JPH02207537A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPH02207537A
JPH02207537A JP2745489A JP2745489A JPH02207537A JP H02207537 A JPH02207537 A JP H02207537A JP 2745489 A JP2745489 A JP 2745489A JP 2745489 A JP2745489 A JP 2745489A JP H02207537 A JPH02207537 A JP H02207537A
Authority
JP
Japan
Prior art keywords
silicon film
film
amorphous silicon
semiconductor device
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2745489A
Other languages
Japanese (ja)
Inventor
Hidemi Adachi
安達 英美
Genshirou Kawachi
玄士朗 河内
Takashi Aoyama
隆 青山
Saburo Oikawa
及川 三郎
Hiroshi Suga
須賀 博
Nobutake Konishi
信武 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2745489A priority Critical patent/JPH02207537A/en
Publication of JPH02207537A publication Critical patent/JPH02207537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a polycrystalline silicon film whose crystal grain and carrier mobility are large by coating the ground part of a silicon film corresponding to a channel region with silicon and hydrogen, depositing an amorphous silicon film on the ground, heat-treating the film, and transforming the amorphous silicon film into a polycrystalline silicon film. CONSTITUTION:By using a sputtering apparatus, an a-Si:H2 is formed on a glass substrate 1; by using LPCVD method, an amorphous silicon film 3 is deposited: by heat-treating said film 3 at 600 deg.C in an N2 atmosphere for a specified period, the amorphous silicon film 3 only is crystallized and transformed into a polycrystalline silicon film 4. By restricting the generation of nucleus up to the optimum degree for crystallization, large crystal grain can be obtained, and the polycrystalline silicon film excellent in crystallizability can be formed. Further, a TFT with large carrier mobility can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜半導体装置およびその製造方法に係り、特
にアクティブマトリクス方式のデイスプレィに好適な薄
膜半導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film semiconductor device and a method for manufacturing the same, and more particularly to a method for manufacturing a thin film semiconductor suitable for an active matrix display.

〔従来の技術〕[Conventional technology]

アクティブマトリクス方式液晶デイスプレィの大画面化
、高画質化を図るために、薄膜半導体装置である薄膜ト
ランジスタ(工his Filn+Transisto
r 、略してTPT)の材料としてキャリア移動度の大
きい多結晶シリコン膜が用いられている。
In order to achieve larger screens and higher image quality for active matrix liquid crystal displays, thin film transistors, which are thin film semiconductor devices, have been developed.
A polycrystalline silicon film with high carrier mobility is used as a material for the material (TPT for short).

キャリア移動度は多結晶シリコン膜の結晶性に強く依存
していることから、特性の良いTFT&得るには、結晶
粒をできるだけ大きくしてキャリア移動度を大きくする
ことが望ましい。
Since carrier mobility strongly depends on the crystallinity of the polycrystalline silicon film, in order to obtain a TFT with good characteristics, it is desirable to increase carrier mobility by making crystal grains as large as possible.

従来、絶縁基板上に膜を成長させる場合、成長初期には
核が基板上にランダムに形成されるため、最初は結晶粒
は小さく、膜厚の増大につれて結晶粒は大きくなり、結
晶性の優れた多結晶シリコン膜になる。従って結晶粒径
を大きくするには膜厚を厚くしなければならない問題が
あった。この問題を解決するため、特開昭61−858
15号記載のように、絶縁基板上に生成した核を熱処理
により成長させ、これを種結晶として多結晶シリコン膜
を形成する方法が試みられた。この方法は、結晶性向上
に効果は認められるが、基板上にランダムに生成した核
は熱処理をしてもまだ十分大きくならないため、核の数
は減少せず、結局結晶性や結晶粒径も十分大きくなると
は言えない。
Conventionally, when growing a film on an insulating substrate, nuclei are formed randomly on the substrate in the initial stage of growth, so the crystal grains are small at first, and as the film thickness increases, the crystal grains become larger, resulting in excellent crystallinity. It becomes a polycrystalline silicon film. Therefore, there was a problem in that the film thickness had to be increased in order to increase the crystal grain size. In order to solve this problem, Japanese Patent Application Laid-Open No. 61-858
As described in No. 15, a method has been attempted in which nuclei generated on an insulating substrate are grown by heat treatment and a polycrystalline silicon film is formed using the nuclei as seed crystals. Although this method is effective in improving crystallinity, the nuclei generated randomly on the substrate do not become large enough even after heat treatment, so the number of nuclei does not decrease, and the crystallinity and grain size eventually decrease. I can't say it's going to be big enough.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術、すなわち絶縁基板上に多結晶シリコン膜
を形成する方法においては、絶縁基板とシリコン膜の界
面での核生成を抑制することが重要である。しかし、上
記従来技術では核の数についての配慮が十分でなく、し
たがって、多結晶シリコン膜の結晶性も十分でない、す
なわち、絶縁基板上に多結晶シリコン膜を形成する場合
、絶縁基板とシリコン膜の熱膨張係数や原子間距離の相
違、あるいは絶縁基板からの不純物導入などにより、基
板界面には歪が集中し、結晶核が生成しゃすい状態にな
っている。そのため、核はランダムに多数生成し、そこ
から結晶粒が成長するため、結晶粒は十分大きくならず
、結晶性は上がらない。
In the conventional technique described above, that is, in the method of forming a polycrystalline silicon film on an insulating substrate, it is important to suppress nucleation at the interface between the insulating substrate and the silicon film. However, in the above-mentioned conventional technology, sufficient consideration is not given to the number of nuclei, and therefore the crystallinity of the polycrystalline silicon film is also insufficient. In other words, when forming a polycrystalline silicon film on an insulating substrate, Due to differences in thermal expansion coefficients and interatomic distances, or the introduction of impurities from the insulating substrate, strain is concentrated at the substrate interface, making it easy for crystal nuclei to form. Therefore, many nuclei are randomly generated and crystal grains grow from them, so the crystal grains do not become sufficiently large and the crystallinity does not improve.

このことから、結晶性を上げるには、核発生を結晶化に
必要な最少限に抑制することが重要である。
From this, in order to improve crystallinity, it is important to suppress nucleation to the minimum level necessary for crystallization.

本発明の目的は、非晶質シリコン膜とその下地との界面
での結晶の核生成を抑制することにより結晶粒が大きく
、かつキャリア移動度が大きくなるような多結晶シリコ
ン膜を形成できる薄膜半導体装置の製造方法を提供する
ことにある。
An object of the present invention is to provide a thin film that can form a polycrystalline silicon film with large crystal grains and high carrier mobility by suppressing crystal nucleation at the interface between an amorphous silicon film and its base. An object of the present invention is to provide a method for manufacturing a semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、チャネル領域にあたるシリコン膜の下地部
分を、シリコンと水素で被覆した状態にしておきこの下
地の上に、非晶質シリコン膜を堆積し、熱処理して、非
晶質シリコン膜を多結晶シリコン膜に変換させることに
より達成される。下地のシリコンと水素で被覆した状態
は、水素化アモルファスシリコン膜(以下略してa−8
i:H)を形成するか、絶縁基板表面に水素とシリコン
の分子イオンを注入して、水素とシリコンの化合物層を
作り絶縁基板表面をa−8i:Hの表面と同質の状態に
改質して形成する。
The above purpose is to coat the base of the silicon film, which corresponds to the channel region, with silicon and hydrogen, deposit an amorphous silicon film on top of this base, and heat-treat it to form a multilayer amorphous silicon film. This is achieved by converting it into a crystalline silicon film. The state in which the underlying silicon and hydrogen are coated is a hydrogenated amorphous silicon film (hereinafter abbreviated as a-8).
i:H) or implant hydrogen and silicon molecular ions onto the surface of the insulating substrate to create a hydrogen and silicon compound layer and modify the surface of the insulating substrate to be the same as the surface of a-8i:H. and form it.

以下、非晶質シリコン膜の結晶成長過程と、下地膜の影
響について述べる。
The crystal growth process of an amorphous silicon film and the influence of the underlying film will be described below.

第2図は絶縁基板上に減圧CVD法により形成した非晶
質シリコン膜の結晶成長過程を透過型電子顕微鏡にて1
′!察した様子をモデル化した図である。第2図(a)
は絶縁基板に非晶質シリコン膜50を堆積した状態であ
る。このときは膜中に結晶粒はみられない。この膜をN
2中600℃で熱処理すると、第2図(b)のように基
板1と膜50の界面に結晶粒51が形成される。膜中や
膜表面にはみられない。よって、結晶核は基板との界面
にのみ生成することがわかる。さらに熱処理を続けると
、第2図(c)のように、結晶粒51を核として周囲の
アモルファス成分を結晶成分に変換しながら結晶粒52
が成長する。そして第2図(d)のように隣接する結晶
粒がぶつかった時点で横方向の成長は終わり膜厚方向に
成長する。
Figure 2 shows the crystal growth process of an amorphous silicon film formed on an insulating substrate by low pressure CVD using a transmission electron microscope.
′! This figure is a model of what was observed. Figure 2(a)
1 shows a state in which an amorphous silicon film 50 is deposited on an insulating substrate. At this time, no crystal grains are observed in the film. This film is N
2, crystal grains 51 are formed at the interface between the substrate 1 and the film 50, as shown in FIG. 2(b). It is not seen in the membrane or on the membrane surface. Therefore, it can be seen that crystal nuclei are generated only at the interface with the substrate. When the heat treatment is further continued, as shown in FIG. 2(c), the crystal grains 51 are used as cores and the surrounding amorphous components are converted to crystalline components, while the crystal grains 52
grows. Then, as shown in FIG. 2(d), when adjacent crystal grains collide, the lateral growth ends and the film grows in the thickness direction.

このような結晶成長過程をとるため、結晶成長は核の生
成密度に強く依存する。よって核の発生を結晶化に最適
な程度まで抑制することにより、結晶粒をより大きくす
ることが可能となり、結晶性のすぐれた多結晶シリコン
膜を形成できる。そこで、絶縁基板と非晶質シリコン膜
の界面にa−9i :Hを介在させることにより界面の
状態を変えて減圧CVD膜形成し、熱処理後の結晶性を
比較した。
Since such a crystal growth process is adopted, crystal growth strongly depends on the density of nucleation. Therefore, by suppressing the generation of nuclei to the optimum level for crystallization, it is possible to make the crystal grains larger, and a polycrystalline silicon film with excellent crystallinity can be formed. Therefore, a low pressure CVD film was formed by interposing a-9i:H at the interface between the insulating substrate and the amorphous silicon film to change the state of the interface, and the crystallinity after heat treatment was compared.

第3図はa−8i:H下地の有無での減圧CVD多結晶
シリコン膜のX線回折スペクトルを示したものである。
FIG. 3 shows the X-ray diffraction spectra of low pressure CVD polycrystalline silicon films with and without an a-8i:H underlayer.

多結晶シリコン膜のスペクトルには(111)(220
)(311)の3つの方位を持った回折線が観測された
。この回折線のピーク高さ(X線回折強度)が膜中の結
晶成分の量を表わしており、強度が強い程、結晶性の優
れた膜である。(111)の回折ピークに注目すると、
X線回折強度は下地膜を形成した場合、形成しない従来
の場合と比べて約1.5倍大きくなっており、結晶性が
良くなっていることがわかる。また、X線回折ピークの
線幅をもとにシェラ−(Scherrer)の式から平
均の結晶子の大きさを算出したところ、下地膜を形成し
た場合、300Å以上となり、従来に比べて約1.5倍
大きくなっている。
The spectrum of polycrystalline silicon film has (111) (220
) (311) diffraction lines with three orientations were observed. The peak height of this diffraction line (X-ray diffraction intensity) represents the amount of crystalline components in the film, and the stronger the intensity, the better the crystallinity of the film. Focusing on the diffraction peak of (111),
When the base film is formed, the X-ray diffraction intensity is about 1.5 times higher than in the conventional case where no base film is formed, indicating that the crystallinity is improved. In addition, when the average crystallite size was calculated from the Scherrer equation based on the line width of the X-ray diffraction peak, it was found to be over 300 Å when a base film was formed, which was about 1 .5 times larger.

以上のことから、非晶質シリコン膜と絶縁基板の間にa
−Si:Hを介在させることにより、結晶子の大きさが
300Å以上と大きく、かつ結晶性のよい膜が得られる
ことがわかる。
From the above, it is clear that a
It can be seen that by interposing -Si:H, a film with large crystallite size of 300 Å or more and good crystallinity can be obtained.

〔作用〕[Effect]

上記方法で結晶性が向上するのは次の理由による。絶縁
基板上にa−3i:H膜を形成、あるいはHとSiの分
子イオン注入にする絶縁基板の表面改質することにより
、この下地とその上に形成する非晶質シリコン膜との界
面で起こる結晶核の生成が抑制されるためである。すな
わち、結晶核の生成は、界面での熱膨張係数の相違や格
子の歪などに起因するため、絶縁基板や酸化膜とシリコ
ン膜との界面では起こりやすく、5i−5iの界面では
おこりにくい、よって界面での核生成を抑制するには界
面に酸化膜を介在させずに5i−3iの界面を作ること
が必要となる。すなわち、酸化されにくく、かつシリコ
ン膜との熱膨張係数差の小さい膜a−8i:Hを非晶質
シリコン膜と絶縁基板の間に介在させれば核発生を抑え
ることができる。a−8i:Hと単結晶シリコンの自然
酸化膜の生成速度についてはサーフェイスサイエンス3
0.91 (1972)(Surf、sci、30゜9
1、(1972))および、ソリッド ステイト エレ
クトロン 25,875 (1982)(Solid 
5tate Electron 25.875(198
2))において論じられており、103secで単結晶
シリコンは1.0nm程度の自然酸化膜ができるがa−
3i:Hは0.1nm 以下であり、はとんど形成され
てない、よって、このa−8i:H上に非晶質シリコン
膜を形成すると、表面の水素が抜けて、そこにシリコン
が結合し、酸化膜の介在しない、熱膨張係数差のない界
面が形成され、核生成の抑制された界面になる。
The reason why the above method improves crystallinity is as follows. By forming an a-3i:H film on an insulating substrate or by modifying the surface of the insulating substrate by implanting molecular ions of H and Si, the interface between this base and the amorphous silicon film formed thereon can be improved. This is because the generation of crystal nuclei that occurs is suppressed. In other words, the generation of crystal nuclei is caused by differences in thermal expansion coefficients and lattice distortion at the interface, so it tends to occur at the interface between an insulating substrate or an oxide film and a silicon film, but it is less likely to occur at the 5i-5i interface. Therefore, in order to suppress nucleation at the interface, it is necessary to create a 5i-3i interface without intervening an oxide film at the interface. That is, by interposing the film a-8i:H, which is not easily oxidized and has a small difference in coefficient of thermal expansion with the silicon film, between the amorphous silicon film and the insulating substrate, nucleation can be suppressed. a-8i: Regarding the formation rate of natural oxide film of H and single crystal silicon, see Surface Science 3.
0.91 (1972) (Surf, sci, 30°9
1, (1972)) and Solid State Electron 25,875 (1982) (Solid State Electron 25,875 (1982))
5tate Electron 25.875 (198
As discussed in 2)), a natural oxide film of about 1.0 nm is formed on single crystal silicon in 103 seconds, but a-
3i:H is less than 0.1 nm and is rarely formed. Therefore, when an amorphous silicon film is formed on this a-8i:H, hydrogen on the surface is removed and silicon is formed there. They combine to form an interface with no intervening oxide film and no difference in thermal expansion coefficient, resulting in an interface where nucleation is suppressed.

また、a−Si:Hは600℃での熱処理をしても結晶
化しないため、ガラス基板とa−3i:Hの界面で核が
生成しても非晶質シリコン膜との界面まで、核が到達し
ない。よって、非晶質膜の核の数は、絶縁法・板の影響
を受けず、a−3i:Hと非晶質シリコン膜の界面での
み生成する数となるため、核の生成を抑制することがで
きる。このように核の数が少くなるため大きな結晶粒を
得ることができる。
In addition, since a-Si:H does not crystallize even after heat treatment at 600°C, even if nuclei are generated at the interface between the glass substrate and a-3i:H, the nuclei will not reach the interface with the amorphous silicon film. is not reached. Therefore, the number of nuclei in the amorphous film is not affected by the insulation method or plate and is generated only at the interface between a-3i:H and the amorphous silicon film, so the generation of nuclei is suppressed. be able to. Since the number of nuclei is reduced in this way, large crystal grains can be obtained.

一方、シリコンを結晶化して、これを種結晶として結晶
成長させる場合、表面には短時間で自然酸化膜が形成さ
れるため、非晶質シリコンとの界面に自然酸化膜が介在
し、同相成長は妨げられる。
On the other hand, when silicon is crystallized and used as a seed crystal for crystal growth, a natural oxide film is formed on the surface in a short time, so the natural oxide film is interposed at the interface with amorphous silicon, resulting in in-phase growth. is hindered.

さらに、この自然酸化膜界面では新たな核生成がおこる
ため、核の数は増加し、結晶粒は大きくならない。
Furthermore, since new nucleation occurs at this natural oxide film interface, the number of nuclei increases and the crystal grains do not become large.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 4.

第4図Aに示すように、まずガラス基板1上に直流4極
スパツタリング装置を用いてa−8i:H2を膜厚約5
00人形成した。雰囲気ガスとしてArとH2を用い、
2X10−”Paの状懲で、基板温度300℃以下にし
てスパッタリングを行った。上記により作製した試料上
に、第4図Bで示すように、LPCVD法を用いて、5
50℃、1 、 OTorrで非晶質シリコン膜3を1
500人堆積した。次に、第4図Cに示すように、N2
雰囲気中約600℃で所定時間熱処理することにより、
非晶質シリコン膜3のみが結晶化して、多結晶シリコン
膜4になった。この膜をアイランドホト。
As shown in FIG. 4A, first, a-8i:H2 is deposited on a glass substrate 1 to a thickness of approximately 5 mm using a DC 4-pole sputtering device.
00 people formed. Using Ar and H2 as atmospheric gas,
Sputtering was carried out at a substrate temperature of 300° C. or less under conditions of 2×10 −” Pa. As shown in FIG.
The amorphous silicon film 3 was heated at 50°C and 1 O Torr.
500 people deposited. Next, as shown in FIG. 4C, N2
By heat-treating in an atmosphere at about 600℃ for a predetermined time,
Only the amorphous silicon film 3 was crystallized and became a polycrystalline silicon film 4. Island photo this film.

エツチングの工程を通した後、常圧CVD法によりゲー
ト絶縁膜用の5iOz18を1000人堆積させる。次
にゲート電極用のpoly −S i膜19を550℃
、1 、 OTorrの条件で3500人堆積させる。
After passing through the etching process, 1000 layers of 5iOz18 for a gate insulating film are deposited by atmospheric pressure CVD. Next, the poly-Si film 19 for the gate electrode was heated at 550°C.
, 1, 3500 people are deposited under OTorr conditions.

ゲート絶縁膜19をホト、エッチした後、ソ−ス、ドレ
イン領域16.17のインプラを行う。
After photo-etching the gate insulating film 19, implantation of source and drain regions 16 and 17 is performed.

条件はリン(P)を用い、5 X 10115cm−”
のドーズ量、30KeVの電圧である。リンガラスから
なるパッシベーション膜21を480℃で5000人堆
積させる。さらにN2中、600℃の条件で20時間熱
処理を行い、インプラ領域を活性化させる。コンタクト
用のホト、エッチ工程の後、AI2電極20を6000
人スパッタする。本実施例のTPTのチャネル幅、チャ
ネル長はそれぞれ30μm、10μmである。
The conditions are phosphorus (P), 5 x 10115 cm-”
The dose amount is 30 KeV and the voltage is 30 KeV. A passivation film 21 made of phosphorus glass is deposited by 5000 people at 480°C. Further, heat treatment is performed in N2 at 600° C. for 20 hours to activate the implant region. After the photo and etch process for contact, the AI2 electrode 20 was
People spatter. The channel width and channel length of the TPT in this example are 30 μm and 10 μm, respectively.

次に本発明の第2実施例について第5図A〜第5図Cお
よび第6図に基づいて説明する。
Next, a second embodiment of the present invention will be described based on FIGS. 5A to 5C and FIG. 6.

第5図に示すように、ガラス基板1上にシリコンと水素
の分子イオンを低エネルギーにてイオン注入してガラス
基板表面をHとSiの化合物層6とし、ガラス基板表面
を改質する。
As shown in FIG. 5, molecular ions of silicon and hydrogen are implanted into a glass substrate 1 at low energy to form a compound layer 6 of H and Si on the surface of the glass substrate, thereby modifying the surface of the glass substrate.

第6図は、低エネルギーイオン注入装置の説明図である
。真空容器101中のアノード電極103にガラス基板
1を設置し、容器内へHzで希釈したSiH4ガスを導
入する。容器内圧力は0.5〜5 、 OTorr程度
が良い0次に加熱ヒータ104により基板1を200〜
300℃に加熱しながらアノード電極103に対向する
カソード電極102に高周波電圧を印加して両電極間に
グロー放電を発生させてSiH4ガス、H2ガスをプラ
ズマ状態107とする。プラズマ中のイオンH+、Si
”tS i H+、 S i H2+、 S i+Ha
は加速電源111に接続された加速電極110によって
引きだされて、1〜5kV程度の比較的低い電圧で加速
され。
FIG. 6 is an explanatory diagram of a low energy ion implantation device. A glass substrate 1 is placed on an anode electrode 103 in a vacuum container 101, and SiH4 gas diluted at Hz is introduced into the container. The pressure inside the container is 0.5~5, and the substrate 1 is heated to 200 ~
While heating to 300° C., a high frequency voltage is applied to the cathode electrode 102 facing the anode electrode 103 to generate a glow discharge between the two electrodes to bring the SiH4 gas and H2 gas into a plasma state 107. Ions H+, Si in plasma
”tS i H+, S i H2+, S i+Ha
is extracted by an accelerating electrode 110 connected to an accelerating power source 111 and accelerated at a relatively low voltage of about 1 to 5 kV.

基板1に照射され基板表面がHとSiの化合物層6にな
る。この装置は分子イオンを注入できること、大電流が
とれるので表面に多量にイオンを注入できること、低加
速電圧であるため浅く絶縁基板表面にイオン注入可能で
あることから絶縁基板の表面改質に適している。
The substrate 1 is irradiated with light, and the surface of the substrate becomes a compound layer 6 of H and Si. This device is suitable for surface modification of insulating substrates because it can implant molecular ions, it can draw a large current so it can implant a large amount of ions into the surface, and its low acceleration voltage allows it to shallowly implant ions into the surface of the insulating substrate. There is.

以上のように表面改質した絶縁基板上に第1実施例と同
様に第4図Bに示すようにLPCVD法で非晶質シリコ
ン膜3を堆積した0次に第5図Cに示すように、N2雰
囲気中600℃で熱処理することにより多結晶シリコン
膜4になった。以下第1実施例と同様のプロセスにてT
PTを形成する。
As shown in FIG. 4B, an amorphous silicon film 3 was deposited by the LPCVD method on the insulating substrate whose surface had been modified as described above, as in the first embodiment. A polycrystalline silicon film 4 was obtained by heat treatment at 600° C. in an N2 atmosphere. Hereinafter, in the same process as in the first embodiment, T
Form PT.

第1および第2実施例で作ったTPTの結晶性を評価す
るため、電界効果移動度を測定したところ、約50al
12−/v−3となり、従来の絶縁基板に直接能動層で
ある多結晶シリコン膜を形成したTPTに比べて約1.
5倍大きくなり、結晶性の優れた多結晶シリコン膜を得
ることができた。
In order to evaluate the crystallinity of TPT made in the first and second examples, the field effect mobility was measured and it was found that approximately 50al
12-/v-3, about 1.1.
It was possible to obtain a polycrystalline silicon film that was five times larger and had excellent crystallinity.

以上、本発明を実施例に基づき説明したが、本発明の上
述の第1及び第2実施例に限定されるものではなく、本
発明の技術的思想に基づく様々の変態が可能である。た
とえば、第1実施例のa −8i:Hの形成法としては
モノシランのグロー放電分解を用いても可能である。基
板温度300℃以下、RFパワー300Wとした。
Although the present invention has been described above based on embodiments, it is not limited to the above-described first and second embodiments of the present invention, and various modifications based on the technical idea of the present invention are possible. For example, glow discharge decomposition of monosilane may be used to form a-8i:H in the first embodiment. The substrate temperature was 300° C. or lower, and the RF power was 300 W.

また、第1実施例ではa−8i:Hを堆積したが、同じ
ように水素を多量に含む膜たとえば、a−8iO:H,
a−8iN:H,a−8iC:Hを用いることにより同
様の効果があげられる。
Further, in the first embodiment, a-8i:H was deposited, but similarly, films containing a large amount of hydrogen, such as a-8iO:H,
Similar effects can be obtained by using a-8iN:H and a-8iC:H.

また、第1および第2実施例において、第4図Bの工程
で減圧CVD法により非晶質シリコン膜3を形成してい
るが、スパッタ法9分子線蒸着法を使っても同様の効果
があげられる。
In addition, in the first and second embodiments, the amorphous silicon film 3 is formed by low pressure CVD in the step shown in FIG. can give.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、結晶粒径が大きく、結晶性の良い多結
晶シリコン膜を得ることができ、ひいては、キャリア移
動度の大きいTPTを得ることができる。
According to the present invention, a polycrystalline silicon film having a large crystal grain size and good crystallinity can be obtained, and as a result, a TPT with high carrier mobility can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第一実施例のTPTの構造を示す図、第
2図は非晶質シリコン膜の熱処理における結晶成長過程
のモデル図、第3図は下地膜有無での多結晶シリコン膜
のX線回折スペクトルの比較図、第4図は本発明第一実
施例の各製造工程における第1図のTPTの構造を示す
図、第5図は本発明第二実施例の絶縁基板改質工程にお
ける構造を示す図、第6図は低エネルギーイオン注入装
置を示す図である。 1・・・ガラス基板、2・・・a−3i:N13・・・
非晶質シリコン膜、4・・・多結晶シリコン膜、5・・
・イオン注入、6・・・HとSiの化合物層、16・・
・ソース電極、17・・・ドレイン電極、18・・・ゲ
ート絶縁膜、19・・・ゲート電極、20・・・AΩ電
極、21・・・リンガラス、101・・・真空容器、1
02・・・カソード電極、103・・・アノード電極、
104・・・加熱ヒータ、107・・・プラズマ状態、
110・・・加速電極、111・・・加速電源。 第 幻 (C) 回jfr角 、2θ (す
Fig. 1 is a diagram showing the structure of TPT according to the first embodiment of the present invention, Fig. 2 is a model diagram of the crystal growth process during heat treatment of an amorphous silicon film, and Fig. 3 is a polycrystalline silicon film with and without a base film. 4 is a diagram showing the structure of the TPT of FIG. 1 in each manufacturing process of the first embodiment of the present invention, and FIG. 5 is a diagram showing the structure of the TPT of FIG. 1 in the second embodiment of the present invention. FIG. 6 is a diagram showing a structure in a process, and FIG. 6 is a diagram showing a low energy ion implantation apparatus. 1...Glass substrate, 2...a-3i:N13...
Amorphous silicon film, 4... Polycrystalline silicon film, 5...
・Ion implantation, 6...H and Si compound layer, 16...
- Source electrode, 17... Drain electrode, 18... Gate insulating film, 19... Gate electrode, 20... AΩ electrode, 21... Phosphorus glass, 101... Vacuum vessel, 1
02... Cathode electrode, 103... Anode electrode,
104... Heater, 107... Plasma state,
110... Accelerating electrode, 111... Accelerating power source. Phantom (C) times jfr angle, 2θ (s

Claims (1)

【特許請求の範囲】 1、絶縁基板上に形成する能動層の下地部分を、シリコ
ンと水素で被覆する工程と、第1の非晶質シリコン膜を
前記被覆した基板上に形成する工程と第1の非晶質シリ
コン膜のみを結晶成分に変換する熱処理工程を具備する
ことを特徴とする薄膜半導体装置の製造方法。 2、前記第1項記載の下地部分は、水素化アモルファス
シリコン膜を堆積する、あるいは絶縁基板表面にシリコ
ンと水素の分子イオンを注入することにより形成するこ
とを特徴とする薄膜半導体装置の製造方法。 3、前記第2項記載の水素化アモルファスシリコン膜を
モノシランのグロー放電分解、水素を含む雰囲気ガス中
でのスパッタ法を用いて形成することを特徴とする薄膜
半導体装置の製造方法。 4、前記第1項記載の非晶質シリコン膜を減圧CVD法
、スパッタ法、分子線蒸着法を用いて形成することを特
徴とする薄膜半導体装置の製造方法。 5、前記第2項記載の方法により表面を水素とシリコン
で被覆することを特徴とする絶縁基板の、表面改質方法
[Claims] 1. A step of coating a base portion of an active layer to be formed on an insulating substrate with silicon and hydrogen; a step of forming a first amorphous silicon film on the coated substrate; 1. A method for manufacturing a thin film semiconductor device, comprising a heat treatment step for converting only one amorphous silicon film into a crystalline component. 2. A method for manufacturing a thin film semiconductor device, characterized in that the underlying portion described in item 1 is formed by depositing a hydrogenated amorphous silicon film or by implanting molecular ions of silicon and hydrogen into the surface of an insulating substrate. . 3. A method for manufacturing a thin film semiconductor device, characterized in that the hydrogenated amorphous silicon film described in item 2 is formed using glow discharge decomposition of monosilane and sputtering in an atmospheric gas containing hydrogen. 4. A method for manufacturing a thin film semiconductor device, characterized in that the amorphous silicon film described in item 1 is formed using a low pressure CVD method, a sputtering method, or a molecular beam evaporation method. 5. A method for surface modification of an insulating substrate, characterized in that the surface is coated with hydrogen and silicon by the method described in item 2 above.
JP2745489A 1989-02-08 1989-02-08 Manufacture of thin film semiconductor device Pending JPH02207537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2745489A JPH02207537A (en) 1989-02-08 1989-02-08 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2745489A JPH02207537A (en) 1989-02-08 1989-02-08 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPH02207537A true JPH02207537A (en) 1990-08-17

Family

ID=12221570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2745489A Pending JPH02207537A (en) 1989-02-08 1989-02-08 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPH02207537A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291316A (en) * 1992-02-25 1994-10-18 Semiconductor Energy Lab Co Ltd Thin film insulated gate semiconductor device and manufacture thereof
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US5962897A (en) * 1992-06-18 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6486495B2 (en) 1990-07-24 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026200B2 (en) 1990-07-24 2006-04-11 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing a semiconductor device
US6486495B2 (en) 1990-07-24 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US7649227B2 (en) 1992-02-25 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US7148542B2 (en) 1992-02-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
JPH06291316A (en) * 1992-02-25 1994-10-18 Semiconductor Energy Lab Co Ltd Thin film insulated gate semiconductor device and manufacture thereof
US5962897A (en) * 1992-06-18 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7109108B2 (en) 1992-10-09 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having metal silicide
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7602020B2 (en) 1992-10-09 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US7723788B2 (en) 1992-10-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US8017506B2 (en) 1992-10-09 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Similar Documents

Publication Publication Date Title
US20020020839A1 (en) Semiconductor device and method for manufacturing the same
US6391747B1 (en) Method for forming polycrystalline silicon film
US5470619A (en) Method of the production of polycrystalline silicon thin films
US7390727B2 (en) Polycrystalline silicon film containing Ni
JP3197036B2 (en) Method for forming crystalline silicon thin film
JPH03292741A (en) Manufacture of thin film semiconductor device
JPH02207537A (en) Manufacture of thin film semiconductor device
JPH06283422A (en) Polycrystalline semiconductor film, thin film using thereof, manufacturing method thereof
JPH03289140A (en) Manufacture of thin film semiconductor device
KR100469503B1 (en) How to crystallize amorphous film
JPH0476217B2 (en)
JP3234403B2 (en) Semiconductor thin film manufacturing method
KR100524874B1 (en) Crystallization Method of Amorphous Silicon Thin Film
JPH10214790A (en) Production of thin silicon based semiconductor
JP3065528B2 (en) Semiconductor device
JP3614333B2 (en) Insulated gate type field effect transistor fabrication method
JPH07263342A (en) Manufacture of semiconductor device
JPH0810669B2 (en) Method of forming SOI film
KR19980068689A (en) Manufacturing method of polysilicon thin film
JP3153202B2 (en) Method for manufacturing semiconductor device
JP2590733B2 (en) Method for forming polycrystalline silicon film
JP3532160B2 (en) Crystalline silicon thin film
KR100843741B1 (en) Method for preparing a silicon on sapphire thin film
JPH03289129A (en) Manufacture of thin film semiconductor device
JPH04311039A (en) Manufacturing method of thin film transistor