JPH02205804A - Semiconductor light guide - Google Patents

Semiconductor light guide

Info

Publication number
JPH02205804A
JPH02205804A JP2587989A JP2587989A JPH02205804A JP H02205804 A JPH02205804 A JP H02205804A JP 2587989 A JP2587989 A JP 2587989A JP 2587989 A JP2587989 A JP 2587989A JP H02205804 A JPH02205804 A JP H02205804A
Authority
JP
Japan
Prior art keywords
waveguide
superlattice
layer
refractive index
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2587989A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
安弘 鈴木
Takeo Miyazawa
丈夫 宮澤
Osamu Mikami
修 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2587989A priority Critical patent/JPH02205804A/en
Publication of JPH02205804A publication Critical patent/JPH02205804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the waveguide having mode selectivity to respective polarized wave of TE and TM by using mixed crystals which are not incorporated with an impurity from the outside for a part of the superlattices of the semiconductor waveguide having the superlattice structure alternately laminated with different kinds of semiconductors. CONSTITUTION:This waveguide has a substrate 1 consisting of, for example, a GaAs single crystal, a clad layer 2 consisting of AlxGa1-xAs having the refractive index lower than the refractive index of the substrate 1, and the superlattice layer 3 consisting of 100 periods of GaAs80A and AlAs80A. The waveguide has a mixed crystal superlattice layer 4 which is converted the layer 3 to the mixed crystals by a method of not introducing the impurity to the waveguide and an SiO2 layer 5 deposited in order to form the mixed crystal superlattice 4 by converting the layer 3 to the mixed crystals. The formation of the semiconductor light guide of not only TE (Transverse Electric) guided wave and TM (Transverse Magnetic) leakage but also the TM guided wave and TE leakage is possible in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、1Mモードのみ又はTEモードのみを導波す
るというモード選択性を有する半導体光導波路に関し、
光伝送システムあるいは光電積回路に用いて好適なもの
である。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a semiconductor optical waveguide having mode selectivity of guiding only 1M mode or only TE mode,
It is suitable for use in optical transmission systems or photoelectric integrated circuits.

〈従来の技術〉 単一モードファイバ中を伝搬してきた光を導波形デバイ
スに入射′して光信号処理を行う際、その入射光波は一
般に楕円偏光になっている。これに対し、導波型デバイ
スには、TEモード(transverse elee
tr+c modes)あるいは1Mモード(tran
sverse genetic modes)の何れか
の偏向に対してのみ動作するものもあるので、TEモー
ドあるいは7Mモードの何れかを選択的に導波させる導
波路が必要となる。
<Prior Art> When light propagated through a single mode fiber is incident on a waveguide device for optical signal processing, the incident light wave is generally elliptically polarized light. On the other hand, waveguide devices have TE mode (transverse ele...
tr+c modes) or 1M mode (tran
Since some devices operate only for polarizations of either TE mode or 7M mode, a waveguide that selectively guides either the TE mode or the 7M mode is required.

このように光通信光集積回路においても、一般の光学実
験系と同様にモード選択性導波路が必要となる。そして
、従来から、モード選択性導波路としては、導波路表面
に金属を装荷した金属装荷型導波路、Ti拡散ニオブ酸
リチウム導波路上に酸化ニオブを堆積させた酸化ニオブ
装荷型ニオブ酸リチウム導波路などがある。
As described above, mode-selective waveguides are required in optical communication integrated circuits as well as in general optical experimental systems. Conventionally, mode-selective waveguides include metal-loaded waveguides in which metal is loaded on the waveguide surface, and niobium oxide-loaded lithium niobate waveguides in which niobium oxide is deposited on a Ti-diffused lithium niobate waveguide. There are waves, etc.

〈発明が解決しようとする課題〉 しかしながら、前述した金属装荷型導波路や酸化ニオブ
装荷型ニオブ酸リチウム導波路などの従来のモード選択
性導波では、TE導波、7M漏洩のみが可能であり、7
Mモードのみを導波することはできなかった。
<Problems to be Solved by the Invention> However, conventional mode-selective waveguides such as the metal-loaded waveguide and niobium oxide-loaded lithium niobate waveguide described above are only capable of TE waveguide and 7M leakage. ,7
It was not possible to guide only the M mode.

本発明はこのような点に鑑み、半導体を用いた光集積回
路等に用いるモード選択性導波路であり、TEモードの
みばかりでなく7Mモードのみを選択的に導波すること
ができる半導体光導波路を提供することを目的とする。
In view of these points, the present invention is a mode-selective waveguide for use in optical integrated circuits using semiconductors, and is a semiconductor optical waveguide that can selectively guide not only the TE mode but also the 7M mode. The purpose is to provide

く課題を解決するための手段〉 本発明者は、上記目的を達成するため種々検討した結果
、異種の半導体を交互に積層させた超格子を導波層とす
るスラブ導波路において、超格子の一部を選択的に外部
から不純物を導入しない混晶化によって屈折率を変化さ
せることにより、横方向の光の閉じこめを行い、得られ
た導波路がTEあるいは7Mモードを選択的に導波する
ことができることを知見し、本発明を完成させた。
Means for Solving the Problems> As a result of various studies to achieve the above object, the present inventor has developed a method for achieving the above object in a slab waveguide whose waveguide layer is a superlattice in which different types of semiconductors are alternately laminated. By changing the refractive index through mixed crystallization without selectively introducing impurities from the outside, light is confined in the lateral direction, and the resulting waveguide selectively guides the TE or 7M mode. The present invention was completed based on the discovery that this can be done.

かかる知見に基づく本発明の第1の半導体光導波路の構
成は、半導体結晶の基板の上に、異種の半導体を交互に
積層させた超格子構造を有する半導体光導波路であって
、光が導波するコア領域が、前記超格子構造からなり、
その両側のクラッド領域が、不純物を導入しない方法に
より超格子を混晶化した半導体結晶よりなることを特徴
とし、一方の本発明の第2の半導体光導波路の構成は、
半導体結晶の基板の上に、異種の半導体を交互に積層さ
せた超格子構造を有する半導体光導波路であって、光が
導波するコア領域が、不純物を混入しない方法により超
格子を結晶化した半導体結晶よりなり、その両側のクラ
ッド領域が、前記超格子構造よりなることを特徴とする
The first semiconductor optical waveguide of the present invention based on this knowledge is a semiconductor optical waveguide having a superlattice structure in which different types of semiconductors are alternately laminated on a semiconductor crystal substrate, in which light is guided. a core region consisting of the superlattice structure,
The second semiconductor optical waveguide of the present invention has a structure in which the cladding regions on both sides thereof are made of a semiconductor crystal in which a superlattice is mixed by a method that does not introduce impurities.
A semiconductor optical waveguide having a superlattice structure in which different types of semiconductors are alternately stacked on a semiconductor crystal substrate, in which the core region through which light is guided is made by crystallizing the superlattice using a method that does not introduce impurities. It is characterized in that it is made of semiconductor crystal, and cladding regions on both sides thereof have the superlattice structure described above.

く作   用〉 前記構成において、不純物を導入しない方法によって超
格子を混晶化した混晶化超格子をコア領域あるいはクラ
ッド領域に設けることにより、屈折率をTE傷波に対し
ては、超格子より小さく、TM傷波に対しては、超格子
より大きくできるため、TE導波、7M漏洩のみならず
TM導波、TE漏洩の半導体光導波路の形成も可能とな
る。
Effect> In the above structure, by providing a mixed crystal superlattice in the core region or cladding region, which is obtained by mixing the superlattice by a method that does not introduce impurities, the refractive index can be adjusted to the superlattice for TE damaged waves. Since it can be made smaller and larger than a superlattice for TM damaged waves, it is possible to form not only TE waveguides and 7M leakage semiconductor optical waveguides but also TM waveguides and TE leakage semiconductor optical waveguides.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

第1rIAには一実施例にかかるTE導波路を示す。同
図中、1は例えばG a A s単結晶からなる基板、
2は基板1より低屈折率を有するAjxGal−、As
 (例えばx=o、55)からなるクラッド層、3はG
aAs80A、AjAs80A100周期からなる超格
子層である。そして、4は超格子層3を後述する方法に
より混晶化した混晶化した混晶化超格子層であり、5は
超格子11i13を混晶化して混晶化超格子層4を形成
するために堆積した5I02層である。
The first rIA shows a TE waveguide according to one embodiment. In the figure, 1 is a substrate made of, for example, a GaAs single crystal;
2 is AjxGal-, As having a lower refractive index than the substrate 1.
(for example, x=o, 55), 3 is G
It is a superlattice layer consisting of aAs80A and AjAs80A100 periods. 4 is a mixed crystal superlattice layer obtained by mixing the superlattice layer 3 by a method described later, and 5 is a mixed crystal superlattice layer 4 by mixing the superlattice 11i13. 5I02 layer deposited for the purpose.

本実施例においては、上記S i O,層5をパターン
化して溝型の形状としている。
In this embodiment, the SiO layer 5 is patterned into a groove shape.

次に、第2図に他の一実施例にがかる7M導波路を示す
。本実施例にかかる7M導波路は前述したTE導波路と
同様に基板1に、クラッド層2、超格子層3、混晶化超
格子層4及びSiO□層5が形成されるもので、上記5
in2層5はリブ型のストライプ形状をなしている。
Next, FIG. 2 shows a 7M waveguide according to another embodiment. The 7M waveguide according to this example has a cladding layer 2, a superlattice layer 3, a mixed crystal superlattice layer 4, and a SiO□ layer 5 formed on a substrate 1, as in the TE waveguide described above. 5
The in2 layer 5 has a rib-like stripe shape.

このような構成を有するTE導波路及び7M導波路の作
成方法を以下に説明する。尚、本作成方法は超格子を混
晶化する方法として、不純物を導入しない方法を用いて
いる。
A method for creating a TE waveguide and a 7M waveguide having such a configuration will be described below. Note that this production method uses a method that does not introduce impurities to mix the superlattice.

■ まず、分子線エピタキシィ(MBE)あるいは有機
金属気相成長法(OCVD)等の原子層レベルでの膜厚
制卸が可能な結晶成長法を用いて基板1上にクラッド層
2、続いて前記超格子層3を形成する。
■ First, the cladding layer 2 is deposited on the substrate 1 using a crystal growth method such as molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (OCVD) that allows film thickness control at the atomic layer level. A superlattice layer 3 is formed.

■ 次に、超格子層3の上にS i O,層5をP−C
VDにより厚さ2000A程度堆積させる。
■ Next, on top of superlattice layer 3, SiO layer 5 is formed by P-C
A thickness of about 2000 Å is deposited by VD.

■ その後、該5in2!15をフオトリ・ノブラフイ
ーの技術及び反応性イオンエツチング(RI E)を用
いてパターン化する。
(2) The 5in2!15 is then patterned using photolithography and reactive ion etching (RIE).

■ 次に、乙のウェハのパターン化されたSi0層5の
上層に、別のGaAsウェハを覆って重ねた状態で、水
素雰囲気中で昇温速度30℃/sec、熱処理温度95
0℃、熱処理時間30 secの条件下で熱処理する。
■ Next, another GaAs wafer is placed on top of the patterned Si0 layer 5 of the wafer B, and heat treatment is performed at a heating rate of 30°C/sec and a heat treatment temperature of 95°C in a hydrogen atmosphere.
Heat treatment is performed at 0° C. for a heat treatment time of 30 seconds.

■ この熱処理によって、Si0層5の下側に位置する
超格子層3は混晶され、混晶化超格子層4となる。
(2) Through this heat treatment, the superlattice layer 3 located below the Si0 layer 5 is mixed crystal, and becomes a mixed crystal superlattice layer 4.

尚、本実施例においては、混晶化超格子層4を得る方法
として、5in2膜を用b)た不純物を導入しない方法
によって具体的ζこ説明したが、SiO2膜以外として
、例えばプラズマCVDによって作製されたSi、N、
膜を用しまた場合でも、■と同条件にて熱処理すること
が可能である。
In this example, the method of obtaining the mixed crystal superlattice layer 4 was specifically explained using a method using a 5in2 film b) without introducing impurities. The prepared Si, N,
Even if a film is used, heat treatment can be performed under the same conditions as in (2).

上述した方法により、モード選択性導波路を作製する場
合には、上記■のS i 02層5をパターン化する際
、コア領域、あるし)は該コア領域の両側のクラッド領
域のどちらか一方のみを残してその後不純物を導入しな
い方法によって熱処理を施し、混晶化した混晶化超格子
層4を形成することにより、TE導波領域となるTE導
波路及び7M導波領域となる7M導波路のいずれかを形
成するようにすればよい。
When producing a mode-selective waveguide by the method described above, when patterning the S i 02 layer 5 described in (1) above, the core region or () is either one of the cladding regions on both sides of the core region. By applying a heat treatment using a method that does not introduce impurities while leaving only the TE waveguide that will become the TE waveguide region and the 7M waveguide that will become the 7M waveguide region, Either one of the wave paths may be formed.

前述した第2図に示す一実施例に係る7M導波路に、波
長8500Aの光を導波させた時のニア・フィールド・
パターンをamした。
The near field when light with a wavelength of 8500A is guided through the 7M waveguide according to the embodiment shown in FIG.
am the pattern.

との結果、7Mモードを入射したときは、チャネルに沿
って導波され、TEモード入射時は漏洩になっており、
モードが選択されている事が確認された。
As a result, when the 7M mode is incident, the wave is guided along the channel, and when the TE mode is incident, it is leaky.
It was confirmed that the mode was selected.

第3図、第4図に上記方法によって作製されたモード選
択性導波路の屈折率分布の様子を示す。尚、横軸は導波
路の横方向の空間的な位置、縦軸は屈折率を示す。
FIGS. 3 and 4 show the refractive index distribution of the mode-selective waveguide fabricated by the above method. Note that the horizontal axis represents the horizontal spatial position of the waveguide, and the vertical axis represents the refractive index.

第3図に示すように、光がTE傷偏波場合、混晶化部の
屈折率は超格子部分より低くなっており、またTE偏波
の場合、第4図に示すように、上記とは逆に、混晶化部
の屈折率が超格子に比べて高くなっている。
As shown in Figure 3, when the light is TE scratch polarized, the refractive index of the mixed crystal part is lower than that of the superlattice part, and when the light is TE polarized, as shown in Figure 4, the refractive index of the mixed crystal part is lower than that of the superlattice part. On the contrary, the refractive index of the mixed crystal part is higher than that of the superlattice.

光は、屈折率の高い部分を導波する為、上記屈折率の変
化によ1)TE導波路、7M導波路が形成される。
Since light is guided through a portion with a high refractive index, 1) a TE waveguide and a 7M waveguide are formed by the change in the refractive index.

第5図に超格子の屈折率及び混晶化した超格子の屈折率
の一具体例を示す。図中、nT ! S Lは超格子の
TEII波に対する屈折率’ nT118Lは超格子の
TM傷偏波対する屈折率’ n0IILは超格子が完全
に混晶化した時の屈折率を示す。
FIG. 5 shows a specific example of the refractive index of a superlattice and the refractive index of a mixed crystal superlattice. In the figure, nT! SL is the refractive index of the superlattice for the TEII wave; nT118L is the refractive index of the superlattice for the TM scratch polarized wave; n0IIL is the refractive index when the superlattice is completely mixed.

尚、本実施例におけるS i O2による混晶化方法で
は超格子の混晶化は完全混晶までは進まず、部分的な混
晶化にとどまっている。本実施例における混晶化の度合
い(混晶化率)は、混晶化にともなう発光波長シフトか
ら0.3程度と考えられる。この時混晶化部の屈折率は
、図中NposL(T E偏波に対して)とNPOII
L ”(TMq波に対して)と考えられる。
In the mixed crystal formation method using S i O 2 in this embodiment, the superlattice does not become a completely mixed crystal, but only partially mixed crystal. The degree of mixed crystallization (mixed crystallization rate) in this example is considered to be about 0.3 based on the emission wavelength shift accompanying mixed crystallization. At this time, the refractive index of the mixed crystal part is NposL (for T E polarization) and NPOII in the figure.
L'' (for TMq waves).

次に、第6図に本発明の別の一実施例を示す。第6図に
おいて、1は半導体基板、2は入hcGml−xAsか
らなるクラッド層、3は超格子層、4は混晶化超格子層
、6はTM411波に対してのみ動作するTM111波
動作光素子、7はTE個波に対してのみ動作するTE傷
偏波作光素子を、各々図示している。本実施例において
は、TE導波路と7M導波路とを一つの半導体基板1上
に混在させている。
Next, FIG. 6 shows another embodiment of the present invention. In FIG. 6, 1 is a semiconductor substrate, 2 is a cladding layer made of hcGml-xAs, 3 is a superlattice layer, 4 is a mixed crystal superlattice layer, and 6 is a TM111 wave operating light that operates only for TM411 waves. Element 7 indicates a TE polarization light control element that operates only for TE waves. In this embodiment, a TE waveguide and a 7M waveguide are mixed on one semiconductor substrate 1.

すなわち、TM偏波動作光素子6.TE#4向動作光動
作光素子7られた半導体光集積回路において、集積導波
路の任意の場所を混晶化することにより、任意の場所に
TE導波路、7M導波路を形成し、偏波依存性を持つ光
素子を動作させている。
That is, the TM polarization operating optical element 6. In a semiconductor optical integrated circuit with TE #4-direction optical operation optical element 7, a TE waveguide and a 7M waveguide can be formed at any location by mixing crystals at any location of the integrated waveguide, and the polarization Optical devices with dependencies are operated.

また、他の光集積回路ユニットから、楕円偏光の状態で
入射してきた光を、TE偏光、また(よTM傷光のみの
状態にして、別の光集積回路ユニットへ光を出射させる
ことも可能である。
It is also possible to convert the elliptically polarized light that has entered from another optical integrated circuit unit into a TE polarized state or a TM polarized light state, and then output the light to another optical integrated circuit unit. It is.

す上説明した実施例では、Ga杓−AIGaAg材料の
場合において、SiO2を用いて超格子を混晶化した場
合について述べたが、本発明は超格子混晶化としてGa
Ag−人IGa人Sに限定されず、例えばInGaAs
/InP、 InGaAsP/InP、 InGa入s
/InAlAs等の材料にも適用可能なことは云うまで
もない。また、混晶化超格子を得る方法も、S i O
2膜を用いろ方法以外に、例えばプラズマCVDによっ
て作製された窒化膜(S i3N4膜)等の誘電体膜を
用いる方法など、不純物を導入しない超格子を混晶化す
る方法であれば、いずれを用いていもよい。
In the above-described embodiment, a case was described in which the superlattice was made into a mixed crystal using SiO2 in the case of a Ga-AIGaAg material.
Not limited to Ag-IGaS, for example InGaAs
/InP, InGaAsP/InP, InGa included
Needless to say, it is also applicable to materials such as /InAlAs. In addition, the method of obtaining a mixed crystal superlattice is also
In addition to the method using two films, there are other methods, such as using a dielectric film such as a nitride film (Si3N4 film) produced by plasma CVD, as long as the superlattice is mixed crystal without introducing impurities. may be used.

尚、本実施例においては超格子層を混晶化する方法とし
て、不純物を導入しない方法を用いたが、この他に不純
物を導入する方法を用いて超格子層を混晶化させて、用
途を限定した半導体光導波路を成形することもできる。
In this example, a method without introducing impurities was used to mix the superlattice layer, but there are other ways to mix the superlattice layer by introducing impurities. It is also possible to form a semiconductor optical waveguide with a limited amount of .

〈発明の効果〉 以上説明したように、本発明によれば、異種の半導体を
交互に積層させた超格子構造を有する半導体導波路にお
いて、一部の超格子を外部から不純物を導入しない混晶
によりTE。
<Effects of the Invention> As explained above, according to the present invention, in a semiconductor waveguide having a superlattice structure in which different types of semiconductors are alternately laminated, a part of the superlattice is made of a mixed crystal without introducing impurities from the outside. By TE.

TMそれぞれの偏波に対してモード選択性のある導波路
を提供できろとい利点がある。更に、超格子を利用した
半導体光集積回路において、集積導波路の任意の場所を
混晶化することにより、任意の場所にTE導波路、7M
導波路を提供できるとい利点がある。
The advantage is that it can provide a waveguide with mode selectivity for each polarized wave of the TM. Furthermore, in a semiconductor optical integrated circuit using a superlattice, by mixing any part of the integrated waveguide, a TE waveguide, 7M
It has the advantage of being able to provide a waveguide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は各々本発明の一実施例にがかるモード選択
性導波路を示す斜視図で、第1図はTE導波路、第2図
は7M導波路を示す図、第3.4図は各々導波路の横方
向の屈折率分布を示す図で、第3図はTE導波路の分布
図、第4図1よ7M導波路の分布図、第5図は混晶化部
の屈折率を示す図、第6図は本発明の半導体光導波路を
利用した光S積回路を示す図である。 図面中、1はGaAs基板、2はAlGaAsクラッド
層、3は超格子層、4は混晶化超格子層、5は3 j 
O2層、6はTM@波動波動素光素子はTE帰波動作光
素子である。
1 and 2 are perspective views showing mode selective waveguides according to an embodiment of the present invention, respectively. FIG. 1 is a TE waveguide, FIG. 2 is a 7M waveguide, and FIGS. 3.4. are diagrams showing the refractive index distribution in the lateral direction of the waveguide. Figure 3 is the distribution diagram for the TE waveguide, Figure 4 is the distribution diagram for the 1 to 7M waveguides, and Figure 5 is the refractive index distribution of the mixed crystal part. FIG. 6 is a diagram showing an optical S product circuit using the semiconductor optical waveguide of the present invention. In the drawings, 1 is a GaAs substrate, 2 is an AlGaAs cladding layer, 3 is a superlattice layer, 4 is a mixed crystal superlattice layer, and 5 is a 3 j
The O2 layer 6 is a TM@wave optical element and is a TE return wave operating optical element.

Claims (1)

【特許請求の範囲】 1)半導体結晶の基板の上に、異種の半導体を交互に積
層させた超格子構造を有する半導体光導波路であって、 光が導波するコア領域が、前記超格子構造 からなり、その両側のクラッド領域が、不純物を導入し
ない方法により超格子を混晶化した半導体結晶よりなる
ことを特徴とする半導体光導波路。 2)半導体結晶の基板の上に、異種の半導体を交互に積
層させた超格子構造を有する半導体光導波路であって、 光が導波するコア領域が、不純物を混入し ない方法により超格子を結晶化した半導体結晶よりなり
、その両側のクラッド領域が、前記超格子構造よりなる
ことを特徴とする半導体光導波路。 3)請求項1又は2記載の半導体光導波路において、 上記不純物を導入しない方法として、SiO_2膜、S
i_3N_4膜を半導体結晶上に堆積し、熱処理する方
法を用いることを特徴とする半導体光導波路。
[Claims] 1) A semiconductor optical waveguide having a superlattice structure in which different types of semiconductors are alternately laminated on a semiconductor crystal substrate, wherein a core region through which light is guided is formed in the superlattice structure. 1. A semiconductor optical waveguide characterized in that the cladding regions on both sides of the cladding region are made of a semiconductor crystal in which a superlattice is mixed by a method that does not introduce impurities. 2) A semiconductor optical waveguide having a superlattice structure in which different types of semiconductors are alternately stacked on a semiconductor crystal substrate, in which the core region through which light is guided is formed by crystallizing the superlattice using a method that does not introduce impurities. 1. A semiconductor optical waveguide, characterized in that the cladding regions on both sides of the cladding region are made of a superlattice structure as described above. 3) In the semiconductor optical waveguide according to claim 1 or 2, as a method of not introducing the impurity, SiO_2 film, S
A semiconductor optical waveguide characterized by using a method of depositing an i_3N_4 film on a semiconductor crystal and heat-treating the film.
JP2587989A 1989-02-06 1989-02-06 Semiconductor light guide Pending JPH02205804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2587989A JPH02205804A (en) 1989-02-06 1989-02-06 Semiconductor light guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2587989A JPH02205804A (en) 1989-02-06 1989-02-06 Semiconductor light guide

Publications (1)

Publication Number Publication Date
JPH02205804A true JPH02205804A (en) 1990-08-15

Family

ID=12178068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2587989A Pending JPH02205804A (en) 1989-02-06 1989-02-06 Semiconductor light guide

Country Status (1)

Country Link
JP (1) JPH02205804A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134740A (en) * 1984-12-06 1986-06-21 Nec Corp Semiconductor optical switch
JPS61184508A (en) * 1985-02-12 1986-08-18 Mitsubishi Electric Corp Optical waveguide
JPS62205757A (en) * 1986-03-06 1987-09-10 Dai Ichi Kogyo Seiyaku Co Ltd Powdery defoaming agent composition for food
JPS6449003A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Light guide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134740A (en) * 1984-12-06 1986-06-21 Nec Corp Semiconductor optical switch
JPS61184508A (en) * 1985-02-12 1986-08-18 Mitsubishi Electric Corp Optical waveguide
JPS62205757A (en) * 1986-03-06 1987-09-10 Dai Ichi Kogyo Seiyaku Co Ltd Powdery defoaming agent composition for food
JPS6449003A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Light guide

Similar Documents

Publication Publication Date Title
Chen et al. Advances in lithium niobate photonics: development status and perspectives
US6560006B2 (en) Two-dimensional photonic crystal slab waveguide
Inoue et al. Low loss GaAs optical waveguides
EP0304709B1 (en) Waveguide type optical device
KR19990082490A (en) Nonlinear Optical Waveguides with Different Crystal Directions Achieved by Wafer Bonding
JPH0936343A (en) Formation of light beam diffraction grating in integrated waveguide and integrated optical device
JPS58121006A (en) Dielectric light wave guide and formation thereof
US20040086244A1 (en) Optical waveguide structure
Sabarinathan et al. Submicron three-dimensional infrared GaAs/Al x O y-based photonic crystal using single-step epitaxial growth
JP2001148531A (en) Optical semiconductor device
JPH11330503A (en) Photoelectron engineering method for signal process and its embodiment and application
EP0522625B1 (en) Polarisation filter
EP0687938A2 (en) Semiconductor optical device utilizing nonlinear optical effect
JPH06222229A (en) Optical waveguide element and its manufacture
Chen et al. Integrated optics
JPH03228032A (en) Optical directional coupler
JPH02205804A (en) Semiconductor light guide
Leonberger et al. Low‐loss GaAs optical waveguides formed by lateral epitaxial growth over oxide
Eldada et al. Rapid direct fabrication of active electro-optic modulators in GaAs
KR930010131B1 (en) Tapered semiconductor waveguides and method of making same
US20240134119A1 (en) Optical waveguide
JP2605650B2 (en) Optical isolator
JPH0361912A (en) Semiconductor optical waveguide
JP2897371B2 (en) Semiconductor waveguide polarization controller
JPH04159513A (en) Mode selecting optical element