JPH02207521A - Aligner - Google Patents

Aligner

Info

Publication number
JPH02207521A
JPH02207521A JP1028147A JP2814789A JPH02207521A JP H02207521 A JPH02207521 A JP H02207521A JP 1028147 A JP1028147 A JP 1028147A JP 2814789 A JP2814789 A JP 2814789A JP H02207521 A JPH02207521 A JP H02207521A
Authority
JP
Japan
Prior art keywords
optical system
projection optical
wafer
detection means
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028147A
Other languages
Japanese (ja)
Inventor
Masao Totsuka
戸塚 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1028147A priority Critical patent/JPH02207521A/en
Publication of JPH02207521A publication Critical patent/JPH02207521A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To precisely align a wafer on the focal plane of a projection optical system by a method wherein, when the pattern of a first object surface is projection-exposed on a second object surface via the projection optical system, the relative height to a reference plane arranged on the second object surface or in the vicinity thereof is detected, while the focal position of a pattern projection image of the first object surface is detected. CONSTITUTION:By a first detecting means 101, the height of a wafer 2 upper surface is measured about each position in the surface. By driving an XY stage 6, the height of a reference plane 22 is detected, which plane is arranged on a second detecting means 14 and positioned in the measuring range of a first detecting means 101. Next, the detecting means 14 is driven and arranged at a position just under the position where a mark 26 for focus detection on a reticle 1 surface is projected by a projection optical system 3. Light is introduced on the mark 26 from a light source 11, and the image of the mark is formed in the vicinity of the reference surface 22 of the detecting means 14 by a projection optical system 3. By an operating means 102, the optimum position of the wafer surface in the Z-direction with respect to a projection optical system 3 is calculated while the bent and the thickness of the wafer are taken into account, and the wafer 2 is driven and controlled up to the optimum position by a theta-Z stage 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は露光装置に関し、特にIC,LSI等の半導体
集積回路の製作において、マスク若しくばレチクル等の
第1物体面上の回路パターンを投影光学系によりウニ八
等の第2物体面上に、例えば第2物体又はその近傍に設
けた基準面を利用して高鯖度に焦点合わせをして投影露
光する際に好適な自動焦点制御手段を有した縮少投影型
の露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exposure apparatus, and in particular, in the production of semiconductor integrated circuits such as ICs and LSIs, the present invention relates to an exposure apparatus that is used to produce a circuit pattern on a first object surface such as a mask or reticle. Automatic focus control suitable for performing projection exposure using a projection optical system on a second object surface of a sea urchin, etc. by focusing with a high degree of precision, for example, using a reference plane provided at or near the second object. The present invention relates to a reduction projection type exposure apparatus having means.

(従来の技術) 近年、微細な回路パターンを露光転写する装置として縮
小投影型の露光装置(所謂ステッパー)がICやLSI
等の半導体製造装置の生産現場に多数使用されてきた。
(Prior Art) In recent years, reduction projection exposure devices (so-called steppers) have been used to transfer fine circuit patterns by exposure to ICs and LSIs.
It has been used in many production sites for semiconductor manufacturing equipment such as.

この縮小型の露光装置はレチクル(マスク)に描かれた
回路パターンの像を投影光学系により縮小してウェハ上
のフォトレジスト(感光剤)の層に投影露光するもので
ある。
This reduction type exposure apparatus uses a projection optical system to reduce the image of a circuit pattern drawn on a reticle (mask), and projects and exposes the image onto a layer of photoresist (photosensitive material) on a wafer.

最近は、投影露光する回路パターンの更なる微細化及び
高集積化に伴い、より高分解能、高精度な投影露光ので
きる露光装置が要求されている。
Recently, with the further miniaturization and higher integration of circuit patterns to be projected exposed, there has been a demand for an exposure apparatus that can perform projection exposure with higher resolution and higher precision.

一般に投影露光する回路パターンの焼付は線幅の微細化
の為に例えば露光光の波長を短く、又は投影光学系の開
口数を大きくすると、それに伴い焦点深度か比例、又は
2乗に比例して小さくなってくる。そうすると、例えば
投影光学系を構成する硝材の屈折率が周囲の温度や空気
の気圧等の変化により変わり焦点位置くビット面)が変
動してくるという問題点が生じてくる。
In general, when printing a circuit pattern by projection exposure, for example, if the wavelength of the exposure light is shortened or the numerical aperture of the projection optical system is increased in order to make the line width finer, the depth of focus increases proportionally or squarely. It's getting smaller. In this case, a problem arises in that, for example, the refractive index of the glass material constituting the projection optical system changes due to changes in ambient temperature, air pressure, etc., and the focal position (bit surface) changes.

又ウェハは平面加工技術の点からある程度の厚さと曲り
のバラツキを有している。通常ウェハの曲りについては
平面度1μm以下に加工されたウェハーチャック面上に
ウェハを吸着固定することにより平面矯正を行っている
。しかしながらウェハに厚さのバラツキがあるときはこ
れを矯正することができない。
Furthermore, wafers have some degree of variation in thickness and curvature due to flat processing technology. Normally, wafer bending is corrected by suctioning and fixing the wafer onto a wafer chuck surface that has been processed to have a flatness of 1 μm or less. However, if there is variation in the thickness of the wafer, this cannot be corrected.

そこで従来は投影光学系と所定の位置に関係づけたビッ
ト検出器を露光装置内の一部に設け、投影光学系のビッ
ト面は固定のものとして、その位置にウニへ面がくるよ
うにして位置決めを行っていた。
Therefore, in the past, a bit detector associated with the projection optical system and a predetermined position was installed in a part of the exposure apparatus, and the bit surface of the projection optical system was fixed, so that the surface was placed at that position. I was positioning.

このビット検出器を用いた位置決め方法は間接的にビッ
ト面を検出するものであり、直接的にビット面を検出し
ていない。この為、例えば温度変動や気圧変動等の要因
によりビット検出器の取付面から実際に投影された回路
パターン像面までの機械的な距離及び投影光学系のビッ
ト面が変化したり又、露光光の吸収により投影光学系の
光学的性質が変化し、ビット面が変動したりして高い焼
付は解像力を得るのが大変難しいという問題点があった
This positioning method using a bit detector indirectly detects the bit surface and does not directly detect the bit surface. For this reason, the mechanical distance from the mounting surface of the bit detector to the actually projected circuit pattern image surface and the bit surface of the projection optical system may change due to factors such as temperature fluctuations and atmospheric pressure fluctuations, or the exposure light The problem is that the optical properties of the projection optical system change due to the absorption of , causing the bit surface to fluctuate, making it very difficult to obtain high resolution with high printing.

特にこのような問題点は露光光としてg線を用いた露光
装置はもとより例えば波長248nmの光を放射するエ
キシマレーザ−を用いた露光装置においては前記波長と
焦点深度の関係により、より重要な問題点となっている
In particular, this problem is a more important problem not only in exposure equipment that uses G-rays as exposure light, but also in exposure equipment that uses an excimer laser that emits light with a wavelength of 248 nm, due to the relationship between the wavelength and depth of focus. It is a point.

(発明か解決しようとする問題点) 本発明はレチクル面上のパターンを投影光学系を介して
ウニ八面上に投影し、露光する際、周囲の温度や気圧等
の環境条件が変化し投影光学系の焦点位置が変動したり
、又ウェハに厚さや曲り等のバラツキがあっても常に高
精度に焦点位置にウェハを位置させることができ、高い
解像力が容易に得られる露光装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention projects a pattern on the reticle surface onto the eight surfaces of the sea urchin through a projection optical system, and when exposing the pattern, environmental conditions such as surrounding temperature and atmospheric pressure change. To provide an exposure apparatus that can always position a wafer at a focal position with high precision even if the focal position of an optical system fluctuates or there are variations in wafer thickness, bending, etc., and can easily obtain high resolution. purpose.

(問題点を解決するための手段) 第1物体面のパターンを投影光学系を介して第2物体面
上に投影露光する露光装置において、該第2物体面と該
第2物体面又はその近傍に設けた基準面との相対的な高
さを検出する第1検出手段と該投影光学系による該第1
物体面のパターン投影像のビット位置を検出する第2検
出手段と該第1、第2検出手段からの出力信号を利用し
て、該第2物体面の該投影光学系光軸方向における最適
位置を求める演算手段と該演算手段からの出力信号に基
づいて該第2物体の光軸方向の位置制御を行う補正駆動
手段とを有していることである。
(Means for solving the problem) In an exposure apparatus that projects and exposes a pattern on a first object surface onto a second object surface via a projection optical system, the second object surface and the second object surface or the vicinity thereof are provided. a first detection means for detecting a height relative to a reference plane provided in the first detection means;
A second detection means for detecting a bit position of a pattern projected image on the object plane and output signals from the first and second detection means are used to determine the optimum position of the second object plane in the optical axis direction of the projection optical system. and a correction driving means for controlling the position of the second object in the optical axis direction based on the output signal from the calculating means.

(実施例) 第1図は本発明の一実施例の露光装置の要部概略図であ
る。
(Embodiment) FIG. 1 is a schematic diagram of the main parts of an exposure apparatus according to an embodiment of the present invention.

同図において11は光源で例えばエキシマレーザ−1H
e−Cdレーザー、超高圧水銀灯等である。光源11か
らの光束はミラー10.9で反射させた後照明系8に入
射している。照明系8はミラー9からの光束をミラー7
を介して第1物体としてのレチクル又はマスク(以下「
レチクル」という。)を照射している。そして該レチク
ル1面上の回路パターンを投影光学系3によって第2物
体としてのウェハ2面上に投影露光している。
In the figure, 11 is a light source, for example, an excimer laser 1H.
e-Cd laser, ultra-high pressure mercury lamp, etc. The light beam from the light source 11 is reflected by a mirror 10.9 and then enters the illumination system 8. The illumination system 8 directs the light beam from the mirror 9 to the mirror 7.
A reticle or mask (hereinafter "
It's called a reticle. ) is being irradiated. Then, the circuit pattern on the first surface of the reticle is projected and exposed onto the second surface of the wafer as a second object by the projection optical system 3.

ウェハ2面上には感光体としてのレジストか塗布されて
おり、ウェハチャック4により吸着支持されている。5
は補正駆動手段としてのθ−Zステージでありウェハチ
ャック4を投影光学系3の光軸方向であるビット方向(
Z方向)及び回転方向に駆動制御している。6はXYス
テージでありウェハチャック4をX方向とY方向に駆動
制御している。
A resist serving as a photoreceptor is coated on the surface of the wafer 2, and the wafer chuck 4 supports the wafer by suction. 5
is a θ-Z stage as a correction drive means, which moves the wafer chuck 4 in the bit direction (which is the optical axis direction of the projection optical system 3).
The drive is controlled in the Z direction) and rotational direction. Reference numeral 6 denotes an XY stage that drives and controls the wafer chuck 4 in the X and Y directions.

101は第1検出手段であり、検出用の光束を発する投
光部12と被測定面からの反射光を受光する受光部13
とを有しており、ウェハ2面のZ方向の高さとθ−Zス
テージ5上に設けた基準面22との2方向の相対的な高
さを検出している。
Reference numeral 101 denotes a first detection means, which includes a light projecting section 12 that emits a light beam for detection, and a light receiving section 13 that receives reflected light from the surface to be measured.
The relative height in two directions between the height of the wafer 2 surface in the Z direction and the reference plane 22 provided on the θ-Z stage 5 is detected.

同図はウェハ2面上の高さを検出している場合を示して
おり、基準面22の高さを検出するときはXYステージ
6を駆動させて基準面22が投影光学系3による後述す
るビット検出用マークの投影面に位置するようにして行
っている。
The figure shows a case in which the height on the wafer 2 surface is being detected. When detecting the height of the reference plane 22, the XY stage 6 is driven and the reference plane 22 is projected by the projection optical system 3, which will be described later. This is done by positioning it on the projection plane of the bit detection mark.

尚、同図においてはウェハ2面と基準面22の高さは路
間−となるようにして構成されている。
In the figure, the height of the wafer 2 and the reference surface 22 are set to be at a distance of -.

そしてこれらの高さ方向(Z方向)の検出方法としては
例えば特開昭62−140418号公報で示したような
方法により行っている。
As a method for detecting these in the height direction (Z direction), for example, a method as disclosed in Japanese Patent Laid-Open No. 140418/1984 is used.

即ちウェハ2面上からの光束の反射点と受光素子(CO
D)上の入射点とが結像関係となるようにし、ウェハ2
の上下方向の位置ずれを受光素子面上に入射する光束の
入射位置として検出し、これにより高さ方向の位置を検
出している。
That is, the reflection point of the light beam from the 2nd surface of the wafer and the light receiving element (CO
D) The incident point on the wafer 2 should be in an imaging relationship with the incident point on the wafer 2.
The positional deviation in the vertical direction is detected as the incident position of the light flux incident on the surface of the light receiving element, thereby detecting the position in the height direction.

14は第2検出手段であり投影光学系3によるレチクル
1面上のパターン像のビット位置を検出している。第2
検出手段14は例えば第2図に示すような構成より成っ
ている。(第2図は作図上、第1図における配置とは上
下逆に示されている。) 第2図において22は第1図の基準面であり、透過型の
窓部より成っており、第2検出手段の部に設けられてい
る。
A second detection means 14 detects the bit position of the pattern image on the surface of the reticle formed by the projection optical system 3. Second
The detection means 14 has a configuration as shown in FIG. 2, for example. (For drawing purposes, Figure 2 is shown upside down from the arrangement in Figure 1.) In Figure 2, 22 is the reference plane of Figure 1, which consists of a transparent window. 2 is provided in the detection means section.

15は結像レンズ、16.17は各々ハーフミラ−18
〜20は各々撮像素子であり、例えば固型のCOD等か
ら成っている。21は各々基準面22の結像レンズ15
による結像位置を示している。即ちCCD 18は結像
レンズ15を介して基準面22と共役の関係にあり、C
CD19は結像レンズ15による後ビンの位置にあり、
CCD18は逆に前ビンの位置にあり、各々所定量オフ
セットして配置されている。
15 is an imaging lens, and 16.17 are half mirrors 18.
20 are image pickup elements, each of which is made of, for example, a solid COD. 21 are the imaging lenses 15 of the reference plane 22;
shows the imaging position. That is, the CCD 18 is in a conjugate relationship with the reference plane 22 via the imaging lens 15, and
The CD 19 is located at the rear bin position of the imaging lens 15,
On the other hand, the CCDs 18 are located at the front bins, and are offset from each other by a predetermined amount.

第3図(A)はレチクル1の要部平面図である。図中2
4は有効画面範囲、25は実素子回路パターン領域、2
6はビット検出用マークであり、例えば同図(B)に示
すように矩形状の開口部27より成っている。
FIG. 3(A) is a plan view of the main part of the reticle 1. 2 in the diagram
4 is the effective screen range, 25 is the actual element circuit pattern area, 2
Reference numeral 6 denotes a bit detection mark, which is made up of a rectangular opening 27, for example, as shown in FIG.

次に本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

本実施例では不図示の搬送系によりウェハ2がウェハチ
ャック4に装填され固定されている。そしてxYステー
ジ6が駆動され、ウェハ2の上面の高さを第1検出手段
101によりウェハ2面内の各位置について計測し、こ
れよりウェハ2の曲りや厚さ等のバラツキを計測してい
る。次いでXYステージ6を駆動させて第2検出手段1
4に設けた基準面が第1検出手段101の計測範囲内に
位置するようにして基準面22の高さを検出している。
In this embodiment, the wafer 2 is loaded onto a wafer chuck 4 and fixed by a transport system (not shown). Then, the xY stage 6 is driven, and the height of the top surface of the wafer 2 is measured at each position on the surface of the wafer 2 by the first detection means 101, and from this, variations in the wafer 2, such as its bending and thickness, are measured. . Next, the XY stage 6 is driven to detect the second detection means 1.
The height of the reference surface 22 is detected such that the reference surface provided at 4 is located within the measurement range of the first detection means 101.

これによりウェハ2面と基準面22とのオフセットの高
さ量を検出している。
Thereby, the amount of offset height between the wafer 2 surface and the reference surface 22 is detected.

次に第2検出手段14をレチクル1面上のビット検出用
マーク26が投影光学系3により投影される直下位置に
駆動配置する。
Next, the second detection means 14 is driven and placed at a position directly below where the bit detection mark 26 on the surface of the reticle 1 is projected by the projection optical system 3.

そして光源11からの光束をレチクル1面上のビット検
出用マーク26に導光し、該ビット検出用マーク26を
投影光学系3により第2検出手段14の基準面22近傍
に結像させている。
The light beam from the light source 11 is guided to a bit detection mark 26 on the reticle 1 surface, and the bit detection mark 26 is imaged near the reference plane 22 of the second detection means 14 by the projection optical system 3. .

ここでレチクル1面上の投影光学系3により投影された
結像面(ビット面)と第2検出手段14の各受光素子(
CCD)18.19.20からの出力信号との関係は例
えば第4〜第6図に示すようになる。
Here, the imaging plane (bit plane) projected by the projection optical system 3 on the reticle 1 surface and each light receiving element of the second detection means 14 (
The relationship with the output signals from CCD) 18, 19, and 20 is as shown in FIGS. 4 to 6, for example.

第4図はCCD20からの出力信号、第5図はCCD 
18からの出力信号、そして第6図はCCD 19から
の出力信号を各々示している。設計上、既知である投影
光学系3のデイフォーカス特性値とこれらの各出力信号
を公知の電気処理系により処理することにより、第7図
に示すような出力特性を得ている。これらの結果より演
算手段102によりレチクル1の投影レンズ3によるビ
ット位置と基準面22との差分、即ちデイフォーカス量
を検出している。
Figure 4 shows the output signal from CCD20, Figure 5 shows the CCD
18 and FIG. 6 shows the output signals from CCD 19, respectively. In terms of design, output characteristics as shown in FIG. 7 are obtained by processing the known day focus characteristic value of the projection optical system 3 and each of these output signals using a known electrical processing system. From these results, the calculating means 102 detects the difference between the bit position of the reticle 1 by the projection lens 3 and the reference plane 22, that is, the day focus amount.

そしてこのような検出をウェハ2面上の各位置について
行なっている。要するに、ビット基準面22とウェハー
面の高さ差及び、ウェハーの曲りや厚み差を加味してウ
ェハー面の投影光学系3に対するZ方向の最適位置(即
ち最適ビット面)をウェハー全面について算出している
。モしてθ−Zステージによりウェハ2をZ方向の最適
位置であるレチクル1の投影光学系3によるビット位置
に位置するように駆動制御している。
Such detection is performed for each position on the two surfaces of the wafer. In short, the optimal position of the wafer surface in the Z direction relative to the projection optical system 3 (that is, the optimal bit surface) is calculated for the entire wafer surface, taking into account the height difference between the bit reference plane 22 and the wafer surface, and the curvature and thickness difference of the wafer. ing. Furthermore, the wafer 2 is driven and controlled by the θ-Z stage so that it is positioned at the bit position of the reticle 1 determined by the projection optical system 3, which is the optimum position in the Z direction.

例えばウェハ2を各ショット毎にθ−2ステージにより
駆動制御して露光するようにしている。
For example, the wafer 2 is driven and exposed by a θ-2 stage for each shot.

尚本実施例においてレチクル1面上にビット検出マーク
26を設ける代わりにレチクル1面上の実素子回路パタ
ーンの一部を利用するようにしても良い。
In this embodiment, instead of providing the bit detection mark 26 on the first surface of the reticle, a part of the actual element circuit pattern on the first surface of the reticle may be used.

第8図は本発明に係る第2検出手段の他の実施例の要部
概略図である。
FIG. 8 is a schematic diagram of main parts of another embodiment of the second detection means according to the present invention.

同図においては1つの受光素子(CCD)18をピエゾ
素子のような圧電素子29を用いて駆動機構28により
受光素子18をビット方向に駆動制御することにより投
影光学系3によるレチクル面のビット面を検出している
。この場合、駆動量は公知の手段により検出、制御され
ている。又、別の例として受光素子を固定してθ−Zス
テージを上下させてもよい。そして各位置における受光
素子18からの信号出力の取扱いについては第2図に示
した検出方法と同様である。
In the figure, one light receiving element (CCD) 18 is driven and controlled in the bit direction by a drive mechanism 28 using a piezoelectric element 29 such as a piezo element, so that the bit surface of the reticle surface is projected by the projection optical system 3. is being detected. In this case, the drive amount is detected and controlled by known means. Alternatively, the light receiving element may be fixed and the θ-Z stage may be moved up and down. The handling of the signal output from the light receiving element 18 at each position is the same as the detection method shown in FIG. 2.

尚、前述の実施例では補正駆動手段としてθ−Zステー
ジを用いてウェハ2を上下方向に駆動させてビット面に
位置させるようにしたが、θ−Zステージを用いなくて
も実質的にウェハ面をビット面に位置させることができ
る方法であればどのような手段を用いても良い。
In the above-mentioned embodiment, the θ-Z stage was used as the correction drive means to drive the wafer 2 in the vertical direction to position it on the bit surface. However, even without using the θ-Z stage, the wafer 2 is Any method may be used as long as the surface can be positioned on the bit surface.

例えば、第1図においてミラー9の一部分を半透過面と
し、照明光束の一部を波長モニター30に導光し、光源
11からの発振波長を計測し、ビット補正に必要な波長
補正量を演算処理系31により演算し、波長補正部32
により波長補正をすることによりビット面の補正を行う
ようにしても良い。
For example, in FIG. 1, a part of the mirror 9 is made into a semi-transparent surface, a part of the illumination light beam is guided to the wavelength monitor 30, the oscillation wavelength from the light source 11 is measured, and the amount of wavelength correction necessary for bit correction is calculated. The processing system 31 calculates the wavelength correction unit 32.
The bit plane may be corrected by performing wavelength correction.

例えば波長λ(248nm)における投影光学系の波長
とビット位置の関係は第9図に示すようになるので、こ
のときの関係より発振波長を変えてビット位置を制御す
るようにしても良い。又このとき波長補正の作業中の光
モレを防止する為にはシャッター33を設け、該シャッ
ターを開閉するようにすれば良い。
For example, the relationship between the wavelength of the projection optical system and the bit position at wavelength λ (248 nm) is as shown in FIG. 9, so the bit position may be controlled by changing the oscillation wavelength based on this relationship. At this time, in order to prevent light leakage during wavelength correction work, a shutter 33 may be provided and the shutter may be opened and closed.

又、マーク27は実施例にかかわらず、変形例が可能で
ある。
Further, the mark 27 can be modified regardless of the embodiment.

(発明の効果) 本発明によれば以上のように第1、第2検出手段、そし
て基準面を設けることによりレチクル面上のパターンを
投影光学系によりウニ八面上に投影露光する際、環境条
件が変化したり、又ウェハの厚さや曲りにバラツキ等が
あってもウェハを投影光学系のビット面に高精度に位置
合わせすることができ、常に高い解像力が得られる露光
装置を達成することができる。
(Effects of the Invention) According to the present invention, by providing the first and second detection means and the reference plane as described above, when the pattern on the reticle surface is projected onto the eight faces of the sea urchin by the projection optical system, To achieve an exposure device that can align a wafer with a bit surface of a projection optical system with high precision even if conditions change or there are variations in wafer thickness or bending, etc., and can always obtain high resolution. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部概略図、第2図、第3
図(A)、(B)は第1図の一部分の説明図、第4、第
5、第6図は本発明に係る検出手段から得られるビット
面に関する出力信号の説明図、第7図は本発明において
ビット面からのデイフォーカス量と検出手段から得られ
る出力信号との関係を示す説明図、第8図は本発明の一
部分の他の実施例の要部概略図、第9図は本発明におけ
る照明光束の波長と投影光学系によるビット位置との関
係を示す説明図である。 図中1はレチクル、2はウェハ、3は投影光学系、4は
ウェハチャック、5は補正駆動手段(θ−Zステージ)
、6はXYステージ、7.9、lOはミラー 11は光
源、101は第1検出手段、14は第2検出手段、10
2は演算手段、18.19.20はCCD、22は基準
面、28は駆動機構、29は圧電素子、26はビット検
出用マーク、25は実素子回路パターン領域、である。 第 図 第 図 第 図 第 図 第 図 第 図(A) 第 図(B) 第 図 第 図 Pl 第 図
Figure 1 is a schematic diagram of the main parts of an embodiment of the present invention, Figures 2 and 3.
Figures (A) and (B) are explanatory diagrams of a part of Figure 1, Figures 4, 5, and 6 are diagrams of output signals related to bit planes obtained from the detection means according to the present invention, and Figure 7 is an explanatory diagram of a part of Figure 1. An explanatory diagram showing the relationship between the day focus amount from the bit plane and the output signal obtained from the detection means in the present invention, FIG. 8 is a schematic diagram of the main part of another embodiment of the present invention, and FIG. FIG. 3 is an explanatory diagram showing the relationship between the wavelength of the illumination light beam and the bit position by the projection optical system in the invention. In the figure, 1 is a reticle, 2 is a wafer, 3 is a projection optical system, 4 is a wafer chuck, and 5 is a correction drive means (θ-Z stage).
, 6 is an XY stage, 7.9, IO is a mirror, 11 is a light source, 101 is a first detection means, 14 is a second detection means, 10
2 is an arithmetic means, 18, 19, 20 is a CCD, 22 is a reference plane, 28 is a drive mechanism, 29 is a piezoelectric element, 26 is a bit detection mark, and 25 is an actual element circuit pattern area. Figure Figure Figure Figure Figure Figure Figure (A) Figure (B) Figure Figure Pl Figure

Claims (3)

【特許請求の範囲】[Claims] (1)第1物体面のパターンを投影光学系を介して第2
物体面上に投影露光する露光装置において、該第2物体
面と該第2物体面又はその近傍に設けた基準面との相対
的な高さを検出する第1検出手段と該投影光学系による
該第1物体面のパターン投影像のビット位置を検出する
ために第2物体を載置する可動ステージに設けた第2検
出手段と該第1、第2検出手段からの出力信号を利用し
て、該第2物体面の該投影光学系の光軸方向の最適位置
を求める演算手段と該演算手段からの出力信号に基づい
て該第2物体の位置制御を行う補正駆動手段とを有して
いることを特徴とする露光装置。
(1) The pattern on the first object plane is transferred to the second object plane through the projection optical system.
In an exposure apparatus that performs projection exposure onto an object surface, a first detection means for detecting a relative height between the second object surface and a reference surface provided at or near the second object surface; and the projection optical system. In order to detect the bit position of the pattern projection image on the first object surface, a second detection means provided on a movable stage on which a second object is placed and output signals from the first and second detection means are used. , comprising calculation means for determining the optimum position of the second object plane in the optical axis direction of the projection optical system, and correction drive means for controlling the position of the second object based on an output signal from the calculation means. An exposure device characterized by:
(2)前記第2検出手段は前記基準面と前記投影光学系
による前記第1物体面のパターン像のビット位置との差
分を検出していることを特徴とする請求項1記載の露光
装置。
(2) The exposure apparatus according to claim 1, wherein the second detection means detects a difference between the reference plane and a bit position of a pattern image of the first object plane formed by the projection optical system.
(3)前記基準面は透過型の窓部より成り、前記第2検
出手段の一部に設けられていることを特徴とする請求項
1記載の露光装置。
(3) The exposure apparatus according to claim 1, wherein the reference plane is made of a transmission type window and is provided in a part of the second detection means.
JP1028147A 1989-02-07 1989-02-07 Aligner Pending JPH02207521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028147A JPH02207521A (en) 1989-02-07 1989-02-07 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028147A JPH02207521A (en) 1989-02-07 1989-02-07 Aligner

Publications (1)

Publication Number Publication Date
JPH02207521A true JPH02207521A (en) 1990-08-17

Family

ID=12240652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028147A Pending JPH02207521A (en) 1989-02-07 1989-02-07 Aligner

Country Status (1)

Country Link
JP (1) JPH02207521A (en)

Similar Documents

Publication Publication Date Title
JP3181050B2 (en) Projection exposure method and apparatus
US6538740B1 (en) Adjusting method for position detecting apparatus
KR100471524B1 (en) Exposure method
US6529625B2 (en) Position detecting method and position detecting device for detecting relative positions of objects having position detecting marks by using separate reference member having alignment marks
JP3308063B2 (en) Projection exposure method and apparatus
JP4323608B2 (en) Exposure apparatus and device manufacturing method
US10948829B2 (en) Pattern forming apparatus, alignment mark detection method, and pattern forming method
TW201416805A (en) Detection device, exposure apparatus, and device manufacturing method using same
US6268902B1 (en) Exposure apparatus, and manufacturing method for devices using same
JP3466893B2 (en) Positioning apparatus and projection exposure apparatus using the same
JPH1064814A (en) Surface position detecting device and manufacture of device using it
US5717492A (en) Position detecting apparatus and a method for manufacturing semiconductor devices using the apparatus
JP3441930B2 (en) Scanning exposure apparatus and device manufacturing method
JP2004134474A (en) Method for inspecting position detector, position detector, aligner, and aligning method
JP2008042036A (en) Exposure apparatus, and device manufacturing method
JPH04342111A (en) Method and apparatus for projection exposure
JP2006030021A (en) Position detection apparatus and position detection method
JPH11288867A (en) Alignment method, formation of alignment mark, and aligner and method for exposure
US20050128455A1 (en) Exposure apparatus, alignment method and device manufacturing method
JP2780302B2 (en) Exposure equipment
JPH02207522A (en) Aligner
JPH02207521A (en) Aligner
JP3049911B2 (en) Alignment scope having focus detection means
JP2003035511A (en) Position detector and aligner equipped with it
JP2829666B2 (en) Exposure equipment