JPH02209987A - Production of fluorescent ceramics - Google Patents

Production of fluorescent ceramics

Info

Publication number
JPH02209987A
JPH02209987A JP1030732A JP3073289A JPH02209987A JP H02209987 A JPH02209987 A JP H02209987A JP 1030732 A JP1030732 A JP 1030732A JP 3073289 A JP3073289 A JP 3073289A JP H02209987 A JPH02209987 A JP H02209987A
Authority
JP
Japan
Prior art keywords
rare earth
heat treatment
fluorescent
scintillator
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1030732A
Other languages
Japanese (ja)
Other versions
JP2685867B2 (en
Inventor
Naohisa Matsuda
直寿 松田
Masaaki Tamaya
正昭 玉谷
Kazuto Yokota
横田 和人
Masanori Toyoshima
正規 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1030732A priority Critical patent/JP2685867B2/en
Publication of JPH02209987A publication Critical patent/JPH02209987A/en
Application granted granted Critical
Publication of JP2685867B2 publication Critical patent/JP2685867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To reduce a hysteresis phenomenon due to exposure to radiation with hardly any reduction in absolute optical output of a scintillator by subjecting a machined substance of a fluorescent calcined ceramic compact activated with a rare earth element to heat treatment under specific conditions. CONSTITUTION:A fluorescent calcined ceramic compact activated with a rare earth element consisting essentially of a rare earth oxysulfide expressed by the formula M2O2S (M is rare earth element) is subjected to machining, such as cutting or grinding to a desired shape. The resultant machined compact is then subjected to heat treatment at 800-1400 deg.C temperature in a mixed gas atmosphere of hydrogen or hydrogen sulfide and an inert gas to afford fluorescent ceramics used as radiation detectors, etc., for X-rays, gamma-rays, etc.

Description

【発明の詳細な説明】 〔発明の目的1 (産業上の利用分野) 本発明は、X線やγ線などの放射線検出器などに用いら
れる蛍光性セラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention 1 (Industrial Application Field) The present invention relates to a method for manufacturing fluorescent ceramics used in radiation detectors for X-rays, γ-rays, etc.

(従来の技術) シンチレータは、X線などの放射線の刺激によって可視
光または可視光に近い波長の電磁波を放射する材料であ
り、シンチレーションカウンタとしてXIICT (X
線断層像撮影装置)の検出器などに用いられている。
(Prior art) A scintillator is a material that emits visible light or electromagnetic waves with wavelengths close to visible light when stimulated by radiation such as X-rays.
It is used as a detector in line tomography equipment.

このようなシンチレータとしてはs Nal 、Cs1
CdVO4などの単結晶体、BaFCJ :Eu 、 
La0Br:Tb。
Such scintillators include s Nal , Cs1
Single crystals such as CdVO4, BaFCJ:Eu,
La0Br:Tb.

Csl:TJ2、CaVO4およびCdWO4焼結体(
特公昭59−45022号公報参照)、立方晶系希土類
酸化物セラミックス(特開昭59−27283号公報参
照) 、Gd2O2S:Pr、 Gd202 S:(T
b、Pr)などの希土類オキシ硫化物セラミックス(特
開昭58−204088号公報参照)などが知られてい
る。
Csl: TJ2, CaVO4 and CdWO4 sintered body (
(see Japanese Patent Publication No. 59-45022), cubic rare earth oxide ceramics (see Japanese Patent Publication No. 59-27283), Gd2O2S:Pr, Gd202S:(T
Rare earth oxysulfide ceramics such as b, Pr) (see JP-A-58-204088) are known.

これらシンチレータのうち、特に希土類オキシ硫化物セ
ラミックスは、その高い発光効率や大きなX線吸収係数
のためにX線CT用のシンチレータとして好適なものと
言える。
Among these scintillators, rare earth oxysulfide ceramics are particularly suitable as scintillators for X-ray CT because of their high luminous efficiency and large X-ray absorption coefficient.

上記希土類オキシ硫化物セラミックスは、たとえば原料
粉末をホットプレス法やHIP(熱間静水圧プレス)法
などを用いて焼結させ、このセラミックス焼結体から切
断、研磨などの機械加工によって所望の形状および寸法
にし、シンチレータとして用いられている。
The above-mentioned rare earth oxysulfide ceramics can be produced by, for example, sintering the raw material powder using a hot pressing method or a HIP (hot isostatic pressing) method, and then cutting the ceramic sintered body into a desired shape by machining such as cutting and polishing. It is also used as a scintillator.

(発明が解決しようとする課題) 上述のように希土類オキシ硫化物セラミックスからなる
シンチレータは、ホットプレスやHIPなどによる焼結
体に切断や研磨などの機械加工を施すことによって得ら
れる。しかし、希土類オキシ硫化物セラミックスは、焼
結の際の印加圧力による残留歪やこれら機械加工による
機械的ダメージによって、継続してX線の曝射を受けた
シンチレータが一時的に劣化し、光出力(放射線照射時
にシンチレータから放出される光量)が経時的に低下す
るヒステリシス現象が認められるという問題があった。
(Problems to be Solved by the Invention) As described above, a scintillator made of rare earth oxysulfide ceramics is obtained by subjecting a sintered body by hot pressing, HIP, etc. to mechanical processing such as cutting and polishing. However, rare earth oxysulfide ceramics suffer from temporary deterioration of the scintillator due to continuous exposure to X-rays due to residual strain caused by the pressure applied during sintering and mechanical damage caused by these machining processes, resulting in optical output. There was a problem in that a hysteresis phenomenon was observed in which the amount of light emitted from the scintillator during radiation irradiation decreased over time.

このようなヒステリシス現象が生じると、たとえばX線
CTのX線検出器に用いた際に、誤ったX線強度データ
を出力することとなり、雑音の多い画像や誤った画像を
もたらすことになる。また、この光出力は放射線検出器
の感度を決定する重要な特性であり、ヒステリシスを減
少させるために光量が極端に低下するようなことがあっ
てはならない。
If such a hysteresis phenomenon occurs, for example, when used in an X-ray detector for X-ray CT, incorrect X-ray intensity data will be output, resulting in a noisy or erroneous image. Furthermore, this light output is an important characteristic that determines the sensitivity of a radiation detector, and in order to reduce hysteresis, the light amount must not be extremely reduced.

本発明は、このような従来技術の課題に対処するために
なされたもので、シンチレータの絶対的光出力をほとん
ど低下させることなく、放射線の曝射によるヒステリシ
ス現象を軽減した蛍光性セラミックスを製造する方法を
提供することを目的としている。
The present invention has been made to address the problems of the prior art, and is to produce fluorescent ceramics that reduce the hysteresis phenomenon caused by radiation exposure without substantially reducing the absolute light output of the scintillator. The purpose is to provide a method.

[発明の構成] (課題を解決するための手段) すなわち本発明の蛍光性セラミックスの製造方法は、 化学式:M2O2S        ・・・・・・(1
)(式中、Hは希土類元素から選ばれる少なくとも1種
の元素を示す。)で表される希土類オキシ硫化物を主成
分とする希土類元素付活の蛍光性セラミックス焼結体を
所望の形状に機械加工する工程と、この加工体に水素ま
たは硫化水素と不活性ガスとの混合ガス雰囲気中で80
0℃〜1400℃の温度で熱処理を施す工程とを有する
ことを特徴としている。
[Structure of the invention] (Means for solving the problem) That is, the method for producing fluorescent ceramics of the present invention has the following chemical formula: M2O2S (1)
) (In the formula, H represents at least one element selected from rare earth elements.) A rare earth element-activated fluorescent ceramic sintered body containing rare earth oxysulfide as a main component is shaped into a desired shape. The process of machining and the processing of this workpiece in an atmosphere of a mixed gas of hydrogen or hydrogen sulfide and an inert gas.
It is characterized by having a step of performing heat treatment at a temperature of 0°C to 1400°C.

本発明に用いられる希土類元素付活の蛍光性セラミック
ス焼結体としては、上記(1)式で表される希土類オキ
シ硫化物を主成分とするものであり、上記(I)式中の
間としてはGdx La、 Y 、 Luなどが例示さ
れ、これらの1種または2種以上の混合系として用いら
れる。また、付活剤としての希土類元素としては、P「
、Tb、 Eu、 Tsなどの1種または2種以上が用
いられる。具体例としては、Gd202 S:Pr、 
Gd202 S:(Tb、Pr) 、(Y、Gd)20
2 S:Pr、 (Y、Gd)202 S:(Tb、P
r) 、La202 S:Tbなどが例示される。これ
らはたとえばホットプレス法やHIP法などによって作
製される。
The rare earth element-activated fluorescent ceramic sintered body used in the present invention has a rare earth oxysulfide represented by the above formula (1) as a main component, and the intermediate in the above formula (I) is Gdx Examples include La, Y, Lu, etc., and these are used alone or as a mixture of two or more. In addition, as a rare earth element as an activator, P
, Tb, Eu, Ts, etc., or two or more thereof are used. Specific examples include Gd202S:Pr,
Gd202S: (Tb, Pr), (Y, Gd)20
2 S: Pr, (Y, Gd) 202 S: (Tb, P
r), La202S:Tb, etc. These are produced by, for example, a hot press method or a HIP method.

本発明においては、これらの希土類元素付活の蛍光性セ
ラミックス焼結体に対し、所望の形状とするための切断
加工や研磨加工などの機械加工を施し、この後水素また
は硫化水素と不活性ガスとの混合ガス雰囲気中で800
℃〜1400℃の温度において熱処理を施す。
In the present invention, these rare earth element-activated fluorescent ceramic sintered bodies are subjected to mechanical processing such as cutting and polishing in order to obtain a desired shape, and then heated with hydrogen or hydrogen sulfide and an inert gas. 800 in a mixed gas atmosphere with
Heat treatment is performed at a temperature of 1400°C to 1400°C.

この熱処理温度が800℃より低い温度では、有効に内
部歪や機械的ダメージを取り除くことができず、また1
400℃を超える温度では、上記蛍光性セラミックス焼
結体が着色してしまうという現象がみられ、光出力が低
下してしまう。
If this heat treatment temperature is lower than 800℃, internal strain and mechanical damage cannot be effectively removed, and 1
At temperatures exceeding 400° C., a phenomenon occurs in which the fluorescent ceramic sintered body becomes colored, resulting in a decrease in light output.

また、熱処理の際の雰囲気中の水素または硫化水素の濃
度は1体積%以上であることが好ましい。
Further, the concentration of hydrogen or hydrogen sulfide in the atmosphere during the heat treatment is preferably 1% by volume or more.

水素や硫化水素の濃度が1体積%未満であると光出力の
低下が著しくなるためである。熱処理に要する時間は、
温度にも依存するためいちがいに言えないが、おおよそ
10分間以上で効果が認められ、たとえば1時間〜5時
間程度である。
This is because if the concentration of hydrogen or hydrogen sulfide is less than 1% by volume, the optical output will be significantly reduced. The time required for heat treatment is
Although it is difficult to say with certainty because it depends on the temperature, the effect is observed in about 10 minutes or more, for example, about 1 hour to 5 hours.

(作 用) 本発明においては、所望の形状とするための機械加工を
行った希土類オキシ硫化物蛍光性セラミックスに対して
水素または硫化水素と不活性ガスとの混合ガス雰囲気中
で800℃〜1400℃の温度で熱処理を施す。この水
素または硫化水素を含む不活性ガス中での熱処理によっ
て内部歪が緩和されるとともに、機械加工による機械的
ダメージが有効に取り除かれ、ヒステリシスが低減する
。たとえば上記雰囲気以外の雰囲気中での熱処理では、
800℃〜1400℃の温度範囲による熱処理でも希土
類オキシ硫化物蛍光性セラミックスの着色が発生し、光
出力が大幅に低下してしまう。
(Function) In the present invention, rare earth oxysulfide fluorescent ceramics that have been machined into a desired shape are heated at 800°C to 1400°C in a hydrogen or mixed gas atmosphere of hydrogen sulfide and an inert gas. Heat treatment is carried out at a temperature of °C. This heat treatment in an inert gas containing hydrogen or hydrogen sulfide alleviates internal strain, effectively removes mechanical damage caused by machining, and reduces hysteresis. For example, in heat treatment in an atmosphere other than the above,
Even heat treatment in the temperature range of 800° C. to 1400° C. causes coloring of the rare earth oxysulfide fluorescent ceramics, resulting in a significant decrease in light output.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 まず、1500℃X 1000気圧の条件によるH I
 P l:l:よりGd202 S:Prのセラミック
ス焼結体を作製し、このセラミックス焼結体から 1m
5X  2ssX 30m−の大きさのシンチレータ片
を切り出した。
Example 1 First, H I under the conditions of 1500°C x 1000 atm.
A ceramic sintered body of Gd202 S:Pr was prepared from P l:l, and a 1 m
A piece of scintillator with a size of 5×2ss×30m was cut out.

なお、この切断後のシンチレータ片に管電圧120kV
p 、線量1500レントゲンのX線を曝射し、この後
管電圧t20kVp 、線量0.Olレントゲンの条件
でX線を照射して光出力を測定したところ、切断後のシ
ンチレータ片の光出力に対して、ヒステリシス現象によ
りX線曝射前の81%に低下した。
In addition, a tube voltage of 120 kV was applied to the scintillator piece after cutting.
p, a dose of 1500 roentgens is irradiated, and then the tube voltage is t20kVp, and the dose is 0. When the optical output was measured by irradiating X-rays under Ol-X-ray conditions, the optical output of the scintillator piece after cutting decreased to 81% of that before X-ray irradiation due to a hysteresis phenomenon.

次に、切断して所望の形状としたシンチレータ片に、箱
型電気炉中において水素と窒素の混合ガス(水素濃度3
体積%、流Q tooJ2/m1n)雰囲気下で120
0℃× 2時間の条件で熱処理を施した。
Next, the scintillator pieces cut into the desired shape were heated with a mixed gas of hydrogen and nitrogen (hydrogen concentration 3) in a box electric furnace.
Volume %, flow Q tooJ2/m1n) 120 under atmosphere
Heat treatment was performed at 0°C for 2 hours.

このようにして得た熱処理後のシンチレータに線量15
00レントゲンのX線を曝射し、この後管電圧120k
vp 、線量0.Olレントゲンの条件でX線を照射し
、X線曝射前のシンチレータ片の光出力を100%とし
て光出力をilN定したところ、光出力の維持率は85
%と、上記熱処理を行わないものに比べてヒステリシス
が減少した。また、熱処理後のシンチレータの光出力は
、熱処理を施さないものに対して14%向上していた。
The scintillator thus obtained after heat treatment received a dose of 15
00 Roentgen X-rays are emitted, and then the tube voltage is 120k.
vp, dose 0. When X-rays were irradiated under Ol-X-ray conditions and the light output was determined by setting the light output of the scintillator piece before X-ray exposure as 100%, the light output maintenance rate was 85.
%, the hysteresis was reduced compared to that without the above heat treatment. Furthermore, the light output of the scintillator after heat treatment was 14% higher than that without heat treatment.

実施例2 上記実施例1における熱処理に代えて、切断後のシンチ
レータ片に管状炉中で硫化水素と窒素の混合ガス(硫化
水素濃度2体積%、流量2J211n)雰囲気下で90
0℃×1時間の熱処理を施した。
Example 2 Instead of the heat treatment in Example 1, the scintillator pieces after cutting were treated in a tube furnace in an atmosphere of a mixed gas of hydrogen sulfide and nitrogen (hydrogen sulfide concentration: 2% by volume, flow rate: 2J211n) at 90°C.
Heat treatment was performed at 0° C. for 1 hour.

このようにして得たシンチレータに対して実施例1と同
様に、線ffi 1500レントゲンのX線曝射を行い
、光出力の維持率を測定したところ、91%と熱処理を
施さないものに比べてヒステリシスの大幅な減少が認め
られた。また、処理後のシンチレータの光出力は、熱処
理前に比べてわずか1%低下しただけであり、実用上は
とんど支障のないものであった。
The scintillator thus obtained was subjected to X-ray irradiation at an FFI 1500 Roentgen as in Example 1, and the optical output maintenance rate was measured, which was 91%, compared to that without heat treatment. A significant reduction in hysteresis was observed. Furthermore, the optical output of the scintillator after the treatment was only 1% lower than that before the heat treatment, which was practically no problem.

実施例3 1400℃x 1000気圧の条件のHIPによって作
製したLa202 S:Tbのセラミックス焼結体から
 lsmX 2*i x 305mの大きさのシンチレ
ータ片を切り出した。
Example 3 A scintillator piece having a size of lsm x 2*i x 305 m was cut out from a La202 S:Tb ceramic sintered body produced by HIP under conditions of 1400° C. and 1000 atm.

なお、この切断後のシンチレータ片に実施例1と同一条
件でX線を曝射し、この後実施例1と同様にして光出力
の維持率を測定したところ、ヒステリシス現象によりX
線曝射前の89%に低下した。
The scintillator piece after cutting was exposed to X-rays under the same conditions as in Example 1, and then the optical output maintenance rate was measured in the same manner as in Example 1.
This decreased to 89% of the level before radiation exposure.

次に、切断して所望の形状としたシンチレータ片に、箱
型電気炉ボにおいて水素と窒素の混合ガス(水素濃度3
体積%、流ffi 100β/5in)雰囲気下で12
00℃×・1時間の条件で熱処理を施した。
Next, the scintillator pieces cut into the desired shape were heated with a mixed gas of hydrogen and nitrogen (hydrogen concentration 3.
Volume %, flow ffi 100β/5in) under atmosphere 12
Heat treatment was performed at 00°C for 1 hour.

このようにして得た熱処理後のシンチレータに線215
00レントゲンのX線を曝射し、実施例1と同様にして
光出力の維持率を測定したところ94%と、上記熱処理
を行わないものに比べてヒステリシスが大幅に減少した
。また、熱処理後のシンチレータの光出力は、熱処理を
施さないものに対して10%向上していた。
A line 215 is attached to the scintillator after heat treatment obtained in this way.
When irradiated with X-rays of 0.00 Roentgen and measured for the retention rate of optical output in the same manner as in Example 1, it was found to be 94%, which was a significant reduction in hysteresis compared to that without the heat treatment. Furthermore, the light output of the scintillator after heat treatment was 10% higher than that without heat treatment.

[発明の効果] 以上説明したように本発明によれば、所望の形状を得る
際に不可欠な機械加工によって受けるダメージや焼結時
の印加圧力による残留歪に起因するヒステリシス現象、
すなわちX線曝射による光出力の低下を大幅に減少させ
ることが可能となる。
[Effects of the Invention] As explained above, according to the present invention, the hysteresis phenomenon caused by damage caused by machining that is essential for obtaining a desired shape and residual strain caused by applied pressure during sintering,
That is, it becomes possible to significantly reduce the decrease in optical output due to X-ray exposure.

しかも、熱処理による絶対的光出力の低下がほとんどな
いために、十分な検出感度が得られる。したがって、本
発明によって得られる蛍光性セラミックスは十分な感度
と少ないヒステリシスを示し、X@CTなどの放射線検
出器に好適なものを提供することができる。
Moreover, since there is almost no decrease in absolute optical output due to heat treatment, sufficient detection sensitivity can be obtained. Therefore, the fluorescent ceramics obtained according to the present invention exhibit sufficient sensitivity and low hysteresis, and can be suitable for radiation detectors such as X@CT.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (1)

【特許請求の範囲】[Claims] (1) 化学式: M_2O_2S (式中、Mは希土類元素から選ばれる少なくとも1種の
元素を示す。)で表される希土類オキシ硫化物を主成分
とする希土類元素付活の蛍光性セラミックス焼結体を所
望の形状に機械加工する工程と、この加工体に水素また
は硫化水素と不活性ガスとの混合ガス雰囲気中で800
℃〜1400℃の温度で熱処理を施す工程とを有するこ
とを特徴とする蛍光性セラミックスの製造方法。
(1) A rare earth element-activated fluorescent ceramic sintered body containing a rare earth oxysulfide as a main component and represented by the chemical formula: M_2O_2S (wherein, M represents at least one element selected from rare earth elements). A process of machining the workpiece into a desired shape, and subjecting the workpiece to 800°C in an atmosphere of a mixed gas of hydrogen or hydrogen sulfide and an inert gas.
1. A method for producing fluorescent ceramics, comprising the step of performing heat treatment at a temperature of 1400°C to 1400°C.
JP1030732A 1989-02-09 1989-02-09 Method for manufacturing fluorescent ceramics Expired - Lifetime JP2685867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1030732A JP2685867B2 (en) 1989-02-09 1989-02-09 Method for manufacturing fluorescent ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1030732A JP2685867B2 (en) 1989-02-09 1989-02-09 Method for manufacturing fluorescent ceramics

Publications (2)

Publication Number Publication Date
JPH02209987A true JPH02209987A (en) 1990-08-21
JP2685867B2 JP2685867B2 (en) 1997-12-03

Family

ID=12311845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030732A Expired - Lifetime JP2685867B2 (en) 1989-02-09 1989-02-09 Method for manufacturing fluorescent ceramics

Country Status (1)

Country Link
JP (1) JP2685867B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690116A1 (en) * 1994-06-29 1996-01-03 Rhone-Poulenc Chimie Rare earth oxysulfide, process for its manufacturing and its use as phosphor
US5518659A (en) * 1994-01-26 1996-05-21 Siemens Aktiengesellschaft Method for manufacturing a phosphor having high translucency
CN1061958C (en) * 1994-01-26 2001-02-14 西门子公司 Method for producing lightening material with high translucency
DE19506368C2 (en) * 1994-02-25 2001-03-01 Toshiba Kawasaki Kk Scintillator and method for its manufacture, as well as X-ray detector and X-ray computed tomography scanner
CN1065220C (en) * 1994-07-21 2001-05-02 西门子公司 Method for producing fluorescence ceramics by hot press
US8123981B2 (en) 2009-02-19 2012-02-28 Nitto Denko Corporation Method of fabricating translucent phosphor ceramics
US8137587B2 (en) * 2009-02-19 2012-03-20 Nitto Denko Corporation Method of manufacturing phosphor translucent ceramics and light emitting devices
CN115321579A (en) * 2022-08-18 2022-11-11 北京科技大学 Preparation method of high-performance sulfur oxide fluorescent powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518659A (en) * 1994-01-26 1996-05-21 Siemens Aktiengesellschaft Method for manufacturing a phosphor having high translucency
CN1061958C (en) * 1994-01-26 2001-02-14 西门子公司 Method for producing lightening material with high translucency
DE19506368C2 (en) * 1994-02-25 2001-03-01 Toshiba Kawasaki Kk Scintillator and method for its manufacture, as well as X-ray detector and X-ray computed tomography scanner
EP0690116A1 (en) * 1994-06-29 1996-01-03 Rhone-Poulenc Chimie Rare earth oxysulfide, process for its manufacturing and its use as phosphor
FR2721918A1 (en) * 1994-06-29 1996-01-05 Rhone Poulenc Chimie RARE EARTH OXYSULFIDE, PREPARATION METHOD THEREOF, AND USE THEREOF AS LUMINOPHORE
CN1065220C (en) * 1994-07-21 2001-05-02 西门子公司 Method for producing fluorescence ceramics by hot press
US8123981B2 (en) 2009-02-19 2012-02-28 Nitto Denko Corporation Method of fabricating translucent phosphor ceramics
US8137587B2 (en) * 2009-02-19 2012-03-20 Nitto Denko Corporation Method of manufacturing phosphor translucent ceramics and light emitting devices
US8298442B2 (en) 2009-02-19 2012-10-30 Nitto Denko Corporation Method of manufacturing phosphor translucent ceramics and light emitting devices
CN115321579A (en) * 2022-08-18 2022-11-11 北京科技大学 Preparation method of high-performance sulfur oxide fluorescent powder
CN115321579B (en) * 2022-08-18 2023-08-08 北京科技大学 Preparation method of high-performance oxysulfide fluorescent powder

Also Published As

Publication number Publication date
JP2685867B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
DE2849705C2 (en)
US4783596A (en) Solid state scintillator and treatment therefor
US7879284B2 (en) Method for making sintered cubic halide scintillator material
RU2755268C2 (en) Transparent ceramic scintillation detector with garnet structure for positron emission tomography
RU2350579C2 (en) Fluorescent ceramics
JP5686724B2 (en) Solid scintillator, radiation detector, and X-ray tomography apparatus
JP5675339B2 (en) Solid scintillator, radiation detector, and X-ray tomography apparatus
KR20080038360A (en) Rare earth oxysulfide scintillator and methods for producing same
JP2001072968A (en) Transparent solid scintillator material
JPS5930883A (en) Rare earth element-added yttria-gadolinia ceramic scintillator and manufacture
JPH05117025A (en) Process for manufacturing rare earth oxide ceramic scintillator by using oxalate precipitate dispersed with ammonium
US5518658A (en) Phosphor having reduced afterglow and method for manufacturing same
JPH0517224A (en) Preparation of yttria-gadolinia ceramic scintillator using hydroxide coprecipitation method
US5609793A (en) Fluorescent substance, method for production thereof, radiation detector using the fluorescent substance, and X-ray CT apparatus using the radiation detector
JPH02209987A (en) Production of fluorescent ceramics
JP2002275465A (en) Ceramic scintillator and method for producing the same, and radioactive ray detector and radioactive ray- surveying instrument by using the same
JPH0735298B2 (en) Method for producing yttria-gadolinia ceramic scintillator from ammonium dispersed oxalate coprecipitate
JP2002082171A (en) Radiation detector and x-ray diagnostic equipment using the same
JP3260541B2 (en) Phosphor powder, ceramic scintillator and method for producing the same
Anderson et al. A search for scintillation in doped and orthorhombic lead fluoride
JPH02212586A (en) Manufacture of florescent ceramic
JPH0516756B2 (en)
JP2595027B2 (en) Manufacturing method of ceramic scintillator
JPS6318286A (en) Radiation detector
Kunikata et al. Scintillation Properties of Ga2O3 Translucent Ceramics Annealed at Different Temperatures

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12