JPH0220753B2 - - Google Patents

Info

Publication number
JPH0220753B2
JPH0220753B2 JP58118432A JP11843283A JPH0220753B2 JP H0220753 B2 JPH0220753 B2 JP H0220753B2 JP 58118432 A JP58118432 A JP 58118432A JP 11843283 A JP11843283 A JP 11843283A JP H0220753 B2 JPH0220753 B2 JP H0220753B2
Authority
JP
Japan
Prior art keywords
filler
dye
accelerator
disperse
disperse dyes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58118432A
Other languages
Japanese (ja)
Other versions
JPS609983A (en
Inventor
Nobuo Tomizawa
Kozo Suzuki
Tadaaki Morota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOKO SEIREN KK
Original Assignee
SOKO SEIREN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOKO SEIREN KK filed Critical SOKO SEIREN KK
Priority to JP58118432A priority Critical patent/JPS609983A/en
Publication of JPS609983A publication Critical patent/JPS609983A/en
Publication of JPH0220753B2 publication Critical patent/JPH0220753B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシリコーンゴムに分子架橋剤、微小球
形充填剤、促進剤を溶解もしくは分散させた混合
溶液を分散染料で染色されたポリエステル繊維編
織物に塗布・乾燥後、加熱処理することによつ
て、該布帛に分散染料の移染防止性能を付与した
コーテイング加工方法に関する。 ポリエステル繊維は、衣料に留まらず、各種産
業資材に利用されており、その需要及び目的用途
によつて柔軟、帯電防止、揆水揆油、吸汗、防汚
などの各種仕上加工が行なわれており、コーテイ
ング加工も防水性をはじめとした機能付与の面で
重要な加工の一つである。 従来よりポリエステル繊維へのコーテイング加
工は、アクリル樹脂やウレタン樹脂等のコーテイ
ング剤を塗布し、乾燥・熱処理することによつて
行われていることはよく知られているが、このよ
うに行われたポリエステル繊維製品中の分散染料
は、接触する他の繊維に移染する問題が潜在して
いる。そのために実用上種々のトラブルが発生
し、ポリエステル繊維へのコーテイング加工製品
の大きな障壁となつている。これはポリエステル
繊維が他の繊維と異なり、繊維ポリマー中に反応
基が全く存在せず、ポリエステル繊維と分散染料
間の結合力が、他の繊維と染料間の結合力のよう
な強い化学結合力によらず、配向力、誘起力、分
散力あるいは水素結合力といつた比較的弱い物理
結合力によるものであり、加熱することにより染
着されていた分散染料が、マクロブラウン運動に
よつて繊維表面にブリードしてくる、いわゆるサ
ーモブリーテイング現象によるものと考えられ、
さらにこの現象が繊維表面に被覆しているコーテ
イング加工剤が分散染料と相溶性が良いため、濃
度拡散現象により一層助長され、コーテイング加
工剤に移染された分散染料は、樹脂との結合がな
いため、その分散染料が他の製品に移染されると
考えられる。そこでこの分散染料の移染を防止す
るコーテイング加工法としては、一般に以下の方
法が考えられる。 1) 分散染料の移染防止性能を有する樹脂を選
択する。 2) 無機充填剤を樹脂溶液に添加し、分散染料
の移行を遮断する層を形成せしめて分散染料の
移染を防止する。 3) 分散染料の吸着保持性を有する有機充填剤
を樹脂溶液に添加し、ブリードした分散染料を
優先的に吸着保持することにより、分散染料の
移染を防止する。 しかし1)については一般に用いられているア
クリルウレタン樹脂は、その機能性のため分散染
料との相溶性が良く移染を助長する傾向にあり、
またこれら樹脂系で分散染料の移染を防止する試
みとして、エチレンイミン誘導体、もしくはイソ
シアネート化合物を添加する方法がとられている
が、これらの方法では効果面、風合い面で問題が
あり、実用的には困難である。更にはセルロース
誘導体やPVA誘導体をコーテイング剤として塗
布する試みがなされているが、移染防止面で効果
があるも、風合が硬くかつ被膜がもろく実用に供
さない。2)については添加量が少量であれば、
樹脂の影響の方が大きくその効果はほとんど認め
られず、またこれら充填剤は一般に樹脂溶液との
親和性に欠けるため、大量添加することは樹脂フ
イルム強度の極端な低下を引き起すなど、大量添
加は製品の性能上不可能であり、3)についても
2)と同様であり、吸着された分散染料と吸着剤
との結合が弱いため移染防止の十分な効果は期待
出来ない。 本発明者らは、上記問題点を解決すべく鋭意研
究を重ねた結果、本発明を完成させたものであ
り、ポリエステル繊維編織物に柔軟な風合いで、
分散染料の移染防止性能を付与したコーテイング
加工法の提供を可能にしたものである。即ち、離
型紙用に使用されている室温硬化型シリコーンゴ
ム(以下PTVゴムと云う)、低温硬化型シリコー
ンゴム(以下LTVゴムと云う)の低温短時間の
加熱処理による優れた皮膜形成能、及び線状架橋
特性に基づく風合いの柔軟さ、加えてシリコーン
ゴムの移染防止特性に着目し、これを繊維加工に
活用することで、加工布に柔軟で分散染料の移染
防止性能を与え、さらに分子架橋剤及び粒径6〜
200μ(好ましくは6〜20μ)の微小球形充填剤、
促進剤を少量添加することにより、樹脂フイルム
の強度を低下させることなく、分散染料の移染防
止性能をさらに向上させることに成功したもので
ある。 なお、微小球形充填剤の粒径に関して粒径6〜
200μ(好ましくは6〜20μ)とする理由は、粒径
が6μ以下では、充填剤の量を多くしないと効果
が出ず、充填剤の量を多くすると樹脂フイルムの
強度が低下する恐れがあり、また粒径が200μ以
上になると樹脂フイルムの強度が急激に低下する
からである。 本発明の目的を達成するための構成として、ポ
リエステル繊維編織物に、RTVゴム又はLTVゴ
ム(ジオルガノポリシロキサンジオール、ビニー
ル含有ジオルガノポリシロキサン、ハイドロジエ
ンポリシロキサン又はこれらの共重合物)促進剤
として錫もしくは白金を含む金属塩(例えば錫ア
シレート、もしくは塩化白金)、分子架橋剤(例
えばシランカツプリング剤)、微小球形充填剤
(例えばベンゾグアナミン−ホルムアルデヒド縮
合物)の混合溶液を公知の方法により塗布・乾燥
し、後、加熱処理して本発明を完成させる。 本発明をさらに詳細に説明すると、通常の方法
で精練染色されたポリエステル繊維編織物に上記
RTV又はLTVゴムを100重量部(以下単に部と
いう)、促進剤1〜10部、分子架橋剤0.5〜2部、
粒径6〜200μの微小球形充填剤1〜30部(好ま
しくは粒径6〜20μのものを5〜20部)を混合し
た溶液を一般的コーテイング法により布帛表面に
均一に塗布し乾燥させる。さらに140〜180℃で30
〜180秒加熱処理して、柔軟で分散染料の移染防
止性能を有するコーテイング加工布を得るもので
ある。 以下実施例をもつて説明する。なお実施例中対
比試験特性値は、次の測定法に基づき測定評価し
たものである。 (1) 分散染料の移染防止法の評価法 (a) 移染性試験法、5cm×10cmの試験布とアク
リル樹脂をコーテイングした白布のコーテイ
ング加工面を重ね合わせ、これを厚さ0.2〜
0.3mmのガラス板にはさみ200gの荷重をかけ
る。さらにこれを80℃に維持された乾燥器に
入れ、24時間放置、試験終了後、室温まで放
冷する。 (b) 貯蔵中昇華試験法、6cm×6cmの試験布
と、アクリル樹脂をコーテイングした白布の
コーテイング面を重ね合わせ、厚さ0.2〜0.3
mmのガラス板にはさみ4.5Kgの荷重をかける。
さらにこれを120℃に維持された乾燥器に入
れ、80分間放置し試験終了後、室温まで放冷
する。 上記2試験法によつて試験を行ない、その試験
前後の添布白布間にみえる色の開きと、汚染用グ
レースケールの各色標間にみえる色の開きとを比
較して、汚染の程度を等級区分する。 実施例 1 通常法により精練し、分散染料で赤色
(Miketon Polyester Rubine 2G−SF 4%
owf)紺色(Kayalon Polyester Navy 2G−SF
3% owf)黒色(Kayalon Polyester Black
EX−SF 10% owf)で染色されたポリエステ
ル繊維織物(経糸50/18、緯糸50/24、密度 経
150本/吋、緯106本/吋)に、ビニール含有ジメ
チルポリシロキサン及びハイドロジエンポリシロ
キサン共重合物、(例えば商品名「SRX−345」
トーレシリコーン社製)100部、促進剤(例えば
商品名「SRX−212」トーレシリコーン社製)4
部、分子架橋剤(例えば商品名「KBE1003」信
越シリコーン社製)1部、微小球形充填剤(例え
ば商品名「BEP−05」日本触媒化学社製)10部
を有機溶剤(例えばトルエン)40部に混合撹拌
し、溶解もしくは分散させた該組成物をナイフコ
ーテイング法により、乾燥重量にして5g/m2
該布帛に均一に塗布・乾燥後、180℃で120秒加熱
処理して本製品を得た。 実施例 2 通常法により精練し、一般的捺染法(例えばス
クリーンプリント法)でResolin Blue FBL 4
%使用で捺染されたポリエステル繊維織物(経糸
50/18、緯糸75/36、密度 経110本/吋緯96
本/吋)に実施例1で用いた樹脂溶液をナイフコ
ーテイング法で乾燥重量10g/m2該布帛に均一に
塗布・乾燥後、180℃で150秒加熱処理して本製品
を得た。 比較例 1 一般的なソフトコーテイング樹脂としてアクリ
ル樹脂(例えば商品名「クリスコートS20」大日
本インキ社製)100部、架橋剤(例えば商品名
「ポリネート70」東洋ポリマー社製)3部を有機
溶剤(例えばトルエン)30部に溶解した樹脂溶液
を、実施例1で用いた染色布にナイフコーテイン
グ法で乾燥重量にして5g/m2を均一に塗布・乾
燥後、180℃で120秒加熱処理して本製品を得た。 比較例 2 実施例1及び比較例1で用いた染色布に、比較
例1で用いたアクリル樹脂溶液をナイフコーテイ
ング法で乾燥重量にして2g/m2を均一に塗布・
乾燥後、一般的にコーテイング樹脂として用いら
れているウレタン樹脂(例えば商品名「クリスボ
ン6306B」大日本インキ社製)100部をトルエン
30部、DMF10部の混合溶剤に溶解した樹脂溶液
を、ナイフコーテイング法で乾燥重量にして10
g/m2を均一に塗布・乾燥後、180℃で120秒加熱
処理して本製品を得た。 次に本説明による実施例と従来品である比較例
1、2の対比試験結果を示す。
In the present invention, a mixed solution in which a molecular crosslinking agent, a microspherical filler, and an accelerator are dissolved or dispersed in silicone rubber is applied to a polyester fiber knitted fabric dyed with a disperse dye, dried, and then heated. The present invention relates to a coating method that imparts the ability to prevent the migration of disperse dyes to the fabric. Polyester fibers are used not only for clothing but also for various industrial materials, and depending on the demand and intended use, various finishing treatments such as flexibility, antistatic, water repellent, sweat absorption, and stain resistance are applied. , Coating processing is also an important process in terms of adding functionality such as waterproofness. It is well known that coating polyester fibers has traditionally been done by applying a coating agent such as acrylic resin or urethane resin, followed by drying and heat treatment. Disperse dyes in polyester textile products have the potential for dye transfer to other fibers with which they come into contact. For this reason, various troubles occur in practical use, and this has become a major barrier to products coated with polyester fibers. This is because polyester fibers differ from other fibers in that there are no reactive groups in the fiber polymer, and the bonding force between polyester fibers and disperse dyes is a strong chemical bond similar to the bonding force between other fibers and dyes. This is due to relatively weak physical bonding forces such as orientation force, induced force, dispersion force, or hydrogen bonding force, and the disperse dye that has been dyed by heating is caused to bind to the fiber by macro-Brownian motion. This is thought to be due to the so-called thermobleeding phenomenon, which bleeds onto the surface.
Furthermore, this phenomenon is further promoted by the concentration diffusion phenomenon because the coating agent coated on the fiber surface has good compatibility with the disperse dye, and the disperse dye transferred to the coating agent does not bond with the resin. Therefore, it is thought that the disperse dye may be transferred to other products. Therefore, the following methods are generally considered as a coating method for preventing the migration of disperse dyes. 1) Select a resin that has the ability to prevent the transfer of disperse dyes. 2) Adding an inorganic filler to the resin solution forms a layer that blocks the migration of disperse dyes, thereby preventing the migration of disperse dyes. 3) Adding an organic filler capable of adsorbing and retaining disperse dyes to the resin solution and preferentially adsorbing and retaining the disperse dyes that have bled out prevents dye transfer of the disperse dyes. However, regarding 1), the commonly used acrylic urethane resin has good compatibility with disperse dyes due to its functionality, and tends to promote dye migration.
In addition, attempts have been made to add ethyleneimine derivatives or isocyanate compounds to prevent dye transfer of disperse dyes in these resin systems, but these methods have problems in terms of effectiveness and texture, making them impractical. It is difficult to Furthermore, attempts have been made to apply cellulose derivatives or PVA derivatives as coating agents, but although they are effective in preventing dye transfer, they have a hard texture and a brittle coating, making them impractical. Regarding 2), if the amount added is small,
The influence of the resin is greater and its effect is hardly recognized, and these fillers generally lack affinity with the resin solution, so adding large amounts may cause an extreme decrease in the strength of the resin film. This is impossible due to the performance of the product, and 3) is also the same as 2), and since the bond between the adsorbed disperse dye and the adsorbent is weak, a sufficient effect of preventing dye migration cannot be expected. The present inventors have completed the present invention as a result of intensive research to solve the above problems, and have created a polyester fiber knitted fabric with a soft texture.
This makes it possible to provide a coating process that provides the ability to prevent the migration of disperse dyes. In other words, the room-temperature curing silicone rubber (hereinafter referred to as PTV rubber) and low-temperature curing silicone rubber (hereinafter referred to as LTV rubber) used for release paper have excellent film-forming ability through low-temperature and short-time heat treatment; By focusing on the flexibility of the texture based on linear crosslinking properties and the dye transfer prevention properties of silicone rubber, and utilizing this in textile processing, we have created a fabric that is flexible and has the ability to prevent disperse dye transfer. Molecular crosslinking agent and particle size 6~
200μ (preferably 6-20μ) microspherical filler,
By adding a small amount of accelerator, we succeeded in further improving the dye migration prevention performance of disperse dyes without reducing the strength of the resin film. In addition, regarding the particle size of the micro spherical filler, the particle size is 6~
The reason why the particle size is 200μ (preferably 6 to 20μ) is that if the particle size is 6μ or less, the effect will not be obtained unless the amount of filler is increased, and if the amount of filler is increased, the strength of the resin film may decrease. Moreover, when the particle size becomes 200 μm or more, the strength of the resin film decreases rapidly. As a configuration for achieving the object of the present invention, an RTV rubber or LTV rubber (diorganopolysiloxane diol, vinyl-containing diorganopolysiloxane, hydrogen polysiloxane, or a copolymer thereof) promoter is added to the polyester fiber knitted fabric. A mixed solution of a metal salt containing tin or platinum (e.g., tin acylate or platinum chloride), a molecular crosslinking agent (e.g., a silane coupling agent), and a microspherical filler (e.g., a benzoguanamine-formaldehyde condensate) is applied by a known method. - Dry and then heat treat to complete the present invention. To explain the present invention in more detail, the above-mentioned polyester fiber knitted fabric that has been scoured and dyed by a normal method is
100 parts by weight of RTV or LTV rubber (hereinafter simply referred to as parts), 1 to 10 parts of accelerator, 0.5 to 2 parts of molecular crosslinking agent,
A solution containing 1 to 30 parts of a microspherical filler having a particle size of 6 to 200 microns (preferably 5 to 20 parts of a particle size of 6 to 20 microns) is uniformly applied to the surface of the fabric by a general coating method and dried. Further 30 at 140-180℃
Heat treatment is performed for ~180 seconds to obtain a coated fabric that is flexible and has the ability to prevent dye transfer of disperse dyes. This will be explained below using examples. Note that the comparative test characteristic values in the Examples were measured and evaluated based on the following measurement method. (1) Evaluation method for preventing dye migration of disperse dyes (a) Dye migration test method: Layer the coated surface of a 5 cm x 10 cm test cloth and a white cloth coated with acrylic resin, and then combine them with a thickness of 0.2 to 10 cm.
A load of 200 g is applied to a 0.3 mm glass plate using scissors. This was then placed in a dryer maintained at 80°C and left for 24 hours. After the test was completed, it was allowed to cool to room temperature. (b) Sublimation test method during storage, a 6 cm x 6 cm test cloth and the coated surface of a white cloth coated with acrylic resin are overlapped to a thickness of 0.2 to 0.3
A load of 4.5 kg is applied to a glass plate of mm.
Furthermore, this was placed in a dryer maintained at 120°C, left for 80 minutes, and after the test was completed, it was allowed to cool to room temperature. A test is conducted using the above two test methods, and the degree of contamination is graded by comparing the difference in color seen between the attached white cloths before and after the test with the difference in color seen between each color mark of the contamination gray scale. Separate. Example 1 Scouring in a conventional manner and dyeing red with disperse dye (Miketon Polyester Rubine 2G-SF 4%
owf) Navy (Kayalon Polyester Navy 2G-SF)
3% owf) Black (Kayalon Polyester Black)
EX-SF 10% owf) dyed polyester fiber fabric (warp 50/18, weft 50/24, density warp
150 pieces/inch, weft 106 pieces/inch), a vinyl-containing dimethylpolysiloxane and hydrogen polysiloxane copolymer (for example, trade name "SRX-345")
100 parts (manufactured by Toray Silicone Co., Ltd.), accelerator (for example, product name "SRX-212" manufactured by Toray Silicone Co., Ltd.) 4
1 part of a molecular crosslinking agent (for example, trade name "KBE1003" manufactured by Shin-Etsu Silicone Co., Ltd.), 10 parts of a microspherical filler (for example, trade name "BEP-05" manufactured by Nippon Shokubai Kagaku Co., Ltd.), and 40 parts of an organic solvent (for example, toluene). The composition was mixed and stirred, dissolved or dispersed, and then applied uniformly to the fabric at a dry weight of 5 g/m 2 using a knife coating method. After drying, the product was heat-treated at 180°C for 120 seconds. Obtained. Example 2 Resolin Blue FBL4
% polyester fiber fabric (warp)
50/18, weft 75/36, density warp 110/waft 96
The resin solution used in Example 1 was coated uniformly on the fabric with a dry weight of 10 g/m 2 using a knife coating method, dried, and then heat-treated at 180° C. for 150 seconds to obtain this product. Comparative Example 1 As a general soft coating resin, 100 parts of acrylic resin (for example, trade name "Cryscoat S20" manufactured by Dainippon Ink Co., Ltd.) and 3 parts of a crosslinking agent (for example, trade name "Polynate 70" manufactured by Toyo Polymer Co., Ltd.) were mixed with an organic solvent. A resin solution dissolved in 30 parts of toluene (for example, toluene) was applied uniformly to the dyed cloth used in Example 1 at a dry weight of 5 g/m 2 using a knife coating method, dried, and then heated at 180°C for 120 seconds. I got this product. Comparative Example 2 The acrylic resin solution used in Comparative Example 1 was uniformly applied to the dyed cloth used in Example 1 and Comparative Example 1 at a dry weight of 2 g/m 2 using a knife coating method.
After drying, add 100 parts of a urethane resin commonly used as a coating resin (for example, product name "Crisbon 6306B" manufactured by Dainippon Ink Co., Ltd.) to toluene.
A resin solution dissolved in a mixed solvent of 30 parts of DMF and 10 parts of DMF was made into a dry weight of 10 by knife coating method.
After uniformly coating and drying, the product was heat-treated at 180°C for 120 seconds. Next, comparison test results between the example according to the present description and comparative examples 1 and 2, which are conventional products, will be shown.

【表】 Γ移染性防止性能の判定【table】 Judgment of Γ stain prevention performance

【表】【table】

Claims (1)

【特許請求の範囲】 1 シリコーンゴムに分子架橋剤、微小球形充填
剤、促進剤を溶解もしくは分散させた混合溶液
を、分散染料で染色されたポリエステル繊維編織
物もしくはポリエステル繊維を含む交織交編物に
塗布し、後加熱処理することを特徴とする分散染
料の移染防止加工法。 2 シリコーンゴムが室温硬化型、および低温硬
化型ゴムであつて、その架橋機構の本体が、ジオ
ルガノポリシロキサンジオール、ビニール含有ジ
オルガノポリシロキサン、ハイドロジエンポリシ
ロキサン又は、これらの共重合物である、特許請
求の範囲第1項記載の方法。 3 分子架橋剤が中心元素として、ケイ素、アル
ミニウム、もしくはチタンを含む、有機官能基を
有するようなカツプリング剤である、特許請求の
範囲第1項記載の方法。 4 微小球形充填剤が粒径6〜200μであり、ト
ルエン、キシレン、酢酸エチル等の有機溶剤に不
溶な架橋性ポリスチレン、あるいは、ベンゾグア
ナミンを母体樹脂とする充填剤である、特許請求
の範囲第1項記載の方法。 5 促進剤が錫もしくは白金を含む金属塩であ
る、特許請求の範囲第1項記載の方法。
[Claims] 1. A mixed solution in which a molecular crosslinking agent, a microspherical filler, and an accelerator are dissolved or dispersed in silicone rubber is applied to a polyester fiber knitted fabric dyed with a disperse dye or a mixed woven or knitted fabric containing polyester fibers. A dye transfer prevention processing method for disperse dyes, which is characterized by coating and post-heat treatment. 2 The silicone rubber is a room temperature curing type or a low temperature curing type rubber, and the main body of the crosslinking mechanism is diorganopolysiloxane diol, vinyl-containing diorganopolysiloxane, hydrogen polysiloxane, or a copolymer thereof. , the method according to claim 1. 3. The method according to claim 1, wherein the molecular crosslinking agent is a coupling agent having an organic functional group containing silicon, aluminum, or titanium as a central element. 4. Claim 1, wherein the microspherical filler has a particle size of 6 to 200 μm and is a filler whose base resin is crosslinked polystyrene or benzoguanamine that is insoluble in organic solvents such as toluene, xylene, and ethyl acetate. The method described in section. 5. The method according to claim 1, wherein the accelerator is a metal salt containing tin or platinum.
JP58118432A 1983-06-30 1983-06-30 Treatment of polyerster fiber knited cloth Granted JPS609983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118432A JPS609983A (en) 1983-06-30 1983-06-30 Treatment of polyerster fiber knited cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118432A JPS609983A (en) 1983-06-30 1983-06-30 Treatment of polyerster fiber knited cloth

Publications (2)

Publication Number Publication Date
JPS609983A JPS609983A (en) 1985-01-19
JPH0220753B2 true JPH0220753B2 (en) 1990-05-10

Family

ID=14736494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118432A Granted JPS609983A (en) 1983-06-30 1983-06-30 Treatment of polyerster fiber knited cloth

Country Status (1)

Country Link
JP (1) JPS609983A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3512515A1 (en) * 1985-04-06 1986-10-09 Dynamit Nobel Ag, 5210 Troisdorf Inorganic moulding compounds with calcined bauxite as brick-forming component
KR930004513B1 (en) * 1988-10-19 1993-05-27 도오레 가부시기가이샤 Coated polyester fiber fabric and process for its production
JP2601129B2 (en) * 1993-04-08 1997-04-16 日本碍子株式会社 Alumina-chromia castable refractory and precast block using it

Also Published As

Publication number Publication date
JPS609983A (en) 1985-01-19

Similar Documents

Publication Publication Date Title
JP2002514690A (en) Moisture-absorbing aramid woven fabric and method of making such woven fabric
JPH0220753B2 (en)
JPH05321159A (en) Production of colored suede-tone synthetic leather
JP2701190B2 (en) Coating method of polyester woven and knitted fabric
US4365966A (en) Process for modifying cellulosic fabrics for improved heat transfer printing
JPH0428827B2 (en)
JPH0465580A (en) Flexible coated cloth
JPS6039479A (en) Coated polyester cloth
JP2623936B2 (en) Coated cloth and its manufacturing method
JP3843377B2 (en) Impervious durable water repellent cloth
JPH0465579A (en) Coated fabric
JP2942379B2 (en) Coated cloth without dye transfer
JP3631810B2 (en) Water repellent fabric and method for producing the same
JPH093771A (en) Durable stain-resistant fiber structure and its production
JPH06116869A (en) Coated cloth having excellent migration and sublimation preventing performance
JPH04241178A (en) Coating agent and polyester fiber cloth coated therewith
JPH0241475A (en) Base fabric for paraglider
JPH0512466B2 (en)
JPH0830305B2 (en) Polyester fiber coated fabric and method for producing the same
KR920010718B1 (en) Process for manufacturing permeable water-proof cloth having a improved color fastness
JP2005120538A (en) Polyurethane coated cloth
JPS6094685A (en) Dyeing of fiber structure
KR20230166321A (en) DTP method of cellulose-based fabric providing improved printability, excellent touch feeling and strong friction fastness
JP3257285B2 (en) Polyester fiber coated fabric and method for producing the same
JPS6183375A (en) Improvement in color developability of fiber structure