JPH02209689A - High temperature insulating piping - Google Patents

High temperature insulating piping

Info

Publication number
JPH02209689A
JPH02209689A JP1025811A JP2581189A JPH02209689A JP H02209689 A JPH02209689 A JP H02209689A JP 1025811 A JP1025811 A JP 1025811A JP 2581189 A JP2581189 A JP 2581189A JP H02209689 A JPH02209689 A JP H02209689A
Authority
JP
Japan
Prior art keywords
piping
metal
layer
ceramic
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025811A
Other languages
Japanese (ja)
Inventor
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1025811A priority Critical patent/JPH02209689A/en
Publication of JPH02209689A publication Critical patent/JPH02209689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

PURPOSE:To obtain piping with high-sealing performance and compact which can be used under high temperatures as an electrical insulating piping by interposing a mixture of metal of the same quality as that of the piping or metal capable of being welded to the piping with an electrical insulating material (between two layers). CONSTITUTION:For an electrical insulating piping for use with a high- temperature fuel cell e.g. a solid electrolyte or fused carbonate fuel cell, piping main body 1 formed from e.g. stainless steel is used. An electrical insulating material e.g. zirconia ceramics 5 is inserted into the space within the piping main body 1. Next, a metal layer 3 of e.g. SUS304, tungsten and the like is interposed between the ceramics layer 5 and the piping main body 1, and a mixed layer 4 formed by mixing of both layers is interposed between the ceramics layer and the metal layer 3. As a result, it is made possible to prevent destruction of the insulating ceramics and/or lowering of the sealing performance due to creepage, and the structure can be simplified and made compact.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は高温ガス配管構造に係り、特に、高温における
電気絶縁に好適な、配管、及び、その継手構造に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-temperature gas piping structure, and particularly to a piping and its joint structure suitable for electrical insulation at high temperatures.

〔従来の技術〕[Conventional technology]

従来の構造は、特開昭56−46190号公報に記載の
ように、隣接するフランジ間に環状のセラミック部材を
介在させ、絶縁ボルト、及び、ナツトで締結されている
。結合部のガスシールには金属製Oリングを用いている
が、金属性のシール材の場合、フランジ締付力が大きく
なり、その締付力でセラミックス部材が破損する恐れが
あり、破損防止のため、セラミック部材の両側壁面にセ
ラミック部材の外方に突出した形状の台金をろう付けす
るとともに、白金の突き出た部分を厚くシ、その部分に
電気絶縁材を挾んで金属製Oリングで締付ける構造にな
っていた。しかし、この継手は、250℃程度の温度下
で使用するものであるため、さらに高い温度(500℃
以上)で使用した場合については考慮はされていない。
In the conventional structure, as described in Japanese Patent Application Laid-open No. 56-46190, an annular ceramic member is interposed between adjacent flanges and they are fastened with insulating bolts and nuts. Metal O-rings are used for gas seals at joints, but if a metal seal material is used, the flange tightening force will be large, and the tightening force may damage the ceramic component, so it is difficult to prevent damage. Therefore, a base metal with a shape that protrudes outward from the ceramic member is brazed to both side walls of the ceramic member, the protruding part of the platinum is thickened, an electrical insulating material is sandwiched in that part, and a metal O-ring is tightened. It had a structure. However, since this joint is used at a temperature of around 250°C, it can be used at even higher temperatures (500°C).
(above) is not considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、高温で使用した場合の継手構造部材、
とくに、ボルトのクリープ変形による締付力低下による
シール性能の低下について考慮されておらず、高温で使
用する場合には、各部材の応力を小さくするため、フラ
ンジ、及び、ボルトの寸法を非常に大きくする必要があ
り、コンパクト化し、低コスト化に不適当であった。
The above-mentioned conventional technology is a joint structural member when used at high temperatures.
In particular, the reduction in sealing performance due to the reduction in tightening force due to creep deformation of the bolt is not taken into account, and when used at high temperatures, the dimensions of the flange and bolt must be made extremely large to reduce the stress in each member. It needed to be large, making it unsuitable for compactness and cost reduction.

さらに、大きな締付荷重がセラミック部材に直接作用し
ないようにするため、二重の絶縁構造をもつ複雑な構造
となっており、組立てが難しく、そのため、信頼性にも
問題があった。
Furthermore, in order to prevent a large clamping load from acting directly on the ceramic member, it has a complicated structure with a double insulation structure, making assembly difficult and resulting in reliability problems.

本発明の目的は、高温で使用でき、構造が簡単で、シー
ル性能が高くコンパクトで安価な、電気絶縁を行なう配
管構造、及び、継手を提供することにある。
An object of the present invention is to provide an electrically insulated piping structure and a joint that can be used at high temperatures, have a simple structure, have high sealing performance, are compact, and are inexpensive.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、電気絶縁を必要とする配管部に、絶縁材料
であるセラミック材を混成する部分を設け、金属層とセ
ラミック層の間に、連続的に金属とセラミックの混合比
を変化させた不均質層を設けることにより達成される。
The above purpose is to provide a part in which a ceramic material, which is an insulating material, is mixed in a piping section that requires electrical insulation, and to continuously change the mixing ratio of metal and ceramic between the metal layer and the ceramic layer. This is achieved by providing a homogeneous layer.

〔作用〕[Effect]

絶縁のためのセラミック部材をフランジ間に挾んでフラ
ンジによる継手、すなわち、シールと電気絶縁を兼ねる
従来方式の代わりに、絶縁を配管のみで行い、絶縁部と
継手部を別々に異なる位置で行うことにより、従来技術
の欠点が解決できる。
Instead of the conventional method where a ceramic member for insulation is sandwiched between flanges to provide both sealing and electrical insulation, insulation is performed only by piping, and the insulation part and the joint part are performed separately at different locations. Accordingly, the drawbacks of the prior art can be solved.

すなわち、絶縁を行う配管部分に絶縁材料であるセラミ
ック部材を挿入することにより配管方向に容易に電気絶
縁は行えるが、問題は金属とセラミック材との界面の存
在である。界面における熱膨張の違いをはじめとする界
面における物性値の大きな差が、材料の使用、製造の制
約条件となっている。例えば、製造時、すなわち、接合
時の高温状態から室温までの温度履歴や、電池運転時に
おける大きな温度変化などは、材料内部に大きな熱応力
が発生し、多くの場合、接合面で亀裂が発生したり、材
料の破壊につながる。
That is, electrical insulation can be easily achieved in the piping direction by inserting a ceramic member, which is an insulating material, into the piping section to be insulated, but the problem lies in the existence of an interface between the metal and the ceramic material. Large differences in physical properties at interfaces, including differences in thermal expansion at interfaces, are constraints on the use of materials and manufacturing. For example, during manufacturing, that is, the temperature history from the high temperature state at the time of bonding to room temperature, or large temperature changes during battery operation, large thermal stress occurs inside the material, and in many cases, cracks occur at the bonded surface. or lead to material destruction.

この熱応力を緩和する手段として、本発明では金属とセ
ラミックス間に、金属とセラミックス材が混成する層を
設け、その混合比を、連続的に変化させている。この結
果、セラミックと金属間の明確な界面の存在を無くする
ことが可能となる。
As a means to alleviate this thermal stress, in the present invention, a layer containing a mixture of metal and ceramic material is provided between the metal and ceramic, and the mixing ratio thereof is continuously changed. As a result, it becomes possible to eliminate the existence of a clear interface between the ceramic and the metal.

すなわち金属からセラミックスへ徐々に組成が変化する
ため、金属、セラミック間の熱膨張率の差も徐々に弯化
することになり、熱応力が緩和される。従って、急激な
配管内外の温度変化に対しても、割れやはく離などの破
損が回避され、高温下でも、電気絶縁、及び、セラミッ
ク、金属間のガスシールに関しても良好な配管を提供す
ることができる。
In other words, since the composition gradually changes from metal to ceramic, the difference in thermal expansion coefficient between metal and ceramic gradually becomes narrower, and thermal stress is alleviated. Therefore, damage such as cracking and peeling can be avoided even in the case of sudden temperature changes inside and outside the piping, and it is possible to provide piping with good electrical insulation and gas sealing between ceramics and metals even under high temperatures. can.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

高温型の燃料電池1例えば、固体電解質型や溶融炭酸塩
型燃料電池の発電プラントにおいて、燃料、及び、酸化
剤ガスの給排気用配管には、電池本体を電気的に絶縁す
る必要上、本体とガス供排気部とを電気絶縁することが
不可欠である。
High-temperature fuel cell 1 For example, in a power generation plant using a solid electrolyte fuel cell or a molten carbonate fuel cell, piping for supplying and discharging fuel and oxidizing gas is required to electrically insulate the battery main body. It is essential to electrically insulate the gas supply and exhaust section from the gas supply and exhaust section.

第1図は1本発明によるその配管の絶縁部付近の構造を
示す。配管本体1の材質は、ステンレス鋼である。そし
て、電気絶縁材として環状のセラミック材5が配管本体
1の間に挿入されている。
FIG. 1 shows the structure of the piping in the vicinity of the insulating part according to the present invention. The material of the piping body 1 is stainless steel. An annular ceramic material 5 is inserted between the pipe bodies 1 as an electrical insulator.

セラミックの材質としては、ジルコニア系を用いている
。次に、セラミック層5と配管本体1との間に、やはり
環状の金属層3を介在させている。
Zirconia is used as the ceramic material. Next, an annular metal layer 3 is also interposed between the ceramic layer 5 and the pipe body 1.

金属層3の材質には5US304やタングステンを用い
ている。さらに、セラミック層5と金属層3の間に、両
者を混合した組成をもつ、混合層4が介在している。な
お、この混合層4は第2図に示すように、金属とセラミ
ックの混合比が均一ではなく。
The material of the metal layer 3 is 5US304 or tungsten. Furthermore, a mixed layer 4 having a composition that is a mixture of both ceramic layer 5 and metal layer 3 is interposed. Note that, as shown in FIG. 2, this mixed layer 4 does not have a uniform mixing ratio of metal and ceramic.

場所によりその組成比が異なっている。すなわち。Its composition ratio varies depending on location. Namely.

金属側かにセラミック側に進むにつれて、金属の割合が
小さくなり、逆に、セラミックの割合が大きくなるとい
う様に、組成が連続的に配管の軸方向に対して変化して
いる。なお、半径方向には組成は均一となっている。
The composition changes continuously in the axial direction of the piping, with the proportion of metal decreasing and conversely increasing the proportion of ceramic as it progresses from the metal side to the ceramic side. Note that the composition is uniform in the radial direction.

本構造の配管を製造するためには、先ず、セラミンク材
5の両端に、セラミックと金属の粉末を混合し、その混
合割合を徐々に変化させるような粉末粒子の配列を行い
、焼結して製作する。ただし、焼結後の冷却時における
収縮割合が金属とセラミック材とでは、通常、異なるの
で組成が連続的に変化しても収縮量が全体でできるだけ
同じになる様に、粉末粒子の大きさを変えたり、焼結時
にセラミックス側を高温に、金属側を低温に保って焼結
することも可能である。
In order to manufacture piping with this structure, first, ceramic and metal powders are mixed at both ends of the ceramic material 5, the powder particles are arranged in such a way that the mixing ratio is gradually changed, and then sintered. To manufacture. However, the shrinkage rate during cooling after sintering is usually different for metals and ceramic materials, so the size of the powder particles should be adjusted so that the shrinkage amount is as similar as possible throughout even if the composition changes continuously. It is also possible to keep the ceramic side at a high temperature and the metal side at a low temperature during sintering.

なお、セラミックと金属の選定は本実施例に限る必要は
なく、出来るだけ、セラミックと金属の収縮率が近いよ
うなものを選ぶことが望ましい。
Note that the selection of ceramic and metal is not limited to this example, and it is desirable to select ceramics and metals whose shrinkage rates are as close as possible.

第3図は、配管の絶縁部付近の熱膨張率を示す。FIG. 3 shows the coefficient of thermal expansion near the insulating part of the pipe.

熱膨張率の大きい金属層3と熱膨張率の小さいセラミッ
ク層5の間のセラミック、金属混成層4では連続的に熱
膨張率が変化することになり、この混成層の厚みを増す
ことにより、熱膨張率の変化勾配をより小さくすること
ができる。これより、配管内外が600℃〜1000℃
という高温にさらされても、半径方向の熱応力が緩和さ
れるため、接なお、熱応力を最低に抑えるには、組成分
布を最適化する必要がある。
The coefficient of thermal expansion changes continuously in the ceramic-metal composite layer 4 between the metal layer 3 with a large coefficient of thermal expansion and the ceramic layer 5 with a low coefficient of thermal expansion, and by increasing the thickness of this composite layer, The gradient of change in coefficient of thermal expansion can be made smaller. From this, the inside and outside of the piping will be 600°C to 1000°C.
Even when exposed to such high temperatures, the thermal stress in the radial direction is relaxed, so in order to keep the thermal stress to a minimum, it is necessary to optimize the composition distribution.

最終的にはこのようにして構成された金属、セラミック
混成体6を、配管本体1と接合面2において溶接するこ
とにより配管への接続が完了する。
Finally, the metal-ceramic composite body 6 constructed in this manner is welded to the pipe main body 1 at the joint surface 2, thereby completing the connection to the pipe.

なお1本実施例のように金属、セラミック混成体6を直
接、母管に接続、溶接した場合に、配管方向に発生する
伸びに関して吸収する部分がなく、セラミック部を破損
する恐れのある場合には、第4図に示すように、配管の
伸び差を吸収するベロ一部8を設けたフランジをもった
配管と、セラミック金属混成体6を接続、溶接する。
Note that when the metal-ceramic composite 6 is directly connected and welded to the main pipe as in this embodiment, there is no part to absorb the elongation that occurs in the piping direction, and there is a risk of damaging the ceramic part. As shown in FIG. 4, a pipe having a flange provided with a tongue portion 8 for absorbing the difference in elongation of the pipe is connected and welded to the ceramic-metal composite body 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、締付圧力による絶縁セラミックの破壊
や、ボルトのクリープ伸びによるシール性能の低下が防
止でき、構造の簡略化、コンパクト化、低コスト化する
According to the present invention, destruction of the insulating ceramic due to tightening pressure and deterioration of sealing performance due to creep elongation of the bolt can be prevented, and the structure can be simplified, made more compact, and lowered in cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の斜視図、第2図は、本発
明の断面、拡大図、第3図は、本発明の配管の熱膨張率
分布図、第4図は1本発明の他の実施例の側面図である
。 1・・・配管本体、2・・・溶接接合部、3・・・金属
層、4・・・金属−セラミック混成層、5・・・セラミ
ック絶縁第1図 第2図 第3図 然膨張牢 第4図
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cross-sectional view and an enlarged view of the present invention, FIG. 3 is a thermal expansion coefficient distribution diagram of the piping of the present invention, and FIG. 4 is a diagram of one pipe. FIG. 7 is a side view of another embodiment of the invention. 1... Piping body, 2... Welded joint, 3... Metal layer, 4... Metal-ceramic hybrid layer, 5... Ceramic insulation Figure 1 Figure 2 Figure 3 Intentional expansion cell Figure 4

Claims (1)

【特許請求の範囲】 1、電気絶縁を必要とする配管において、 管の絶縁部分に、前記配管と同様の材質である金属、あ
るいは前記配管と溶接可能な金属と電気絶縁材との混成
体を介在させたことを特徴とする高温用絶縁配管。 2、特許請求項第1項において、 前記混成体は、中央に、完全な電気絶縁層を設け、その
両端に前記金属層が在存し、さらに前記電気絶縁層と前
記金属層との間に、絶縁層を形成する絶縁物質と金属の
混合比が連続的に変化する金属・絶縁物質混成層を設け
たことを特徴とする高温用絶縁配管。 3、前記金属を前記絶縁材との前記混成体の混合比分布
が、前記混成体の熱応力が最も小さくなるように制御さ
れることを特徴とする特許請求項第1項に記載の高温用
絶縁配管。
[Claims] 1. In a pipe that requires electrical insulation, the insulating part of the pipe is made of a metal that is the same material as the pipe, or a hybrid of a metal and an electrically insulating material that can be welded to the pipe. High-temperature insulated piping characterized by intervening. 2. In claim 1, the hybrid body is provided with a complete electrically insulating layer in the center, the metal layer is present at both ends thereof, and further between the electrically insulating layer and the metal layer. A high-temperature insulating piping characterized by providing a metal/insulating material mixed layer in which the mixing ratio of the insulating material and metal forming the insulating layer changes continuously. 3. The high-temperature product according to claim 1, wherein the mixing ratio distribution of the composite of the metal and the insulating material is controlled so that the thermal stress of the composite is minimized. Insulated piping.
JP1025811A 1989-02-06 1989-02-06 High temperature insulating piping Pending JPH02209689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025811A JPH02209689A (en) 1989-02-06 1989-02-06 High temperature insulating piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025811A JPH02209689A (en) 1989-02-06 1989-02-06 High temperature insulating piping

Publications (1)

Publication Number Publication Date
JPH02209689A true JPH02209689A (en) 1990-08-21

Family

ID=12176255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025811A Pending JPH02209689A (en) 1989-02-06 1989-02-06 High temperature insulating piping

Country Status (1)

Country Link
JP (1) JPH02209689A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115465A (en) * 1990-09-06 1992-04-16 Hitachi Ltd Pipeline material for fuel battery
JPH04138670A (en) * 1990-09-28 1992-05-13 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH04178592A (en) * 1990-11-14 1992-06-25 Kawasaki Heavy Ind Ltd Piping/duct structure for nuclear fusion reactor
JPH04178593A (en) * 1990-11-14 1992-06-25 Kawasaki Heavy Ind Ltd Vessel installed in nuclear fusion reactor
DE10302124A1 (en) * 2003-01-21 2004-07-29 Bayerische Motoren Werke Ag Fuel cell is constructed with a stack of cell elements separated by a metal oxide sealing layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115465A (en) * 1990-09-06 1992-04-16 Hitachi Ltd Pipeline material for fuel battery
JPH04138670A (en) * 1990-09-28 1992-05-13 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH04178592A (en) * 1990-11-14 1992-06-25 Kawasaki Heavy Ind Ltd Piping/duct structure for nuclear fusion reactor
JPH04178593A (en) * 1990-11-14 1992-06-25 Kawasaki Heavy Ind Ltd Vessel installed in nuclear fusion reactor
DE10302124A1 (en) * 2003-01-21 2004-07-29 Bayerische Motoren Werke Ag Fuel cell is constructed with a stack of cell elements separated by a metal oxide sealing layer
US7422818B2 (en) 2003-01-21 2008-09-09 Bayerische Motoren Werke Ag Seal construction for a fuel cell electrolyser and process for making a fuel cell with same

Similar Documents

Publication Publication Date Title
US4167351A (en) Metal-to-ceramic seals
KR101098956B1 (en) Fuel cell stack and seal for a fuel cell stack, as well as a production method for it
EP0289580A1 (en) Sintering aid for lanthanum chromite refractories
US6389801B1 (en) Jet propulsion power unit with non-metal components
US7597986B2 (en) Method and apparatus for gasketing a fuel cell
US6223583B1 (en) Sensor element seal for a detector
JPH02209689A (en) High temperature insulating piping
US20220113221A1 (en) Compact sensor component for harsh environments
US8167191B2 (en) High temperature seal for joining ceramic components such as cells in a ceramic oxygen generator
JP2011503790A (en) High temperature fuel cell stack and manufacturing method thereof
RU2138885C1 (en) Unit of assemblies of solid oxide fuel elements with coefficient of thermal expansion exceeding that of their electrolyte
KR20160142296A (en) Three layered electrically insulating gasket for sofc unit
US7281949B2 (en) Electrical hermetic penetrant structure of average voltage
US3504426A (en) Process for bonding
JP2791059B2 (en) Fuel cell
US4236661A (en) Thermocompression methods of forming sodium-sulfur cell casings
JPH0349160A (en) Laminated fuel cell
US5518837A (en) Lithium/metal sulfide cell positive terminal feedthru assemblies
JPH09202669A (en) Joined body of ceramics and joining
GB1586073A (en) Metal-to-ceramic seal
JPH0678797B2 (en) Insulation fitting
JP3143087B2 (en) How to make an insulated joint
JP3086871B2 (en) Hermetic sealing device for neutron detector
RU2087998C1 (en) Metal-ceramic assembly of sulfur-sodium storage battery
JPS6027664A (en) Method of bonding ceramics and different materials