JPH02209469A - Apparatus for producing fine particle film - Google Patents

Apparatus for producing fine particle film

Info

Publication number
JPH02209469A
JPH02209469A JP2963389A JP2963389A JPH02209469A JP H02209469 A JPH02209469 A JP H02209469A JP 2963389 A JP2963389 A JP 2963389A JP 2963389 A JP2963389 A JP 2963389A JP H02209469 A JPH02209469 A JP H02209469A
Authority
JP
Japan
Prior art keywords
nozzle
fine particles
carrier gas
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2963389A
Other languages
Japanese (ja)
Inventor
Hirotsugu Takagi
高木 博嗣
Yumie Imanishi
今西 由美恵
Hiroko Ogawa
小川 博子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2963389A priority Critical patent/JPH02209469A/en
Publication of JPH02209469A publication Critical patent/JPH02209469A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To disturb the flow of a carrier gas and to uniformize the fine particle concn. distribution in a nozzle inlet and to eliminate the nonuniformity of a film thickness distribution by disposing a carrier gas introducing port in the direction approximately perpendicular to the nozzle inlet. CONSTITUTION:An upstream chamber 1 and a downstream chamber 2 are evacuated to a prescribed vacuum degree by a discharge pump 5 and thereafter, the carrier gas 7 is introduced form the above-mentioned gas introducing port 3 provided in the direction approximately perpendicular to the axial direction of the nozzle 4. An alumina crucible contg. an evaporating source 6, such as Au, is electrically heated to evaporate the Au in succession thereto and the evaporated Au atoms are aggregated in the upstream chamber 1 and are thereby made into the fine particles. The fine particles are ejected together with the gas 7 through the nozzle 4 into the downstream chamber 2 and are deposited on a substrate 8.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサブミリメートル以下の粒径の微粒子を基体上
に堆積した微粒子膜の作製装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for producing a fine particle film in which fine particles having a particle size of sub-millimeter or less are deposited on a substrate.

[従来の技術] 粒子サイズがサブミリメートル以下の微粒子は比表面積
が大きく活性であることから、触媒等に利用される他、
中でも粒子径がさらに小さいミクロン以下の超微粒子に
3いては、融点降下に代表される新たなサイズ効果が発
現するため、工業上有用な材料である。微粒子作製法と
しては粉砕法や液相中での析出法、気相法が考案されて
いるが、粒径制御性や不純物の混入の少ない点において
ガス中蒸発法に代表される気相法は優れたものである。
[Prior art] Fine particles with a particle size of submillimeter or less have a large specific surface area and are active, so they are used in catalysts, etc.
Among these, ultrafine particles with even smaller particle diameters of microns or less are industrially useful materials because they exhibit a new size effect typified by lowering of the melting point. Pulverization methods, precipitation methods in liquid phase, and gas phase methods have been devised as methods for producing fine particles, but gas phase methods, represented by evaporation in gas, are superior in terms of particle size control and less contamination of impurities. It is excellent.

従来のガス中蒸発法における微粒子回収法は、装置壁面
に付着した微粒子をかきとる、或はオイル中に分散させ
て回収する等の方法が用いられている。一方、前記の様
な煩雑な回収方法を採用せず、SiO□ガスセンサにみ
られる様に基体上に微粒子を堆積させて素子として利用
する方法も提案されている。この様な微粒子膜を効率良
(作製する方法として、微粒子を分散したガスを細孔(
特開昭61−177366号公報)、ノズル(特開昭6
1−281866号公報)或は縮小拡大ノズル(特開昭
61−218810号公報)より基体上に噴き付ける装
置が提案されている。
In conventional methods for collecting fine particles in gas evaporation methods, methods such as scraping off fine particles adhering to the wall surface of the apparatus, or dispersing them in oil and collecting them are used. On the other hand, a method has also been proposed in which fine particles are deposited on a substrate and utilized as an element, as seen in the SiO□ gas sensor, without employing the complicated recovery method described above. As a method for efficiently producing such a particulate film, a gas containing dispersed particulates is passed through the pores (
JP-A-61-177366), nozzle (JP-A-61-177366), nozzle (JP-A-61-177366)
1-281866) or a condensing/expanding nozzle (Japanese Unexamined Patent Publication No. 61-218810) has been proposed.

[発明が解決しようとする課題] ガス中蒸発法の微粒子膜作製装置により得られる微粒子
の粒径は粒子形成中の圧力及び、原料の蒸気圧に依存す
る。すなわち所望の粒径な有する微粒子を作製するため
に圧力を調整する必要があるがノズルを用いて微粒子を
基体上に噴出させる装置においてはノズルの入口側の上
流室とノズル出口側の下流室の圧力条件によりノズルか
ら噴出した微粒子の堆積膜に膜厚の場所ムラを生ずる。
[Problems to be Solved by the Invention] The particle size of the particles obtained by the apparatus for producing a particle film using the in-gas evaporation method depends on the pressure during particle formation and the vapor pressure of the raw material. In other words, it is necessary to adjust the pressure in order to produce particles with a desired particle size, but in a device that uses a nozzle to eject particles onto a substrate, there is an upstream chamber on the inlet side of the nozzle and a downstream chamber on the nozzle outlet side. Depending on the pressure conditions, the deposited film of fine particles ejected from the nozzle may have uneven film thickness.

この膜厚不均一性は上流室の圧力が大になる程顕著に現
われる。上流室の圧力を減少させると粒径の減少、堆積
速度の減少及びノズルから噴出される微粒子の運動エネ
ルギーの減少に伴う付着力の低下をもたらす。
This non-uniformity in film thickness becomes more pronounced as the pressure in the upstream chamber increases. Reducing the pressure in the upstream chamber results in a decrease in particle size, a decrease in deposition rate, and a decrease in adhesion due to a decrease in the kinetic energy of the particles ejected from the nozzle.

[課題を解決するための手段及び作用]本発明は上記の
微粒子膜作製時に発生する膜厚の場所ムラを、上流室へ
の微粒子の導入をノズル軸方向に対して略直角方向とす
ることにより解消するものである。
[Means and effects for solving the problems] The present invention solves the unevenness in film thickness that occurs during the production of the above-mentioned particulate film by introducing the particulates into the upstream chamber in a direction approximately perpendicular to the nozzle axis direction. It is something that will be resolved.

本発明に適用可能な微粒子或は超微粒子材料はAu、 
Ag、 Fe、 Go、 Pd等の金属或は合金、CS
i。
Fine particles or ultrafine particle materials applicable to the present invention include Au,
Metals or alloys such as Ag, Fe, Go, Pd, CS
i.

Ge等の半導体材料やソノ合金、5i−0,5n−OT
i−0等の酸化物、5i−N、 Ti−N、 B−N等
の窒化物、5ill:、 W−C等の炭化物など金属、
半導体、絶縁体の全てのものが含まれる。前記材料の微
粒子形成手段として、Ar、 He、 Ne等の不活性
ガス或は0□。
Semiconductor materials such as Ge, sonoalloys, 5i-0,5n-OT
Oxides such as i-0, nitrides such as 5i-N, Ti-N, B-N, metals such as carbides such as 5ill:, W-C, etc.
Includes all semiconductors and insulators. As a means for forming fine particles of the material, an inert gas such as Ar, He, Ne, etc. or 0□.

NO等の酸化性ガス、H2等の還元性ガスの他N2CH
4,CO2の純ガス或は混合ガス中での抵抗加熱や高周
波加熱法が用いられる。微粒子形成を行なう上流室と基
板を設置しこれに微粒子を捕集する下流室とを結ぶノズ
ルには筒形や末広がり型、縮小拡大型等使用できる。ノ
ズルを通し微粒子をキャリアガスと共に基板上に勢いよ
く噴き付けることにより基板上への微粒子の付着力が向
上する。中でも縮小拡大ノズルは、ノズルの開口面積と
のど部面積の比、上流室と下流室の圧力比を適当に選ぶ
ことにより噴出するガス流を超音速まで加速可能である
。また、噴出するガス流がビーム流となり下流室内に拡
散しないため捕集効率も極めて良い。
Oxidizing gas such as NO, reducing gas such as H2, and N2CH
4. Resistance heating or high frequency heating in pure CO2 gas or mixed gas is used. The nozzle connecting the upstream chamber where fine particles are formed and the downstream chamber where a substrate is installed and where the fine particles are collected can be of a cylindrical shape, a diverging type, or a contracting/expanding type. By vigorously spraying the fine particles together with a carrier gas onto the substrate through a nozzle, the adhesion of the fine particles onto the substrate is improved. Among them, the contraction-expansion nozzle can accelerate the ejected gas flow to supersonic speed by appropriately selecting the ratio of the opening area of the nozzle to the throat area and the pressure ratio of the upstream chamber and the downstream chamber. In addition, since the ejected gas flow becomes a beam flow and does not diffuse into the downstream chamber, the collection efficiency is extremely high.

微粒子を捕集する基板は金属、ガラス、Si等の無機材
料の他にアクリル、ポリエステル等の有機材料や固体上
に液体を付着させたものなども用いることができる。
As the substrate for collecting fine particles, in addition to inorganic materials such as metal, glass, and Si, organic materials such as acrylic and polyester, or solid materials on which a liquid is adhered can be used.

上述ノズルにより微粒子を基板上に捕集する方法におい
て、基板上に到達する微粒子の分布状態はノズル入口に
おける分布を反映していると考えられる。すなわち、キ
ャリアガスの流れに乗った微粒子はキャリアガスの流れ
が乱されず、スムーズにノズル入口まで到達すると原料
蒸気の形を記憶した分布をもってノズル中を通過するも
のと推測される。ノズル出口から噴出した微粒子は下流
室内でその濃度分布が均一化されることなく高速に基体
上に到達し、その結果微粒子堆積量の分布はノズル入口
での微粒子濃度分布を反映した形状となる6従りて基板
上での堆積量分布を出来るかぎり均一化するためにはノ
ズル入口での微粒子濃度を均一にしてやれば良く、蒸発
源近傍或は蒸発源からノズル入口までの間で微粒子濃度
分布に蒸気形状が残らない様にすることが必要である。
In the method of collecting fine particles on a substrate using the above-mentioned nozzle, the distribution state of the fine particles reaching the substrate is considered to reflect the distribution at the nozzle inlet. In other words, it is presumed that when the particles riding on the flow of carrier gas smoothly reach the nozzle inlet without disturbing the flow of carrier gas, they pass through the nozzle with a distribution that memorizes the shape of the raw material vapor. The particulates ejected from the nozzle outlet reach the substrate at high speed without their concentration distribution becoming uniform within the downstream chamber, and as a result, the distribution of the particulate deposit amount has a shape that reflects the particulate concentration distribution at the nozzle inlet6. Therefore, in order to make the distribution of the amount deposited on the substrate as uniform as possible, it is sufficient to make the concentration of particles at the nozzle inlet uniform. It is necessary to ensure that no vapor remains.

本発明はキャリアガスをノズル軸方向に対して略直角方
向より上流室に導入することにより、キャリアガスの流
れが乱れ、その結果ノズル入口での微粒子濃度分布を均
一化するものである。
In the present invention, the flow of the carrier gas is disturbed by introducing the carrier gas into the upstream chamber from a direction substantially perpendicular to the axial direction of the nozzle, thereby making the particle concentration distribution at the nozzle inlet uniform.

[実施例] 以下、本発明の実施態様を図面を用いて詳述するが本発
明がこれらに限定されるものではない。
[Example] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

実施例1 第1図は本発明の微粒子膜作製装置の概略図である6 
1は微粒子を形成する上流室であり、この上流室で生成
された微粒子はノズル4を通じてキャリアガスと共に下
流室2内に噴き出し、下流室に設けられた基板8の上に
堆積する。本実施例では第2図に示す縮小拡大ノズルを
ノズル4として使用した。上流室1及び下流室2を排気
ポンプ5により10−’Torr以下に排気した後、キ
ャリアガスとしてArをlDOsccm導入したやガス
導入口は第2図に示す様にノズル軸に対して直角方向で
ある。第1図では蒸発源6とガス導入口が同一平面に描
かれているが、実際は蒸発源に対して紙面手前(奥でも
構わない)に配置されている。このガス導入口は単一の
口でももちろん良いが、本実施例の様に複数の穴からガ
スを導入することにより、上流室内でのガスの分布がよ
り均一化される。また、蒸発源をはさんで対向して設け
ても良い。
Example 1 FIG. 1 is a schematic diagram of a microparticle film production apparatus of the present invention6
Reference numeral 1 denotes an upstream chamber in which fine particles are formed. The fine particles generated in this upstream chamber are ejected through a nozzle 4 together with a carrier gas into a downstream chamber 2, and are deposited on a substrate 8 provided in the downstream chamber. In this example, the reduction/enlargement nozzle shown in FIG. 2 was used as the nozzle 4. After the upstream chamber 1 and the downstream chamber 2 were evacuated to 10-' Torr or less by the exhaust pump 5, Ar was introduced as a carrier gas at a rate of 1 DO sccm.The gas inlet was oriented perpendicular to the nozzle axis as shown in FIG. be. Although the evaporation source 6 and the gas inlet are drawn on the same plane in FIG. 1, they are actually placed in front of the evaporation source (or in the back) of the paper. Of course, this gas introduction port may be a single port, but by introducing gas through a plurality of holes as in this embodiment, the gas distribution within the upstream chamber can be made more uniform. Alternatively, they may be provided facing each other with the evaporation source in between.

キャリアガス導入に続いて、蒸発源としてAuを入れた
アルミするつぼを通電加熱してAuを蒸発させた。蒸発
したAu原子は上流室内で凝集し微粒子となり、キャリ
アガスと共にノズル4よりガラス基板上に堆積した。こ
の様に作製したAu微粒子膜表面を高分解能走査型電子
顕微鏡で観察したところ、−次粒径250〜340人の
緻密な堆積膜であった。またこの微粒子膜を任意の直交
する2方向X、Y方向に測定したところその膜厚分布は
第3図に示す様(実線と破線)にノズルより噴出した微
粒子がビーム流となって基板上に到達するため、ノズル
軸中心より離れるに従って膜厚が減少するものの、半径
方向は均一な分布を示した。
Following the introduction of the carrier gas, an aluminum crucible containing Au as an evaporation source was electrically heated to evaporate the Au. The evaporated Au atoms aggregated into fine particles in the upstream chamber, and were deposited on the glass substrate from the nozzle 4 together with the carrier gas. When the surface of the Au fine particle film produced in this manner was observed using a high-resolution scanning electron microscope, it was found to be a densely deposited film with a -order particle size of 250 to 340 particles. When this fine particle film was measured in two arbitrary orthogonal directions, X and Y, the film thickness distribution was as shown in Figure 3 (solid line and broken line). Although the film thickness decreased as it moved away from the nozzle axis center, it showed a uniform distribution in the radial direction.

比較例 キャリアガス導入口を第4図に示す様にノズル軸上に蒸
発源後方に配置した他は実施例1と同一条件にてAu微
粒子膜を堆積した。この微粒子膜の膜厚分布は明らかに
非対称をしており、任意の2方向の膜厚は第5図の様で
あった。
Comparative Example An Au fine particle film was deposited under the same conditions as in Example 1, except that the carrier gas inlet was placed on the nozzle axis and behind the evaporation source as shown in FIG. The film thickness distribution of this fine particle film was obviously asymmetrical, and the film thicknesses in any two directions were as shown in FIG.

実施例2 キャリアガス導入方法として、銅パイプを蒸発源をはさ
んで対向した位置の上流室側壁に設置し、Arを全流量
150secm流しながら平均粒径8o人のPdの微粒
子を作製した。このPd微粒子膜は実施例1と同様円周
方向の膜厚ムラは見られなかった。
Example 2 As a carrier gas introduction method, a copper pipe was installed on the side wall of the upstream chamber at a position opposite to the evaporation source, and fine particles of Pd with an average particle size of 8 degrees were produced while flowing Ar at a total flow rate of 150 seconds. Similar to Example 1, this Pd fine particle film showed no film thickness unevenness in the circumferential direction.

[発明の効果] 以上説明した様に上流室で生成した微粒子をノズルを通
して下流室に輸送堆積する微粒子膜作製装置において、
キャリアガス導入口をノズル軸に対し略直角方向に配置
することにより、膜厚分布の不均一性を大幅に改善でき
る。
[Effects of the Invention] As explained above, in the particulate film production apparatus in which the particulates generated in the upstream chamber are transported and deposited in the downstream chamber through the nozzle,
By arranging the carrier gas inlet in a direction substantially perpendicular to the nozzle axis, non-uniformity in film thickness distribution can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微粒子膜作製装置の概略図、第2図は
実施例1で使用した縮小拡大ノズル断面図、第3図は実
施例1で作製した微粒子膜の膜厚分布を示す図、第4図
は比較例の微粒子膜作製装置の概略図、第5図は比較例
微粒子膜の膜厚分布を示す図である。 に上流室 2:下流室 3:キャリアガス導入口 4:ノズル 5:真空ポンプ 6:蒸発源 7:キャリアガス 8:基板
Fig. 1 is a schematic diagram of the particulate film production apparatus of the present invention, Fig. 2 is a cross-sectional view of the reduced/enlarged nozzle used in Example 1, and Fig. 3 is a diagram showing the film thickness distribution of the particulate film produced in Example 1. , FIG. 4 is a schematic diagram of a comparative example of a particulate film production apparatus, and FIG. 5 is a diagram showing the film thickness distribution of a comparative example of particulate film. Upstream chamber 2: Downstream chamber 3: Carrier gas inlet 4: Nozzle 5: Vacuum pump 6: Evaporation source 7: Carrier gas 8: Substrate

Claims (2)

【特許請求の範囲】[Claims] (1)上流室内で生成した微粒子をノズルより下流室に
噴出させる微粒子膜作製装置においてガス導入口をノズ
ル軸に対し略直角方向位置に設けたことを特徴とする微
粒子膜作製装置。
(1) A particulate film manufacturing device in which particulates generated in an upstream chamber are ejected from a nozzle into a downstream chamber, characterized in that a gas inlet is provided at a position approximately perpendicular to the nozzle axis.
(2)縮小ノズルを有することを特徴とする請求項1記
載の微粒子膜作製装置。
(2) The apparatus for producing a fine particle film according to claim 1, further comprising a reduction nozzle.
JP2963389A 1989-02-10 1989-02-10 Apparatus for producing fine particle film Pending JPH02209469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2963389A JPH02209469A (en) 1989-02-10 1989-02-10 Apparatus for producing fine particle film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2963389A JPH02209469A (en) 1989-02-10 1989-02-10 Apparatus for producing fine particle film

Publications (1)

Publication Number Publication Date
JPH02209469A true JPH02209469A (en) 1990-08-20

Family

ID=12281488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2963389A Pending JPH02209469A (en) 1989-02-10 1989-02-10 Apparatus for producing fine particle film

Country Status (1)

Country Link
JP (1) JPH02209469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110079176A1 (en) * 2006-11-15 2011-04-07 Samsung Electronics Co., Ltd. Apparatus for manufacturing electrode for fuel cells
JP2020033581A (en) * 2018-08-28 2020-03-05 株式会社カネカ Gas carrier vapor deposition apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110079176A1 (en) * 2006-11-15 2011-04-07 Samsung Electronics Co., Ltd. Apparatus for manufacturing electrode for fuel cells
JP2013131504A (en) * 2006-11-15 2013-07-04 Samsung Electronics Co Ltd Method and apparatus for manufacturing fuel cell electrode
JP2020033581A (en) * 2018-08-28 2020-03-05 株式会社カネカ Gas carrier vapor deposition apparatus

Similar Documents

Publication Publication Date Title
JP4952227B2 (en) Fine particle size sorter
Yamamuro et al. Monodispersed Cr cluster formation by plasma-gas-condensation
US8168001B2 (en) Film-forming apparatus and film-forming method
CA1210281A (en) Flame-sprayed ferrous alloy enhanced boiling surface
KR101813659B1 (en) Substrate of Surface Enhanced Raman Scattering of three dimensions nanoporous-structure and manufacture method thereof
EP0815282A2 (en) Industrial vapor conveyance and separation
WO2018042684A1 (en) Silver powder production method and silver powder production apparatus
US20050205696A1 (en) Deposition apparatus and method
JP2010284646A (en) Process to make structured particle
Haas et al. Synthesis of nanostructured powders in an aerosol flow condenser
JPH02209469A (en) Apparatus for producing fine particle film
US20090053507A1 (en) Convergent-divergent-convergent nozzle focusing of aerosol particles for micron-scale direct writing
CN100338257C (en) Method and device for manufacturing semiconductor or insulator/metallic laminar composite cluster
Khare et al. Glancing angle deposition of Ge nanorod arrays on Si patterned substrates
JP2969503B2 (en) How to make carbonaceous fiber
JPH02209470A (en) Apparatus for producing fine particle film
Koh et al. Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas
Cernetti et al. Nonthermal plasma synthesis of faceted germanium nanocrystals
JPH02200771A (en) Device for forming fine-particle film
JP3514127B2 (en) Arc-type ion plating system capable of forming metal compound thin films with small coarse droplets
NL8201093A (en) DEVICE FOR APPLYING THIN LAYERS.
JP3809391B2 (en) Thin film forming equipment
KR20090059541A (en) Preparation method of structure comprising of quantum-dots and products thereof
JP3008433B2 (en) Ultrafine particle manufacturing method
JP3824787B2 (en) Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film