の割合で送り込み、得られた蒸気を配管系を通じ
て下流側に送り出す。その際、3方弁51〜53を操作
し該蒸気を排気経路に放流しておく。以上が、成長を始
める前の予備段階である。
First, the surface was normalized by chemical etching (100
) orientation of strontium titanate (S r T i O
3) Place the substrate crystal 11 on the susceptor 12. High-purity A gas is supplied from the high-pressure container 21 to the reaction tube 10 through the piping system to replace the air inside the reaction tube 10.Next, the rotary pump 15 is operated, and while watching the pressure gauge 17, the inside of the reaction tube 10 is The pressure is adjusted in the range of 5 to 78 Torr. Thereafter, high purity 02 gas is supplied from the high pressure vessel 22, and the susceptor 12 and the substrate crystal 11 are heated by the heater 13 at a predetermined temperature in the range of 800 to 850°C.
The surface of the substrate crystal 11 is cleaned. The supply of 0□ gas was stopped by quickly switching the three-way valve 54 and discharging the gas to the exhaust path, thereby reducing temporary fluctuations in flow rate due to flow path blockage. While surface cleaning was being carried out, 50cm of gas was supplied from the high pressure container 21 to each of the raw material containers 41 to 43 at a controlled flow rate via the MFCs 31 to 33.
3/min, and the resulting steam is sent downstream through the piping system. At that time, the three-way valves 51 to 53 are operated to release the steam to the exhaust path. These are the preliminary stages before growth begins.

次に、堆積工程について、第2図を参照して説明する。Next, the deposition process will be explained with reference to FIG.

まず、■3方弁51〜53を反応管側に同時に切り替え
て有機金属原料蒸気を反応管10に送り込む。90秒経
過した後、3方弁51〜53を排気側に同時に切り替え
て、蒸気を排気経路に排出する。即ち、反応管10への
を機金属蒸気の供給を停止する。■次に、3方弁51〜
53の切り替え後3秒以内に3方弁54を反応管側に切
り替えて、排気経路に流していた02ガスを反応管10
内に送り込む。90秒間300cm’ /分の流量の0
2ガスを供給した後、3方弁54を排気側に切り替えて
、反応管10への02ガスの供給を停止する。以上の工
程■〜■を20回繰返すことにより、約5000人の厚
さの酸化物薄膜を堆積した。
First, the three-way valves 51 to 53 are simultaneously switched to the reaction tube side to feed the organic metal raw material vapor into the reaction tube 10. After 90 seconds have elapsed, the three-way valves 51 to 53 are simultaneously switched to the exhaust side to discharge the steam to the exhaust path. That is, the supply of metal vapor to the reaction tube 10 is stopped. ■Next, 3-way valve 51~
Within 3 seconds after switching 53, the 3-way valve 54 is switched to the reaction tube side, and the 02 gas that was flowing into the exhaust path is transferred to the reaction tube 10.
send it inside. 0 at a flow rate of 300 cm'/min for 90 seconds
After supplying the 02 gas, the three-way valve 54 is switched to the exhaust side to stop supplying the 02 gas to the reaction tube 10. By repeating the above steps (1) to (2) 20 times, an oxide thin film with a thickness of about 5,000 layers was deposited.

ここで、本発明の特徴は■、■の工程を繰返すことにあ
る。比較のために、従来行われている工程で堆積して得
られた薄膜の特性も調べた。
Here, the feature of the present invention is that steps (1) and (2) are repeated. For comparison, we also investigated the properties of thin films deposited using conventional processes.

有機金属蒸気と02ガスとを同時に反応管10内に供給
する以外は、堆積条件を同一にした。
The deposition conditions were the same except that the organometallic vapor and 02 gas were simultaneously supplied into the reaction tube 10.

堆積時間は1時間で、約9000.人の厚さの膜が堆積
した。
Deposition time is 1 hour and approximately 9000. A film the thickness of a person was deposited.

本実施例で得られた薄膜は、表面の凹凸が200人程変
色平坦であり、X線回折測定からYBa2 Cus 0
r−a多結晶以外は認められず、しかもYBa、Cu3
07−a結晶の(001)面がS r T L 03基
板結晶の(001)面と平行に配列(C軸配向)してい
ること、即ちエピタキシャル成長していることが判った
。また、この薄膜の低温での電気抵抗を測定した結果、
該薄膜は超伝導特性を示し、臨界温度は72にであった
The thin film obtained in this example had a flat, discolored surface with approximately 200 irregularities, and was found to be YBa2Cus 0 by X-ray diffraction measurements.
No crystals other than ra polycrystals were observed, and YBa, Cu3
It was found that the (001) plane of the 07-a crystal was aligned parallel to the (001) plane of the S r T L 03 substrate crystal (C-axis orientation), that is, it was epitaxially grown. Additionally, as a result of measuring the electrical resistance of this thin film at low temperatures,
The thin film exhibited superconducting properties, with a critical temperature of 72°C.

これに対して、従来方法によって得た薄膜は非晶質で電
気的に絶縁体であった。そこで、成長温度を800℃ま
で上げて約8000人の厚さの薄膜を成長させてみた。
In contrast, thin films obtained by conventional methods were amorphous and electrically insulating. Therefore, they raised the growth temperature to 800 degrees Celsius and grew a thin film approximately 8,000 times thick.

得られた薄膜のX線回折から、該薄膜が多結晶であり、
本実施例による薄膜に比べてC軸配向の微結晶のほかに
(100)に配向(a軸配向)した微結晶がかなりの程
度含まれること、さらに YBa2Cu、of−a以外の同定できない化合物も含
まれていることが判った。また、顕微鏡下の薄膜の表、
断面観察から、成長表面は平坦ではなく、凹凸の程度が
2μm以上あることが判り、さらに薄膜の電気的抵抗測
定から40にで電気抵抗が零になることが判った。
X-ray diffraction of the obtained thin film revealed that the thin film was polycrystalline;
Compared to the thin film of this example, in addition to C-axis oriented microcrystals, (100)-oriented (a-axis oriented) microcrystals are included to a considerable extent, and unidentified compounds other than YBa2Cu and of-a are also included. It was found that it was included. Also, the surface of the thin film under the microscope,
From cross-sectional observation, it was found that the growth surface was not flat and had an unevenness of 2 μm or more, and furthermore, from the measurement of the electrical resistance of the thin film, it was found that the electrical resistance became zero at 40°C.

このように本実施例によれば、従来例により得られた薄
膜との特性比較からも判るように、有機金属蒸気と酸素
ガスとを交互に供給した結果、従来技術より平坦なYB
 ax Cus 07−a薄膜を得ることができる。薄
膜の平坦化は、超伝導接合デバイスには必要不可欠であ
り、この点で本実施例は従来技術に比べて有用な薄膜を
提供できる。また、超伝導特性を示す薄膜の成長温度を
、従来より約200℃はど低温にすることができる。成
長温度の低温化は、堆積した薄膜が基板結晶と反応して
劣化、変質する程度を低減するにつながり極めて有効で
ある。さらに、X線回折と超伝導臨界温度測定結果から
、本実施例で得た薄膜の方が、エピタキシャル成長の程
度が高く他の混合物を含む割合が少ないこと、その結果
として、より高い臨界温度が得られることが判明してい
る。
In this way, according to this example, as can be seen from the comparison of the characteristics with the thin film obtained in the conventional example, as a result of alternately supplying organic metal vapor and oxygen gas,
An ax Cus 07-a thin film can be obtained. Flattening of a thin film is essential for a superconducting junction device, and in this respect, the present embodiment can provide a more useful thin film than the prior art. Furthermore, the growth temperature of a thin film exhibiting superconducting properties can be lowered by about 200° C. compared to conventional techniques. Lowering the growth temperature is extremely effective in reducing the extent to which the deposited thin film reacts with substrate crystals and deteriorates or changes in quality. Furthermore, the results of X-ray diffraction and superconducting critical temperature measurements show that the thin film obtained in this example has a higher degree of epitaxial growth and a lower proportion of other mixtures, and as a result, a higher critical temperature. It is known that

〈実施例2〉 本実施例では、装置としては前記第1図のものを用い、
3方弁の切り替えタイミングを先の実施例と異なるよう
にした。
<Example 2> In this example, the apparatus shown in FIG. 1 was used,
The switching timing of the three-way valve was made different from that of the previous embodiment.

本実施例におけるYBa2 Cu30t−a薄膜の製造
手順は次の通りである。高圧容器21からMFC31〜
33を介して流量を調節されたA「ガスを各原料容器4
1〜43に50cm’ /分の割合で送り込み、得られ
た蒸気を配管系を通じて下流側に送り出す。その際、3
方弁51〜53を操作し該蒸気を排気経路に放流してお
く。
The manufacturing procedure of the YBa2 Cu30t-a thin film in this example is as follows. From high pressure container 21 to MFC31~
A gas whose flow rate is regulated through 33 is supplied to each raw material container 4.
1 to 43 at a rate of 50 cm'/min, and the resulting steam is sent downstream through the piping system. At that time, 3
The steam is discharged into the exhaust path by operating the direction valves 51 to 53.

以上が、成長を始める前の予備段階である。These are the preliminary stages before growth begins.

成長に当たっては、第3図に示す如く、のまず3方弁5
1を反応管側に切り替え、 Y(DPM)3の金属蒸気を反応管10内に送り込む。
During growth, as shown in Figure 3, the three-way valve 5
1 to the reaction tube side, and the metal vapor of Y(DPM) 3 is sent into the reaction tube 10.

90秒経過した後、3方弁51を排気側に同時に切り替
えて、蒸気を排気経路に排出する。3方弁51の切り替
え後3秒以内に3方弁54を反応管側に切り替えて、排
気経路に流していた02ガスを反応管10内に送り込む
、、90秒間800cm’ /分の流量の02ガスを供
給した後、3方弁54を排気側に切り替えて、反応管1
0への02ガスの供給を停止する。
After 90 seconds have elapsed, the three-way valve 51 is simultaneously switched to the exhaust side to discharge the steam to the exhaust path. Within 3 seconds after switching the 3-way valve 51, the 3-way valve 54 is switched to the reaction tube side, and the 02 gas that was flowing through the exhaust path is sent into the reaction tube 10, at a flow rate of 800 cm'/min for 90 seconds. After supplying the gas, the three-way valve 54 is switched to the exhaust side, and the reaction tube 1 is
Stop the supply of 02 gas to 0.

同様にして、@B a (D P M) 2と酸素ガス
Similarly, @B a (D P M) 2 and oxygen gas.

OCu (DPM)2と酸素ガスを交互に反応管10内
に供給する。以上のO−Oの工程を繰り返すことにより
、YBa2 Cu30f−J薄膜の堆積を行った。成長
温度は600℃とし、有機金属蒸気と酸素ガス流量並び
にその積分供給時間は先の第1の実施例と比較できるよ
うに同一にした。1回当たりの有機金属蒸気と酸素ガス
の供給時間を第1の実施例と同一にして1分(繰り返し
回数30回)、5分(繰り返し回数6回)と変化させて
みた。成長時間3時間で約8000人の厚さの薄膜が得
られた。さらに、成長温度、即ち基板温度を600℃か
ら500℃まで変化させて基板温度が薄膜特性にどのよ
うな効果を与えているかも調べた。また、酸素供給時間
を有機金属供給時間に対して1から10倍まで変化させ
た。
OCu (DPM) 2 and oxygen gas are alternately supplied into the reaction tube 10. By repeating the above O-O process, a YBa2 Cu30f-J thin film was deposited. The growth temperature was 600° C., and the organic metal vapor and oxygen gas flow rates and their integral supply times were the same as in the first example above for comparison. The supply time of organometallic vapor and oxygen gas per time was the same as in the first example, and was changed to 1 minute (30 repetitions) and 5 minutes (6 repetitions). A thin film with a thickness of about 8,000 wafers was obtained with a growth time of 3 hours. Furthermore, the growth temperature, ie, the substrate temperature, was varied from 600° C. to 500° C. to examine the effect that the substrate temperature had on the thin film properties. Further, the oxygen supply time was varied from 1 to 10 times the organometallic supply time.

以上の実験を試みた結果、第1の実施例と同一温度の8
00℃で堆積した酸化物薄膜については、第1の実施例
と比べ、より完全なC軸配向性と良好な表面平坦度並び
に、より高い超伝導臨界温度を得た。成長温度を下げた
場合には、550℃まで殆どC軸配向した薄膜が得られ
た。
As a result of trying the above experiment, we found that 8
For the oxide thin film deposited at 00° C., more perfect C-axis orientation, better surface flatness, and higher superconducting critical temperature were obtained compared to the first example. When the growth temperature was lowered, a thin film with almost C-axis orientation up to 550°C was obtained.

即ち、本実施例によれば、第1の実施例よりもさらに5
0℃低温でエピタキシャル薄膜が得られることが判った
。また、酸素供給時間を10倍にすると、1倍の時に比
べ、超伝導臨界温度が5〜IOK程度高温側に改善でき
た。さらに、金属Cu、Ba、Yの酸化の困難さを考慮
に入れて酸素供給時間を延長させると、超伝導臨界温度
が数置向とすることが判った。
That is, according to this embodiment, the number of
It was found that an epitaxial thin film can be obtained at a low temperature of 0°C. Furthermore, when the oxygen supply time was increased by 10 times, the superconducting critical temperature was improved to about 5 to IOK higher than when the oxygen supply time was increased to 1 time. Furthermore, it was found that if the oxygen supply time was extended taking into account the difficulty of oxidizing metals Cu, Ba, and Y, the superconducting critical temperature was set at several positions.

〈実施例3〉 有機金属原料としてBi(C6H,)i。<Example 3> Bi(C6H,)i as an organometallic raw material.

S r (DPM)2 、Ca (DPM)z 。Sr (DPM)2, Ca (DPM)z.

Cu(DPM)zを用い、第1の実施例と同様の気相成
長装置を用いて、 B i−3r−Ca−Cu−0系酸化物薄膜の成長を行
った。Bi(C6Hs)i。
A B i-3r-Ca-Cu-0 based oxide thin film was grown using Cu(DPM)z and the same vapor phase growth apparatus as in the first example. Bi(C6Hs)i.

S r (DPM)z 、Ca (DPM)2 。Sr (DPM)z, Ca (DPM)2.

Cu(DPM)2の各原料容器の温度は120℃。The temperature of each raw material container of Cu(DPM)2 was 120°C.

230℃、200℃、130℃とし、Arキャリアガス
の原料容器への流量は、50cm’ /分と全て同じと
した。また、反応管内の圧力は30Torrとした。
The temperatures were 230°C, 200°C, and 130°C, and the flow rate of Ar carrier gas into the raw material container was all the same at 50 cm'/min. Further, the pressure inside the reaction tube was set to 30 Torr.

第1の実施例と同様に有機金属原料の混合蒸気と酸素ガ
スを交互に反応管内に供給し、酸化物薄膜を堆積した。
As in the first example, a mixed vapor of organic metal raw materials and oxygen gas were alternately supplied into the reaction tube to deposit an oxide thin film.

供給時間については第1の実施例と同様にした。得られ
た薄膜の特性を、従来の手法である有機金属原料蒸気と
酸素ガスとを同時に反応管に供給する方法で得た薄膜と
比較した。その結果は、第1の実施例と同様の効果が得
られた。即ち、従来法では基板温度が800℃で初めて
C軸配向した薄膜が得られるに過ぎず、1μm以上の表
面の凹凸が認められるのに対し、本実施例では基板温度
600℃で殆どC軸配向エピタキシャル薄膜が得られた
。表面状態凹凸が50人程度と大幅に改善できた。また
、薄膜の低温電気抵抗測定が超伝導体であり、超伝導臨
界温度Tcとして80Kが得られた。
The supply time was the same as in the first example. The properties of the obtained thin film were compared with those obtained by a conventional method of simultaneously supplying organometallic raw material vapor and oxygen gas to a reaction tube. As a result, the same effects as in the first example were obtained. In other words, in the conventional method, a thin film with C-axis orientation was only obtained at a substrate temperature of 800°C, and surface irregularities of 1 μm or more were observed, whereas in this example, almost all C-axis orientation was obtained at a substrate temperature of 600°C. An epitaxial thin film was obtained. The surface condition was significantly improved to about 50 people. Furthermore, low-temperature electrical resistance measurements of the thin film revealed that it was a superconductor, and a superconducting critical temperature Tc of 80K was obtained.

〈実施例、4.〉 先の第2の実施例と同一の装置、成長条件で有機金属原
料として、Bf (C6B5)3゜8 r (DPM)
 2.Ca (DPM)2 。
<Example, 4. 〉 Bf (C6B5)3゜8r (DPM) was used as the organometallic raw material using the same equipment and growth conditions as in the second example.
2. Ca(DPM)2.

Cu (D P M) 2を用い、 B1−8r−Ca−Cu−0系酸化物薄膜の成長を行っ
た。即ち、Bl (C6B5)31−O,−3r−(D
PM)2、−02−Ca(DPM)2 02−Cu (
DPM)2−02という供給順序で原料蒸気、ガス供給
を繰り返すことにより、B1−3r−Ca−Cu−0系
酸化物薄膜を得た。
A B1-8r-Ca-Cu-0 based oxide thin film was grown using Cu(DPM)2. That is, Bl (C6B5)31-O, -3r-(D
PM)2, -02-Ca(DPM)2 02-Cu (
A B1-3r-Ca-Cu-0 based oxide thin film was obtained by repeating the supply of raw material vapor and gas in the order of supply (DPM)2-02.

成長のための原料蒸気、ガスの供給順序を除き、そのた
めの成長条件は第3の実施例と同一にした。成長温度6
00℃で殆ど完全にC軸配向したB1−5r−Ca−C
u−0系酸化物薄膜が得られた。即ち、従来法に比べ成
長温度を200℃以上低減できた。また、得られた薄膜
の表面状態についても、平坦度約50人と従来法の1μ
m以上に比べ著しく改善できた。該薄膜の低温電気抵抗
測定から、薄膜が超伝導特性を示し、その臨界温度は8
5にであった。また第2の実施例と同様、−完成長時間
内の繰り返し回数を増加させると、エピタキシャル薄膜
が得られる温度をさらに50〜100℃低減できた。
The growth conditions were the same as in the third example except for the supply order of raw material vapor and gas for growth. Growth temperature 6
B1-5r-Ca-C with almost complete C-axis orientation at 00°C
A u-0 type oxide thin film was obtained. That is, the growth temperature could be reduced by more than 200°C compared to the conventional method. In addition, regarding the surface condition of the obtained thin film, the flatness was about 50 compared to that of the conventional method.
This was a significant improvement compared to m or higher. Low-temperature electrical resistance measurements of the thin film showed that the thin film exhibited superconducting properties, and its critical temperature was 8.
It was on 5th. Further, as in the second example, by increasing the number of repetitions within the -completion time, the temperature at which the epitaxial thin film was obtained could be further reduced by 50 to 100°C.

〈実施例5〉 次に、本発明の第5の実施例について説明する。第4図
は同実施例に使用した気相成長装置を示す概略構成図で
ある。なお、第1図と同一部分には同一符号を付して、
その詳しい説明は省略する。この装置が第1図の装置と
異なる点は、酸素ガスの導入経路にマイクロ波放電管を
設け、酸素ガスを活性化して反応管内に導入するように
したことにある。
<Example 5> Next, a fifth example of the present invention will be described. FIG. 4 is a schematic configuration diagram showing a vapor phase growth apparatus used in the same example. The same parts as in Fig. 1 are given the same reference numerals.
A detailed explanation thereof will be omitted. This apparatus differs from the apparatus shown in FIG. 1 in that a microwave discharge tube is provided in the oxygen gas introduction path to activate the oxygen gas and introduce it into the reaction tube.

即ち、3方弁54と反応管10との間のガス流路には、
61〜68等からなるマイクロ波放電管が設けられてい
る。3方弁54から反応管前室67に送り込まれた酸素
ガスは、ここでマイクロ波電力を印加して活性化される
。マイクロ波の周波数は2.4GHzとした。マグネト
ロン発振器61からダミーロードとアイソレータ62゜
Eコーナー導波管63.スリースタブチューナ64を経
たTE、。波はショートプランジャー65付のアプリケ
ータ(導波管)66に導かれる。
That is, in the gas flow path between the three-way valve 54 and the reaction tube 10,
Microwave discharge tubes such as 61 to 68 are provided. The oxygen gas sent into the reaction tube front chamber 67 from the three-way valve 54 is activated by applying microwave power here. The frequency of the microwave was 2.4 GHz. From the magnetron oscillator 61 to the dummy load and isolator 62°E corner waveguide 63. TE via three stub tuner 64. The waves are guided to an applicator (waveguide) 66 with a short plunger 65.

この導波管66の電界方向の面に直径3.8CIの穴が
開けられ、この穴−杯に反応管前室67が貫通している
。68はマイクロ波の外部リーク防止板である。反応管
前室に送り込まれた酸素ガスは、印加されたマイクロ波
電力により69の部位でプラズマを発生し、酸素ガスが
活性化される。
A hole with a diameter of 3.8 CI is made on the surface of the waveguide 66 in the electric field direction, and a reaction tube front chamber 67 passes through this hole. 68 is a microwave external leak prevention plate. The oxygen gas sent into the front chamber of the reaction tube generates plasma at a location 69 by the applied microwave power, and the oxygen gas is activated.

次に、上記装置を用いた酸化物超伝導体薄膜(YBaz
 Cu30t−a )の製造方法について説明する。ま
ず、成長を始める予備段階は先の第1の実施例と同様に
して行う。この段階では、マイクロ波放電による酸素ガ
スの活性化は行わない。
Next, the oxide superconductor thin film (YBaz
The manufacturing method of Cu30t-a) will be explained. First, the preliminary stage for starting growth is carried out in the same manner as in the first embodiment. At this stage, activation of oxygen gas by microwave discharge is not performed.

次に、堆積工程について説明する。まず、■3方弁51
〜53を反応管側に同時に切り替えて有機金属原料蒸気
を反応管10に送り込む。
Next, the deposition process will be explained. First, ■3-way valve 51
53 to the reaction tube side at the same time to feed the organometallic raw material vapor into the reaction tube 10.

90秒経過した後、3方弁51〜53を排気側に同時に
切り替えて、蒸気を排気経路に排出する。
After 90 seconds have elapsed, the three-way valves 51 to 53 are simultaneously switched to the exhaust side to discharge the steam to the exhaust path.

即ち、反応管10への有機金属蒸気の供給を停止する。That is, the supply of organometallic vapor to the reaction tube 10 is stopped.

■次に、3方弁51〜53の切り替え後3秒以内に3方
弁54を反応管側に切り替えて、排気経路に流していた
02ガスを反応管前室67を介して反応管10内に送り
込む。この反応管前室に酸素ガスが導入されるタイミン
グと同期してマグネトロン電源を起動させ、酸素ガスを
69の部位でプラズマ化する。活性化された酸素は反応
管前室67を通り反応管10内に置、かれた基板結晶1
1表面に供給される。このとき、反応管前室67を含め
た反応管10内の圧力は5 Torrとした。また、印
加マイクロ波電力は200Wとした。
■Next, within 3 seconds after switching the 3-way valves 51 to 53, the 3-way valve 54 is switched to the reaction tube side, and the 02 gas that was flowing into the exhaust path is passed through the reaction tube front chamber 67 into the reaction tube 10. send to. The magnetron power supply is activated in synchronization with the timing at which oxygen gas is introduced into the front chamber of the reaction tube, and the oxygen gas is turned into plasma at a location 69. Activated oxygen passes through the reaction tube front chamber 67 and is placed in the reaction tube 10, where the substrate crystal 1 is placed.
1 surface. At this time, the pressure inside the reaction tube 10 including the reaction tube front chamber 67 was set to 5 Torr. Further, the applied microwave power was 200W.

90秒間300c+w’ /分の流量の酸素ガスをマイ
クロ波電力を印加しながら供給した後、マグネトロン電
源を切ると同時に3方弁54を排気側に切り替えて、反
応管10への酸素ガスの供給を停止する。以上の工程■
〜■を20回繰返すことにより、約4000人の厚さの
酸化物薄膜を堆積した。成長温度は450℃から800
℃までの範囲内の所定の温度に設定し、成長温度が薄膜
の特性に及ぼす効果を調べた。
After supplying oxygen gas at a flow rate of 300c+w'/min for 90 seconds while applying microwave power, the magnetron power is turned off and at the same time the three-way valve 54 is switched to the exhaust side to stop supplying oxygen gas to the reaction tube 10. Stop. Above process■
By repeating steps 1 to 2 20 times, an oxide thin film with a thickness of approximately 4,000 wafers was deposited. Growth temperature is 450℃ to 800℃
The effect of the growth temperature on the properties of the thin film was investigated by setting a predetermined temperature within the range of up to .

ここで、本発明の特徴は■、■の工程を繰返すことにあ
る。比較のために、従来行われている工程で堆積して得
られた薄膜の特性も調べた。
Here, the feature of the present invention is that steps (1) and (2) are repeated. For comparison, we also investigated the properties of thin films deposited using conventional processes.

有機金属蒸気と02ガスとを同時に反応管10内に供給
し、酸素ガスにはマイクロ波電力を印加せず、また有機
金属上記の積分供給時間が実施例と同一になるように連
続供給する以外は、堆積条件を同一にした。堆積時間は
1時間で、約1μmの厚さの膜が得られた。
Except that the organic metal vapor and the 02 gas were simultaneously supplied into the reaction tube 10, no microwave power was applied to the oxygen gas, and the organic metal was continuously supplied so that the above-mentioned integral supply time was the same as in the example. The deposition conditions were the same. The deposition time was 1 hour and a film approximately 1 μm thick was obtained.

本実施例で得られた薄膜のうち600℃で得られた薄膜
は、表面の凹凸が50人程度と非常に平坦であり、X線
回折測定から YBaz Cu3 of−g多結晶以外は認められず、
しかもYBaz Cu、0t−a結晶の(001)面が
5rTL03基板結晶の(001)面と平行に配列(C
軸配向)しており、全面に渡って単結晶化していること
が判った。成長温度が下がるにつれX線回折強度(ピー
ク値)は600℃成長の薄膜に比べ僅かずつ低下してい
き、450℃成長では約半分となった。対応して回折ピ
ーク半値幅の広がりが認められた。X線回折の結果は、
膜中に微細な結晶の乱れが生じること、低温はど乱れが
多いことを示している。超伝導臨界温度は、成長温度6
00℃での80Kから徐々に低下し、成長温度500℃
で5OK 、  450℃で40にとなづた。低い成長
温度で得られた薄膜の超伝導臨界温度はバルク結晶で実
現されている最高値90Kに比べるとかなり低い。しか
し、成長温度以外の成長条件、例えば酸素ガス供給量、
マスクマイクロ波電力印加量とを変化させて成長して得
た所謂最適成長条件で得られた薄膜の超伝導臨界温度で
はないので、成長条件の適切化を行えば、さらに膜質の
改善とその結果としての超伝導臨界温度の向上が期待で
きる。
Among the thin films obtained in this example, the thin film obtained at 600°C had a very flat surface with about 50 degrees of unevenness, and X-ray diffraction measurements showed that nothing other than YBaz Cu3 of-g polycrystals were observed. ,
Moreover, the (001) plane of the YBaz Cu, 0t-a crystal is aligned parallel to the (001) plane of the 5rTL03 substrate crystal (C
It was found that the crystal was axially oriented) and was single crystallized over the entire surface. As the growth temperature decreases, the X-ray diffraction intensity (peak value) gradually decreases compared to the thin film grown at 600°C, and becomes about half that when grown at 450°C. Correspondingly, a broadening of the half-value width of the diffraction peak was observed. The results of X-ray diffraction are
This shows that fine crystal disturbances occur in the film, and that there is more disturbance at low temperatures. The superconducting critical temperature is the growth temperature 6
The growth temperature gradually decreases from 80K at 00℃ to 500℃.
It was 5 OK and reached 40 at 450℃. The superconducting critical temperature of thin films obtained at low growth temperatures is considerably lower than the maximum value of 90 K achieved with bulk crystals. However, growth conditions other than growth temperature, such as oxygen gas supply amount,
Since this is not the superconducting critical temperature of a thin film obtained under the so-called optimal growth conditions obtained by changing the amount of mask microwave power applied, if the growth conditions are optimized, the film quality can be further improved and the results obtained. It is expected that the superconducting critical temperature will improve as a result.

以上の結果に対し、従来方法によって得た薄膜は、成長
温度800℃以下では非晶質で電気的に絶縁体であった
。そこで、成長温度を600℃から50℃ずつ上昇させ
て800℃までの成長を試みた。その結果、成長温度7
00℃で初めて多結晶化したYBaz Cu、O,、薄
膜が得られた。
In contrast to the above results, the thin film obtained by the conventional method was amorphous and electrically insulating at a growth temperature of 800° C. or lower. Therefore, an attempt was made to increase the growth temperature from 600°C to 800°C by increasing the growth temperature by 50°C. As a result, the growth temperature 7
A polycrystalline YBaz Cu, O, thin film was obtained for the first time at 00°C.

該多結晶は略C軸配向しているが、(100)に8輪配
向した微結晶もかなり含まれていた。
Although the polycrystals were approximately C-axis oriented, a considerable number of microcrystals with (100) eight-ring orientation were also included.

成長温度の上昇につれ、結晶粒の大きさが700℃の1
μmから800℃の2〜3μm以上となった。対応して
成長表面の平坦性も低下した。また、薄膜の超伝導臨界
温度は、700℃成長での50Kから800℃成長での
40にと低い値しか得られなかった。
As the growth temperature increases, the grain size decreases to 1 at 700℃.
μm to 2 to 3 μm or more at 800°C. The flatness of the growth surface was correspondingly reduced. Further, the superconducting critical temperature of the thin film was only a low value, ranging from 50 K when grown at 700°C to 40 when grown at 800°C.

このように本実施例によれば、従来例により得られた薄
膜との特性比較からも判るように、有機金属蒸気とマイ
クロ波電力印加により活性化された酸素ガスとを交互に
供給した結果、従来の700℃に比べ400℃と、著し
い低温で超伝導体薄膜が得られた。しかも従来と異なり
、多結晶ではなく単結晶薄膜が得られた。成長温度が低
温化できたことは、薄膜が基板結晶と反応して劣化変質
する程度を著しく低減できることを意味する。さらに、
450℃という低い温度でYBaz Cu30t−a薄
膜を堆積できたことは、従来YBa2 Cu、O□−6
との合金化反応が強すぎて使用不可能であった半導体シ
リコン(S i)ウェハを基板結晶として用いることが
可能になったことを意味し、将来的に半導体電子デバイ
°スとのの複合化への道を築いたという点で大きい。加
えて、薄膜を単結晶化できるため、YBaz Cus 
07−J薄膜上にさらに超伝導デバイスの基本となる超
伝導体/絶縁体接合として、単結晶で乱れのない良質な
エピタキシャル絶縁体薄膜の堆積への基板を用意するこ
とができる。
In this way, according to this example, as can be seen from the comparison of characteristics with the thin film obtained in the conventional example, as a result of alternately supplying organometallic vapor and oxygen gas activated by applying microwave power, A superconductor thin film was obtained at a significantly lower temperature of 400°C than the conventional 700°C. Moreover, unlike conventional methods, a single crystal thin film was obtained instead of a polycrystalline film. The fact that the growth temperature can be lowered means that the extent to which the thin film deteriorates and changes in quality due to reaction with the substrate crystal can be significantly reduced. moreover,
The fact that the YBaz Cu30t-a thin film could be deposited at a temperature as low as 450°C is different from conventional YBa2 Cu, O□-6
This means that it is now possible to use semiconductor silicon (Si) wafers, which were previously unusable due to their too strong alloying reaction with semiconductors, as a substrate crystal, and in the future it will be possible to combine them with semiconductor electronic devices. It is significant in that it paved the way for this to become a reality. In addition, since the thin film can be made into a single crystal, YBaz Cu
A substrate can be prepared on the 07-J thin film for the deposition of a single-crystal, undisturbed, high-quality epitaxial insulator thin film as a superconductor/insulator junction that is the basis of a superconducting device.

〈実施例6〉 この実施例では、装置としては前記第1図のものを用い
、酸素系ガスとしてN、Oを用いた。
<Example 6> In this example, the apparatus shown in FIG. 1 was used, and N and O were used as the oxygen-based gases.

成長する薄膜及び用いる有機金属材料も、先の第1の実
施例と同様である。
The thin film to be grown and the organic metal material used are also the same as in the first example.

成長を始める荊の予備段階は、先の第1の実施例で02
の代わりにN20を用いることが異なるのみであり、他
は同じとした。薄膜の堆積条件としては、基板温度を8
00℃1反応管内の圧力を1OTorr、 N 20ガ
スの反応管への流量を50cm’ /分とした。薄膜の
堆積時間を1時間とし、約1μmの薄膜を得た。なお、
本実施例では有機金属原料ガス及びN20ガスを3方弁
の切り替えによって交互に反応管内に供給したが、この
N、0ガスの場合は同時に供給しても効果が見られた。
The preliminary stage of the psyllium starting to grow is 02 in the first example above.
The only difference was that N20 was used instead of , and the other things were the same. The thin film deposition conditions include a substrate temperature of 8.
The pressure inside the reaction tube was 1 O Torr at 00°C, and the flow rate of N20 gas into the reaction tube was 50 cm'/min. The deposition time of the thin film was 1 hour, and a thin film of approximately 1 μm was obtained. In addition,
In this example, the organometallic raw material gas and the N20 gas were alternately supplied into the reaction tube by switching the three-way valve, but in the case of the N and 0 gases, an effect was observed even if they were supplied at the same time.

本実施例で得られた薄膜は、第1の実施例で得られた薄
膜と同様に、表面の平坦性が優れ、C軸配向しているこ
とが確認された。また、この薄膜の臨界温度は78にで
ありだ。つまり、従来方法に比して、より低温で表面平
坦性の優れた薄膜を形成することができた。
It was confirmed that the thin film obtained in this example had excellent surface flatness and was C-axis oriented, similar to the thin film obtained in the first example. Moreover, the critical temperature of this thin film is 78°C. In other words, it was possible to form a thin film with excellent surface flatness at a lower temperature than with conventional methods.

〈実施例7〉 この実施例では、先の第3の実施例と同様の有機金属原
料を用い、 BL−9r−Ca−Cu−0系酸化物薄膜の成長を行っ
た。但し、0□の代わりにN20を用い、有機金属ガス
とN、Oガスとの反応管への供給は交互に行った。なお
、これらのガス供給を、同時に行っても効果があった。
Example 7 In this example, a BL-9r-Ca-Cu-0 based oxide thin film was grown using the same organometallic raw material as in the third example. However, N20 was used instead of 0□, and the organometallic gas and the N and O gases were alternately supplied to the reaction tube. Note that it was also effective to supply these gases at the same time.

この場合にも、低温で表面平坦性の良い酸化物超伝導体
薄膜が得られ、第2の実施例と同様の効果が得られた。
In this case as well, an oxide superconductor thin film with good surface flatness was obtained at low temperatures, and the same effects as in the second example were obtained.

さらに、N20ガスと02ガスとの1:1の比率の混合
ガスを酸化剤として用いても、同様の効果が得られた。
Furthermore, similar effects were obtained even when a mixed gas of N20 gas and 02 gas at a ratio of 1:1 was used as the oxidizing agent.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、堆積する薄膜は、Y B a 2 Cu
 307−4や B1−5r−Ca−Cu−0等に限るものではなく、他
の酸化物超伝導体薄膜の形成に適用することができる。
Note that the present invention is not limited to the embodiments described above. For example, the thin film deposited is YBa 2 Cu
The method is not limited to 307-4, B1-5r-Ca-Cu-0, etc., and can be applied to the formation of other oxide superconductor thin films.

また、有機金属原料や酸素系ガスについても実施例に限
定されるものではなく、仕様に応じて適宜変更可能であ
る。即ち、有機金属原料ガスとしては形成する酸化物超
伝導体に応じて選択することができるる。また、酸素系
ガスとしては、例えばNo、、N20゜オゾン等の酸化
性ガス(酸化剤)を用いてもよい。さらに、水蒸気(1
20)のような化合物を用いてもよい。また、本発明は
酸化物超伝導体の製造に限定されるものではなく、 L i N b OjやBaTi0.のような強誘電体
酸化物やZnOのような酸化物半導体等の酸化物一般の
MOCVD気相成長に適用することができる。その他、
本発明の要旨を逸脱しない範囲で、種々変形して実施す
ることができる。
Further, the organic metal raw materials and oxygen-based gas are not limited to the examples, and can be changed as appropriate depending on the specifications. That is, the organometallic raw material gas can be selected depending on the oxide superconductor to be formed. Further, as the oxygen-based gas, an oxidizing gas (oxidizing agent) such as No., N20° ozone, etc. may be used. Furthermore, water vapor (1
Compounds such as 20) may also be used. Furthermore, the present invention is not limited to the production of oxide superconductors, but can be applied to L i N b Oj, BaTi0. It can be applied to MOCVD vapor phase growth of general oxides such as ferroelectric oxides such as ferroelectric oxides and oxide semiconductors such as ZnO. others,
Various modifications can be made without departing from the spirit of the invention.

[発明の効果] 以上詳述したように本発明によれば、MOCVD法で酸
化物超伝導薄膜を成長する際に、成長表面が酸素に晒さ
れている機会を増大させる、又は供給する酸素ガスを励
起して活性度を高めることにより、薄膜の酸化を低温で
も十分に行わせることができる。従って、表面の平坦性
の優れた酸化物超伝導体薄膜をより低温で成長すること
ができ、超高速電子デバイス等に適した酸化物超伝導体
を実現することが可能となる。
[Effects of the Invention] As detailed above, according to the present invention, when growing an oxide superconducting thin film by the MOCVD method, an oxygen gas that increases the chance that the growth surface is exposed to oxygen or supplies oxygen gas. By exciting and increasing the activity, the thin film can be sufficiently oxidized even at low temperatures. Therefore, an oxide superconductor thin film with excellent surface flatness can be grown at a lower temperature, making it possible to realize an oxide superconductor suitable for ultrafast electronic devices and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1乃至第4の実施例方法に使用した
気相成長装置を示す概略構成図、第2図は第1の実施例
方法における弁の切り替えタイミングを示す模式図、第
3図は第2の実施例方法における弁の切り替えタイミン
グを示す模式図、第4図は本発明の第5の実施例方法に
使用した気相成長装置を示す概略構成図である。 10・・・反応管(反応炉) 11・・・基板(被処理基体) 12・・・サセプタ 13・・・ヒータ 14・・・ガス導入口 21.22・・・高圧容器 31〜35・・・流fl:A節器 41〜43・・・原料容器 51〜54・・・3方弁 61・・・マグネトロン発振器 66・・・導波管 67・・・反応管前室。 出願人代理人 弁理士 鈴 江 武彦
FIG. 1 is a schematic configuration diagram showing a vapor phase growth apparatus used in the first to fourth embodiment methods of the present invention, FIG. 2 is a schematic diagram showing valve switching timing in the first embodiment method, and FIG. FIG. 3 is a schematic diagram showing valve switching timing in the method of the second embodiment, and FIG. 4 is a schematic diagram showing a vapor phase growth apparatus used in the method of the fifth embodiment of the present invention. 10... Reaction tube (reactor) 11... Substrate (substrate to be processed) 12... Susceptor 13... Heater 14... Gas inlet port 21.22... High pressure vessel 31-35... - Flow fl: A moderators 41 to 43... Raw material containers 51 to 54... Three-way valve 61... Magnetron oscillator 66... Waveguide 67... Reaction tube front chamber. Applicant's agent Patent attorney Takehiko Suzue

Claims (6)

【特許請求の範囲】[Claims] (1)被処理基体を収容した反応炉内に、酸化物超伝導
体を構成する金属元素を含む有機金属ガスと酸素若しく
は酸素を含む酸化剤からなる酸素系ガスとを導入し、こ
れらを熱分解して該基体上に薄膜を堆積する際に、 前記反応炉内への有機金属ガスと酸素系ガスとの導入を
、選択的に行うことを特徴とする酸化物高温超伝導体の
気相成長方法。
(1) Introducing an organometallic gas containing the metal elements constituting the oxide superconductor and an oxygen-based gas consisting of oxygen or an oxidizing agent containing oxygen into a reactor containing the substrate to be treated, and heating them. A gas phase of an oxide high-temperature superconductor, characterized in that when decomposing and depositing a thin film on the substrate, an organometallic gas and an oxygen-based gas are selectively introduced into the reactor. How to grow.
(2)被処理基体を収容した反応炉内に、酸化物超伝導
体を構成する金属元素を含む有機金属ガスと酸素若しく
は酸素を含む酸化剤からなる酸素系ガスとを導入し、こ
れらを熱分解して該基体上に薄膜を堆積する際に、 前記反応炉内へ導入する酸素系ガスを、前記反応炉とは
別の領域で予め活性化することを特徴とする酸化物超伝
導体の気相成長方法。
(2) Introducing an organometallic gas containing the metal elements constituting the oxide superconductor and an oxygen-based gas consisting of oxygen or an oxidizing agent containing oxygen into a reactor containing the substrate to be treated, and heating them. An oxide superconductor characterized in that, when decomposing and depositing a thin film on the substrate, an oxygen-based gas introduced into the reactor is activated in advance in a region different from the reactor. Vapor phase growth method.
(3)被処理基体を収容した反応炉内に、酸化物超伝導
体を構成する金属元素を含む有機金属ガスと酸素若しく
は酸素を含む酸化剤からなる酸素系ガスとを導入し、こ
れらを熱分解して該基体上に薄膜を堆積する際に、 前記反応炉内への有機金属ガスと酸素系ガスとの導入を
選択的に行うと共に、 酸素系ガスを前記反応炉とは別の領域で活性化して導入
することを特徴とする酸化物超伝導体の気相成長方法。
(3) Introducing an organometallic gas containing the metal elements constituting the oxide superconductor and an oxygen-based gas consisting of oxygen or an oxidizing agent containing oxygen into a reactor containing the substrate to be treated, and heating them. When decomposing and depositing a thin film on the substrate, the organometallic gas and the oxygen-based gas are selectively introduced into the reactor, and the oxygen-based gas is introduced in a region separate from the reactor. A method for vapor phase growth of an oxide superconductor characterized by activation and introduction.
(4)前記有機金属ガスと酸素系ガスとの導入を、交互
に行うことを特徴とする請求項1又は3記載の酸化物超
伝導体の気相成長方法。
(4) The method for vapor phase growth of an oxide superconductor according to claim 1 or 3, characterized in that the organometallic gas and the oxygen-based gas are introduced alternately.
(5)前記有機金属ガスを複数種用い、これらの有機金
属ガスを順次反応炉内に導入すると共に、各有機金属ガ
スと酸素系ガスとを交互に反応炉内に導入することを特
徴とする請求項1又は3記載の酸化物超伝導体の気相成
長方法。
(5) A method characterized in that a plurality of types of organometallic gases are used, and these organometallic gases are sequentially introduced into the reactor, and each organometallic gas and an oxygen-based gas are alternately introduced into the reactor. A method for vapor phase growth of an oxide superconductor according to claim 1 or 3.
(6)前記酸素系ガスを活性化する手段として、前記反
応炉のガス導入口と酸素系ガス供給源との間に設けられ
た領域で、マイクロ波放電により酸素系ガスを励起する
ことを特徴とする請求項2又は3記載の酸化物超伝導体
の気相成長方法。
(6) The means for activating the oxygen-based gas is characterized in that the oxygen-based gas is excited by microwave discharge in a region provided between the gas inlet of the reactor and the oxygen-based gas supply source. A method for vapor phase growth of an oxide superconductor according to claim 2 or 3.
JP1031329A 1989-02-10 1989-02-10 Gaseous phase growing method for oxide superconductor Pending JPH02210718A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1031329A JPH02210718A (en) 1989-02-10 1989-02-10 Gaseous phase growing method for oxide superconductor
EP89313578A EP0387456B1 (en) 1989-02-10 1989-12-22 Method for vapor-phase growth of an oxide thin film
DE89313578T DE68909395T2 (en) 1989-02-10 1989-12-22 Process for the deposition of a thin oxide film.
US07/701,587 US5164363A (en) 1989-02-10 1991-05-15 Method for vapor-phase growth of a superconducting oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031329A JPH02210718A (en) 1989-02-10 1989-02-10 Gaseous phase growing method for oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02210718A true JPH02210718A (en) 1990-08-22

Family

ID=12328222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031329A Pending JPH02210718A (en) 1989-02-10 1989-02-10 Gaseous phase growing method for oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02210718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355070A (en) * 2000-04-14 2001-12-25 Asm Microchemistry Oy Method for depositing oxide thin film
JP2017512914A (en) * 2014-03-21 2017-05-25 アルタテック セミコンダクターAltatech Semiconductor Vapor deposition process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355070A (en) * 2000-04-14 2001-12-25 Asm Microchemistry Oy Method for depositing oxide thin film
JP2017512914A (en) * 2014-03-21 2017-05-25 アルタテック セミコンダクターAltatech Semiconductor Vapor deposition process

Similar Documents

Publication Publication Date Title
US5164363A (en) Method for vapor-phase growth of a superconducting oxide thin film
JP3436617B2 (en) Manufacturing method of ferroelectric thin film
US5350738A (en) Method of manufacturing an oxide superconductor film
JPH0829943B2 (en) Method of forming superconductor thin film
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH02210718A (en) Gaseous phase growing method for oxide superconductor
JPS63239742A (en) Manufacture for film superconductor
JP3253295B2 (en) Manufacturing method of oxide thin film
JPH035397A (en) Vapor growth method for thin oxide crystal film
JP3809669B2 (en) Chemical vapor deposition
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JPH0196015A (en) Formation of superconducting thin film
JPH0421504A (en) Production of oxide superconductor thin film
JPH03109292A (en) Vapor growth method for oxide thin film
JPS63257127A (en) Manufacture of thin film superconductor
JPH04354875A (en) Formation of metal oxide thin film
JPH03285804A (en) Production of oxide superconductor thin film
JPH03120364A (en) Production of oxide thin film substrate and oxide thin film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH05170597A (en) Production of thin oxide superconductor film
JPH03257017A (en) Production of oxide superconducting thin film
JPH02255533A (en) Production of bi-containing superconducting thin film
JPH02255534A (en) Production of bi-containing superconducting thin film
JPH03146405A (en) Formation of oxide superconducting thin film