JPH0220532A - Production of expanded synthetic resin - Google Patents

Production of expanded synthetic resin

Info

Publication number
JPH0220532A
JPH0220532A JP63168931A JP16893188A JPH0220532A JP H0220532 A JPH0220532 A JP H0220532A JP 63168931 A JP63168931 A JP 63168931A JP 16893188 A JP16893188 A JP 16893188A JP H0220532 A JPH0220532 A JP H0220532A
Authority
JP
Japan
Prior art keywords
blowing agent
cyanoacetic acid
synthetic resin
active hydrogen
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63168931A
Other languages
Japanese (ja)
Other versions
JPH0737542B2 (en
Inventor
Masaki Narutomi
正樹 成富
Hiromitsu Odaka
小高 弘光
Osamu Todaka
戸高 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63168931A priority Critical patent/JPH0737542B2/en
Publication of JPH0220532A publication Critical patent/JPH0220532A/en
Publication of JPH0737542B2 publication Critical patent/JPH0737542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To advantageously obtain an open-cellular rigid expanded synthetic resin in good workability by reacting an active hydrogen compound with a polyisocyanate compound in the presence of a specified mixed blowing agent comprising a plurality of blowing agents. CONSTITUTION:An active hydrogen compound (A) having at least two active hydrogen functional groups reactive with an isocyanate group (e.g., polyether polyol) is reacted with a polyisocyanate compound (B) (e.g., tolylene diisocyanate) in the presence of a blowing agent (C) comprising cyanoacetic acid (derivative or salt), a low-boiling halo-hydrocarbon (e.g., trichlorofuloromethane), a low-boiling hydrocarbon (e.g., butane) and an inert gas or water. In this way, an open-cellular expanded synthetic resin (e.g., rigid urethane foam) can be obtained. The amount of the cyanoacetic acid in the blowing agent is suitably 0.1-50wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリウレタンフォームなどの発泡合成樹脂の
製造方法に関するものであり、特に特定の発泡剤の使用
を特徴とする発泡合成樹脂を製造する方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a foamed synthetic resin such as polyurethane foam, and in particular a method for producing a foamed synthetic resin characterized by the use of a specific blowing agent. It is about the method.

[従来の技術] イソシアネート基と反応しうる活性水素含有基を2以上
有する活性水素化合物とボリイソシアネート化合物とを
触媒と発泡剤の存在下に反応させて発泡合成樹脂を製造
することは広(行なわれている。活性水素化合物として
はたとえば、ポリヒドロキシ化合物やポリアミン化合物
がある。得られる発泡合成樹脂としては、たとえばポリ
ウレタンフォーム、ポリイソシアヌレートフオーム、ポ
リウレアフオームなどがある。また、比較的低発泡の発
泡合成樹脂としては、たとえばマイクロセルラーポリウ
レタンエラストマーやマイクロセルラーポリウレタンウ
レアエラストマーなどがある。
[Prior Art] It is widely practiced to produce a foamed synthetic resin by reacting an active hydrogen compound having two or more active hydrogen-containing groups capable of reacting with an isocyanate group with a polyisocyanate compound in the presence of a catalyst and a blowing agent. Examples of active hydrogen compounds include polyhydroxy compounds and polyamine compounds. Examples of foamed synthetic resins that can be obtained include polyurethane foam, polyisocyanurate foam, and polyurea foam. Examples of the foamed synthetic resin include microcellular polyurethane elastomer and microcellular polyurethane urea elastomer.

上記発泡合成樹脂を製造するための発泡剤としては種々
の化合物が知られているが、主にはトリクロロフルオロ
メタン(R−11)が使用されている。また、通常R−
11とともにさらに水が併用される。さらに、フロス法
等で発泡を行う場合には、これらとともにより低沸点の
(常温常圧下で気体の)ジクロロジフルオロメタン(R
−12)が併用されている。さらに他の比較的低沸点の
含フツ素ハロゲン化炭化水素類が発泡剤として使用する
ことができるという提案は種々提出されているが、上記
R−11とR−12を除いてはいまだ広く使用されるに
は至っていない。また、含フツ素ハロゲン化炭化水素系
発泡剤の代りに塩化メチレンなどの他の低沸点ハロゲン
化炭化水素系発泡剤の使用も提案されている。
Although various compounds are known as blowing agents for producing the above-mentioned foamed synthetic resin, trichlorofluoromethane (R-11) is mainly used. Also, usually R-
Water is further used in combination with 11. Furthermore, when foaming is carried out by the froth method etc., dichlorodifluoromethane (R
-12) is used in combination. Furthermore, various proposals have been made that other fluorine-containing halogenated hydrocarbons with relatively low boiling points can be used as blowing agents, but with the exception of R-11 and R-12 mentioned above, they are still widely used. It has not yet reached the point where it will be done. Furthermore, the use of other low-boiling point halogenated hydrocarbon blowing agents such as methylene chloride in place of the fluorine-containing halogenated hydrocarbon blowing agents has also been proposed.

また1発泡剤としてシアノ酢酸を使用することも堤示さ
れている。
It has also been suggested that cyanoacetic acid be used as a blowing agent.

[発明が解決しようとする課題] 従来広く使用されてきたR−11及びR−12は一般に
ポリオールなどの活性水素化合物に対する溶解性が低く
、両者を含む混合成分系では相分離の問題を生じやす(
、このため使用出来る活性水素化合物の範囲なせばめる
という問題があった。活性水素化合物との混合系におい
て相分離を起した場合、比重の重いR−11又はR−1
2は貯蔵容器の底に溜り、不均質な混合液となるためボ
ッイソシアネート化合物との反応等量が狂い、正常な発
r包体を得ることが出来ない。明確に二相に分かれるこ
とがなくとも溶解性の不良は重合、発泡による発泡体製
造時にポリイソシアネート化合物との混合不良、未反応
成分の残留、ボイドと呼ばれる粗泡の発生につながり易
い。又、R−11及びR−12はオゾン破壊連鎖反応に
より地球の保護オゾン層を破壊する恐れがあり、その使
用量を低下させることが要望されている。
[Problem to be solved by the invention] R-11 and R-12, which have been widely used in the past, generally have low solubility in active hydrogen compounds such as polyols, and a mixed component system containing both tends to cause phase separation problems. (
Therefore, there was a problem in that the range of usable active hydrogen compounds was limited. When phase separation occurs in a mixed system with an active hydrogen compound, R-11 or R-1 with heavy specific gravity
2 accumulates at the bottom of the storage container and becomes a non-homogeneous mixed solution, which disrupts the reaction equivalence with the boisocyanate compound, making it impossible to obtain normal R-envelops. Even if there is no clear separation into two phases, poor solubility tends to lead to poor mixing with the polyisocyanate compound, residual unreacted components, and generation of rough foam called voids during the production of foams by polymerization and foaming. Furthermore, R-11 and R-12 have the potential to destroy the earth's protective ozone layer through ozone-depleting chain reactions, and there is a desire to reduce their usage.

又、広く発泡剤として使用されている水は、イソシアネ
ートと反応するため、製造される発泡合成樹脂を脆化さ
せるという欠点がある。
Furthermore, water, which is widely used as a blowing agent, reacts with isocyanate and therefore has the disadvantage of embrittling the produced foamed synthetic resin.

更に又、連通気泡発泡合成樹脂の製法において、種々の
提案がなされているが、一般にその多くは気泡連通則等
の異物を混入するものであるため、独泡性の高い条件下
、例えば、硬質ポリオールを用いた連通フオームや高密
度フオーム、又密閉系性が強いモールド注入発泡の際に
は、連通気泡の発泡合成樹脂は得られにくい傾向にある
。そこで、上記のような条件下でも連通気泡の発泡合成
樹脂が製造可能な発泡剤の開発が要望されている。
Furthermore, various proposals have been made regarding the manufacturing method of open-cell foamed synthetic resins, but most of them generally involve the mixing of foreign substances such as the open-cell rule, so they cannot be produced under conditions of high closed-cell properties, such as hard foams. It is difficult to obtain open-cell foamed synthetic resins when using polyols for open-cell foams, high-density foams, or mold injection foaming that has strong closed system properties. Therefore, there is a demand for the development of a blowing agent that can produce open-cell foamed synthetic resin even under the above conditions.

[課題を解決するための手段] 本発明においては、前述の問題点を解決するためインシ
アネート基と反応しうる活性水素含有官能基を2以上有
する活性水素化合物とポリイソシアネート化合物とを発
泡剤の存在下に反応させて発泡合成樹脂の製造する方法
において、発泡剤としてシアノ酢酸、シアノ酢酸誘導体
又はこれらの塩と低沸点ハロゲン化炭化水素、低沸点炭
化水素、不活性ガス又は水とを併用する。
[Means for Solving the Problems] In the present invention, in order to solve the above-mentioned problems, an active hydrogen compound having two or more active hydrogen-containing functional groups capable of reacting with inocyanate groups and a polyisocyanate compound are used as a blowing agent. In the method of producing a foamed synthetic resin by reacting in the presence of a foaming agent, cyanoacetic acid, a cyanoacetic acid derivative, or a salt thereof is used in combination with a low-boiling halogenated hydrocarbon, a low-boiling hydrocarbon, an inert gas, or water as a blowing agent. .

次に本発明を更に具体的に説明する。Next, the present invention will be explained in more detail.

本発明においては、第1の発泡剤としてシアノ酢酸(N
ミCCH,C00H) 、あるいはそのアルキルエステ
ル等のシアノ酢酸誘導体(以下シアノ酢酸等と総称)、
或はその塩(以下シアノ酢酸塩等と総称)を使用する。
In the present invention, cyanoacetic acid (N
cyanoacetic acid derivatives (hereinafter collectively referred to as cyanoacetic acid, etc.), such as CCH, C00H) or its alkyl esters,
Alternatively, a salt thereof (hereinafter collectively referred to as cyanoacetate etc.) is used.

シアノ酢酸等としては、シアノ酢酸が特に好ましい。As cyanoacetic acid, cyanoacetic acid is particularly preferred.

又、シアノ酢酸等としては、−2二、三級アミン塩、ア
ルカリ金属塩、アルカリ土類金属塩、遷移金属塩が使用
できるが、特に一般式R,R2NH(R1,R2はH又
は炭素数1〜15の飽和又は不飽和の脂肪族炭化水素、
或はON、エーテル基、カルボニル基、シアノ基、シア
ノ基、フェニル基を含む炭化水素基(炭化水素基として
は炭素数1〜15の飽和又は不飽和の脂肪族炭化水素が
好ましい)で示されるアミン塩が好ましい。
In addition, as cyanoacetic acid etc., -2 secondary and tertiary amine salts, alkali metal salts, alkaline earth metal salts, and transition metal salts can be used, but in particular, the general formula R, R2NH (R1 and R2 are H or the number of carbon atoms) 1 to 15 saturated or unsaturated aliphatic hydrocarbons,
Alternatively, it is represented by a hydrocarbon group including ON, an ether group, a carbonyl group, a cyano group, a cyano group, or a phenyl group (the hydrocarbon group is preferably a saturated or unsaturated aliphatic hydrocarbon having 1 to 15 carbon atoms) Amine salts are preferred.

第1の発泡剤は活性水素化合物とポリイソシアネート化
合物の反応熱により約130〜160℃で分解して炭酸
ガスを発生し、この炭酸ガスにより発泡が行なわれる。
The first foaming agent decomposes at about 130 to 160° C. due to the heat of reaction between the active hydrogen compound and the polyisocyanate compound to generate carbon dioxide gas, which causes foaming.

第2の発泡剤としては低沸点ハロゲン化炭化水素、低沸
点炭化水素。
The second blowing agent is a low-boiling halogenated hydrocarbon or a low-boiling hydrocarbon.

不活性ガス、水を使用する。第2の発泡剤としては、塩
化メタン、R−11,R−12、ブタン、ヘキサン、空
気、窒素、水が例示される。
Use inert gas and water. Examples of the second blowing agent include chlorinated methane, R-11, R-12, butane, hexane, air, nitrogen, and water.

本発明においては、上述の第1の発泡剤第2の発泡剤と
を併用する。発泡剤中に占める第1の発泡剤の割合は、
0.1〜50wt%好ましくは1〜30wt%とするの
が適当である。
In the present invention, the first blowing agent and the second blowing agent described above are used together. The proportion of the first blowing agent in the blowing agent is
A suitable content is 0.1 to 50 wt%, preferably 1 to 30 wt%.

本発明においては、前述した第1の発泡剤と第2の発泡
剤とを含む発泡剤(以下本発泡剤という)の存在下に、
イソシアネート基と反応しうる活性水素含有官能基を2
以上有する活性水素化合物とポリイソシアネート化合物
とを反応させて発泡合成樹脂を製造するが、この際、第
2の発泡剤は比較的低温で発泡作用を有するため、反応
熱による温度上昇に伴ない、先ず第2の発泡剤による第
1段発泡が行なわれ、続いて第1の発泡剤から発生する
炭酸ガスにより第2段発泡が行なわれる。そして、第1
段発泡で形成されたフオームの壁は、第2段発泡による
内圧の上昇で破れ、連通フオームが得られる。
In the present invention, in the presence of a blowing agent (hereinafter referred to as the present blowing agent) containing the above-described first blowing agent and second blowing agent,
2 active hydrogen-containing functional groups that can react with isocyanate groups
A foamed synthetic resin is produced by reacting the above-mentioned active hydrogen compound with a polyisocyanate compound. At this time, since the second foaming agent has a foaming effect at a relatively low temperature, as the temperature rises due to the heat of reaction, First, first-stage foaming is performed using a second foaming agent, and then second-stage foaming is performed using carbon dioxide gas generated from the first foaming agent. And the first
The walls of the foam formed by stage foaming are ruptured by the increase in internal pressure caused by the second stage foaming, and a continuous foam is obtained.

イソシアネート基と反応しうる活性水素含有官能基を2
以上有する活性水素化合物としては、水酸基やアミノ基
などの活性水素含有官能基を2以上有する化合物、ある
いはその化合物の2種以上の混合物である。特に、2以
上の水酸基を有する化合物やその混合物、またはそれを
主成分としさらにポリアミンなどを含む混合物が好まし
い。2以上の水酸基を有する化合物としでは、広く使用
されているポリオールが好ましいが、2以上のフェノー
ル性水酸基を有する化合物(たとえばフェノール樹脂初
期縮合物)なども使用できる。ポリオールとしては、ポ
リエーテル系ポリオール、ポリエステル系ポリオール、
多価アルコール、水酸基含有ジエチレン系ポリマーなど
がある。特にポリエーテル系ポリオールの1種以上のみ
からなるか、それを主成分としてポリエステル系ポリオ
ール、多価アルコール、ポリアミン、アルカノールアミ
ン、その他の活性水素化合物との併用が好ましい。ポリ
エーテル系ポリオールとしては、多価アルコール、糖類
、アルカノールアミン、その他のイニシェークーに環状
エーテル、特にプロピレンオキシドやエチレンオキシド
などのアルキレンオキシドを付加して得られるポリエー
テル系ポリオールが好ましい。また、ポリオールとして
ポリマーポリオールあるいはグラフトポリオールと呼ば
れる主にポリエーテル系ポリオール中にビニルポリマー
の微粒子が分散したポリオール組成物を使用することも
できる。ポリエステル系ポリオールとしては、多価アル
コール、多価カルボン酸縮合系のポリオールや環状エス
テル開環重合体系のポリオールがあり、多価アルコール
としてはエチレングリコール、プロピレングリコール、
ジエチレングリコール、ジプロピレングリコール、グリ
セリン、トリメチロールプロパン、ペンタエリスリトー
ル、ジェタノールアミン、トリエタノールアミンなどが
ある。2以上のフェノール性水酸基を有する化合物とし
ては、フェノール類をアルカリ触媒の存在下で過剰のホ
ルムアルデヒド類と縮合結合させたレゾール型初期縮合
物、レゾール型初期縮合物を合成する際、非水系で反応
させたベンジリック型初期縮合物、過剰のフェノール類
を酸触媒の存在下でホルムアルデヒド類を反応させたノ
ボラック型初期縮合物等がある。これらの初期縮合物の
分子量は200〜10000のものが好ましい。ここで
フェノール類のはベンゼン環を形成する骨格の一個以上
の炭素原子が直接水酸基と結合したものを意味しその同
一構造内に他の置換結合基を有するものも含まれる。代
表的なものとしてはフェノール、クレゾール、ビスフェ
ノールA、レゾルシノール等がある。また、ホルムアル
デヒド類は特に限定しないがホルマリン、パラホルムア
ルデヒドが好ましい。ポリオールあるいは活性水素化合
物の混合物の水酸基価は約20〜1000のものから目
的に応じて選択されることが多い。
2 active hydrogen-containing functional groups that can react with isocyanate groups
The active hydrogen compound having the above is a compound having two or more active hydrogen-containing functional groups such as a hydroxyl group or an amino group, or a mixture of two or more such compounds. Particularly preferred are compounds having two or more hydroxyl groups, mixtures thereof, or mixtures containing the same as the main component and further containing polyamine or the like. As the compound having two or more hydroxyl groups, widely used polyols are preferred, but compounds having two or more phenolic hydroxyl groups (eg, phenol resin initial condensate) can also be used. Polyols include polyether polyols, polyester polyols,
Examples include polyhydric alcohols and diethylene polymers containing hydroxyl groups. In particular, it is preferable to use only one or more types of polyether polyols, or to use them as a main component in combination with polyester polyols, polyhydric alcohols, polyamines, alkanolamines, and other active hydrogen compounds. The polyether polyol is preferably a polyether polyol obtained by adding a cyclic ether, particularly an alkylene oxide such as propylene oxide or ethylene oxide, to a polyhydric alcohol, saccharide, alkanolamine, or other initiator. Further, as the polyol, it is also possible to use a polyol composition called a polymer polyol or a graft polyol, in which fine particles of a vinyl polymer are dispersed in a mainly polyether polyol. Polyester polyols include polyhydric alcohols, polycarboxylic acid condensation polyols, and cyclic ester ring-opening polymer polyols. Polyhydric alcohols include ethylene glycol, propylene glycol,
These include diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, jetanolamine, and triethanolamine. Compounds having two or more phenolic hydroxyl groups include resol-type initial condensates in which phenols are condensed and bonded with excess formaldehyde in the presence of an alkali catalyst; There are benzylic-type precondensates made by reacting excess phenols with formaldehyde in the presence of an acid catalyst, and novolac-type precondensates. The molecular weight of these initial condensates is preferably 200 to 10,000. Here, phenols mean those in which one or more carbon atoms of the skeleton forming a benzene ring are directly bonded to a hydroxyl group, and also include those having other substituent bonding groups within the same structure. Typical examples include phenol, cresol, bisphenol A, and resorcinol. Further, formaldehydes are not particularly limited, but formalin and paraformaldehyde are preferred. The hydroxyl value of the polyol or the mixture of active hydrogen compounds is often selected from about 20 to 1000 depending on the purpose.

ポリイソシアネート化合物としてはインシアネート基を
2以上有する芳香族系、脂環族系、あるいは脂肪族系の
ポリイソシアネート、それら2種以上の混合物、および
それらを変性して得られる変性ポリイソシアネートがあ
る。具体的には、たとえば、トリレンジイソシアネート
、ジフェニルメタンジイソシアネート、ポリメチレンポ
リフェニルイソシアネート(通称:クルードMDI)、
キシリレンジイソシアネート、イソホロンジイソシアネ
ート、ヘキサメチレンジイソシアネートなどのポリイソ
シアネートやそれらのプレポリマー型変性体、ヌレート
変性体、ウレア変性体などがある。
Examples of polyisocyanate compounds include aromatic, alicyclic, or aliphatic polyisocyanates having two or more incyanate groups, mixtures of two or more thereof, and modified polyisocyanates obtained by modifying them. Specifically, for example, tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenylisocyanate (common name: crude MDI),
Examples include polyisocyanates such as xylylene diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate, as well as prepolymer-type modified products, nurate-modified products, and urea-modified products thereof.

活性水素化合物とポリイソシアネート化合物を反応させ
る際、通常触媒の使用が必要とされる。触媒としては、
活性水素含有基とインシアネート基の反応を促進させる
有機スズ化合物などの金属化合物系触媒やトリエチレン
ジアミンなどの3級アミン触媒が使用される。また、カ
ルボン酸金属塩などのインシアネート基同志を反応させ
る多量化触媒が目的に応じて使用される。さらに、良好
な気泡を形成するための整泡剤も多くの場合使用される
。整泡剤としては、たとえばシリコーン系整泡剤や含フ
ツ素化合物系整泡剤などがある。その他、任意に使用し
うる配合剤としては、たとえば充填剤、安定剤、着色剤
、難燃剤などがある。
When reacting active hydrogen compounds and polyisocyanate compounds, the use of catalysts is usually required. As a catalyst,
Metal compound catalysts such as organotin compounds and tertiary amine catalysts such as triethylenediamine are used, which promote the reaction between active hydrogen-containing groups and incyanate groups. Further, a polymerization catalyst that causes incyanate groups to react with each other, such as a carboxylic acid metal salt, is used depending on the purpose. Furthermore, foam stabilizers are often used to form good foam. Examples of the foam stabilizer include silicone foam stabilizers and fluorine-containing compound foam stabilizers. Other optional additives include fillers, stabilizers, colorants, flame retardants, and the like.

なお、触媒として有機スズ化合物を使用する場合、有機
スズ化合物は酸により失活する傾向を有するので、第1
の発泡剤としては塩、特にトリエチレンジアミンのよう
な3級アミン塩の使用が望ましい。
In addition, when using an organic tin compound as a catalyst, since the organic tin compound has a tendency to be deactivated by acid, the first
As the blowing agent, it is desirable to use a salt, especially a tertiary amine salt such as triethylenediamine.

これら原料を使用し、ポリウレタンフォーム、ウレタン
変性ポリイソシアネレートフォーム、マイクロセルラー
ポリウレタンエラストマー、マイクロセルラーポリウレ
タンウレアエラストマー、マイクロセルラーポリウレア
エラストマー、その他の発泡合成樹脂が得られる。
Using these raw materials, polyurethane foam, urethane-modified polyisocyanate foam, microcellular polyurethane elastomer, microcellular polyurethane urea elastomer, microcellular polyurea elastomer, and other foamed synthetic resins can be obtained.

ポリウレタンフォームは大別して硬質ポリウレタンフォ
ーム、半硬質ポリウレタンフォーム、軟質ポリウレタン
フォームがある。本発明は、特にハロゲン化炭化水素系
発泡剤の使用量の多い分野である硬質ポリウレタンフォ
ーム、ウレタン変性ポリイソシアヌレートフオーム、そ
の他の硬質フオームの製造において特に有用である。そ
の内でも、水酸基価的200〜900のポリオールある
いはポリオール混合物と芳香族系のポリイソシアネート
化合物を使用して得られる硬質ポリウレタンフォームの
製造において特に有用であり、連通気泡を有するものを
容易にうることができる。なお、発泡倍率は5倍以上、
好ましくは10倍以上とする9が望ましい。
Polyurethane foam can be broadly divided into rigid polyurethane foam, semi-rigid polyurethane foam, and flexible polyurethane foam. The present invention is particularly useful in the production of rigid polyurethane foams, urethane-modified polyisocyanurate foams, and other rigid foams, which are fields in which halogenated hydrocarbon blowing agents are used in large quantities. Among these, it is particularly useful in the production of rigid polyurethane foams obtained by using polyols or polyol mixtures having a hydroxyl value of 200 to 900 and aromatic polyisocyanate compounds, and it is easy to obtain foams with open cells. I can do it. In addition, the foaming ratio is 5 times or more,
9, which is preferably 10 times or more, is desirable.

[作用] 発泡剤として、第1の発泡剤と第2の発泡剤とを併用す
ることにより(発泡を二段階で行なわせ)第1段発泡で
形成されたフオームの壁を第2段発泡で破り連通気泡の
発泡合成樹脂を得る。又、第1の発泡剤の併用により、
第2の発泡剤の使用量を減少させ、第2の発泡剤の使用
による従来技術の問題点を解消する。
[Operation] By using a first foaming agent and a second foaming agent together as foaming agents (performing foaming in two stages), the wall of the foam formed in the first stage foaming can be expanded in the second stage foaming. A foamed synthetic resin with broken open cells is obtained. In addition, by using the first blowing agent in combination,
The amount of the second blowing agent used is reduced, and the problems of the prior art due to the use of the second blowing agent are solved.

[実施例] 実施例1 シュークローズとジェタノールアミンにプロピレンオキ
サイドを付加して得たヒドロキシル価350のポリエー
テル70部、グリセリンにプロピレンオキサイドを付加
して得たヒドロキシル価400のポリエーテル30部、
シリコーン整泡剤(日本ユニカー−商品名Y−6827
) 1.5部、水348部、N、 N、N′、N′、N
”−ペンタメチルジエチレントリアミン2.0部、1.
4−ジアザビシクロ[2゜2.21オクテントリエチレ
ンジアミン0.5部、シアノ酢酸1.2部を混合した液
に、ポリメチレンポリフェニルイソシアネート(MD化
成■商品名PAPI 135)  145部を液温20
℃で混合しボックス及びモールドに投入、発泡させ評価
した結果を第1表に示す。ボックスは木製で200mm
 X 200 mmX 200mm 、モールドはアル
ミ製で400mo+ X400 mmX 50mmのサ
イズ、密閉系でフタにφ5mmの穴が5個有するものを
使用した。発泡倍率は約30倍であった。
[Example] Example 1 70 parts of a polyether with a hydroxyl value of 350 obtained by adding propylene oxide to sucrose and jetanolamine, 30 parts of a polyether with a hydroxyl value of 400 obtained by adding propylene oxide to glycerin,
Silicone foam stabilizer (Nippon Unicar-Product name Y-6827
) 1.5 parts, 348 parts of water, N, N, N', N', N
”-2.0 parts of pentamethyldiethylenetriamine, 1.
Add 145 parts of polymethylene polyphenylisocyanate (MD Kasei ■trade name: PAPI 135) to a mixture of 0.5 parts of 4-diazabicyclo[2゜2.21 octent triethylenediamine and 1.2 parts of cyanoacetic acid at a liquid temperature of 20%.
Table 1 shows the results of mixing the mixture at ℃ and putting it into a box and mold for foaming and evaluation. The box is made of wood and is 200mm long.
The size of the mold was 200 mm x 200 mm, and the mold was made of aluminum and had a size of 400 mm + 400 mm x 50 mm, a closed system, and a lid with 5 holes of 5 mm in diameter. The expansion ratio was about 30 times.

[比較例1] シアノ酢酸を含まないこと以外実施例1と同一の条件で
発泡を行なった結果を第1表に示す。
[Comparative Example 1] Table 1 shows the results of foaming under the same conditions as in Example 1 except that cyanoacetic acid was not included.

第1表 判定の基準は次の通りである。Table 1 The criteria for judgment are as follows.

○:フォームが均一で連通気泡率90%以上Δ:フォー
ムが不均−又は連通気泡率75以上〜90%未満 ×:フオームが不均−又は連通気泡率75%未満実施例
2 グリセリンにプロピレンオキサイドを付加したものにア
クリロニトリル重合体を8重量%分散させた水酸基価3
2のポリエーテル100部、ジェタノールアミン1.0
部、水3.0部、シリコーン整泡剤(トーレシリコーン
■商品名5F−2962)20部、1.4−ジアザビシ
クロ[2,2,2]オクテントリエチレンジアミン0.
4部、N、N、N′、N’ −テトラメチルへキサメチ
レンジアミン0.4部、シアノ酢酸0.5部を混合した
液に、トリエンジイソシアネート(2,4体:2.’6
体=80:20) 24部を液温25℃で混合しボック
ス及びモールドに投入、発泡させ評価した結果を第2表
に示す。ボックスは木製で300mm X 3001a
+X 300mm 、モールドはアルミ製で350mm
 X 350 mmX 100mmのサイズ、密閉系で
フタにφ3mmの穴が5個有するものを使用した。発泡
倍率は約15倍であった。
○: The foam is uniform and the open cell ratio is 90% or more Δ: The foam is uneven or the open cell ratio is 75 or more and less than 90% ×: The foam is uneven or the open cell ratio is less than 75% Example 2 Propylene oxide in glycerin Hydroxyl value 3, with 8% by weight of acrylonitrile polymer dispersed in
100 parts of polyether No. 2, jetanolamine 1.0
3.0 parts of water, 20 parts of silicone foam stabilizer (Toray Silicone Trade Name 5F-2962), 0.1 parts of 1,4-diazabicyclo[2,2,2]octentriethylenediamine.
Triene diisocyanate (2,4 body: 2.'6
Table 2 shows the results of the evaluation after mixing 24 parts (80:20) at a liquid temperature of 25° C. and putting the mixture into a box and mold for foaming. The box is made of wood and measures 300mm x 3001a.
+X 300mm, the mold is made of aluminum and is 350mm
A closed system with a size of 350 mm x 100 mm and a lid with 5 holes of φ3 mm was used. The expansion ratio was about 15 times.

[比較例2] シアノ酢酸を含まないこと以外実施例2と同一の条件で
発泡を行なった結果を第2表に示す。
[Comparative Example 2] Table 2 shows the results of foaming under the same conditions as in Example 2 except that cyanoacetic acid was not included.

第2表 [発明の効果] 第2の発泡剤の使用量を減少させ、第2の発泡剤の使用
に起因する問題点を解消し、又連通気泡を有する硬質の
発泡合成樹脂が得られる。
Table 2 [Effects of the Invention] The amount of the second blowing agent used is reduced, the problems caused by the use of the second blowing agent are solved, and a hard foamed synthetic resin having open cells can be obtained.

Claims (1)

【特許請求の範囲】 1、イソシアネート基と反応しうる活性水素含有官能基
を2以上有する活性水素化合物と ポリイソシアネート化合物とを発泡剤の存在下に反応さ
せて発泡合成樹脂を製造する方法において、発泡剤とし
て、シアノ酢酸、シアノ酢酸誘導体又はこれらの塩と、
低沸点ハロゲン化炭化水素、低沸点炭化水素、不活性ガ
ス又は水とを併用することを特徴とする発泡合成樹脂を
製造する方法。 2、発泡剤中に占めるシアノ酢酸、シアノ酢酸誘導体又
はこれらの塩の割合が0.1〜50wt%である請求項
1記載の方法。 3、発泡は、低沸点ハロゲン化炭化水素、低沸沸点炭化
水素、不活性ガス、又は水による低温の第1段発泡と、
シアノ酢酸、シアノ酢酸誘導体又はこれらの塩による高
温の第2段発泡とを含む請求項1、又は2記載の方法。 4、シアノ酢酸塩はシアノ酢酸都一般式R_1R_2N
H(R_1、R_2はH又は炭素数1〜15の飽和又は
不飽和の炭化水素、或はOH、エーテル基、カルボニル
基、シアノ基、フェニル基を含む炭化水素基)アミン塩
である請求項1、2又は3記載の方法。 5、発泡合成樹脂は連通気泡を有する硬質ウレタンフォ
ームである請求項1、2、3又は4記載の方法。
[Claims] 1. A method for producing a foamed synthetic resin by reacting an active hydrogen compound having two or more active hydrogen-containing functional groups capable of reacting with an isocyanate group with a polyisocyanate compound in the presence of a blowing agent, As a blowing agent, cyanoacetic acid, a cyanoacetic acid derivative or a salt thereof;
A method for producing a foamed synthetic resin, which comprises using a low boiling point halogenated hydrocarbon, a low boiling point hydrocarbon, an inert gas, or water in combination. 2. The method according to claim 1, wherein the proportion of cyanoacetic acid, cyanoacetic acid derivatives, or salts thereof in the blowing agent is 0.1 to 50 wt%. 3. Foaming is a low-temperature first stage foaming using a low-boiling halogenated hydrocarbon, a low-boiling hydrocarbon, an inert gas, or water;
3. The method according to claim 1, further comprising a second stage of foaming at a high temperature using cyanoacetic acid, a cyanoacetic acid derivative, or a salt thereof. 4. Cyanoacetate has the general formula R_1R_2N
Claim 1: H (R_1 and R_2 are H or a saturated or unsaturated hydrocarbon having 1 to 15 carbon atoms, or a hydrocarbon group containing OH, an ether group, a carbonyl group, a cyano group, or a phenyl group) amine salt , 2 or 3. 5. The method according to claim 1, 2, 3 or 4, wherein the foamed synthetic resin is a rigid urethane foam having open cells.
JP63168931A 1988-07-08 1988-07-08 Method for producing foamed synthetic resin Expired - Lifetime JPH0737542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168931A JPH0737542B2 (en) 1988-07-08 1988-07-08 Method for producing foamed synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168931A JPH0737542B2 (en) 1988-07-08 1988-07-08 Method for producing foamed synthetic resin

Publications (2)

Publication Number Publication Date
JPH0220532A true JPH0220532A (en) 1990-01-24
JPH0737542B2 JPH0737542B2 (en) 1995-04-26

Family

ID=15877202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168931A Expired - Lifetime JPH0737542B2 (en) 1988-07-08 1988-07-08 Method for producing foamed synthetic resin

Country Status (1)

Country Link
JP (1) JPH0737542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062782A (en) * 2016-12-19 2019-07-26 科思创德国股份有限公司 The method for reducing the release of polyurethane foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062782A (en) * 2016-12-19 2019-07-26 科思创德国股份有限公司 The method for reducing the release of polyurethane foam
JP2020504199A (en) * 2016-12-19 2020-02-06 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Methods for reducing polyurethane foam emissions
CN110062782B (en) * 2016-12-19 2022-05-10 科思创德国股份有限公司 Method for reducing the release of polyurethane foam

Also Published As

Publication number Publication date
JPH0737542B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US20170313806A1 (en) Stabilization of foam polyol premixes containing halogenated olefin blowing agents
JPH01234432A (en) Production of foamed synthetic resin
JPH0220533A (en) Production of expanded synthetic resin
JPH0220532A (en) Production of expanded synthetic resin
JPH03745A (en) Preparation of foamed synthetic resin
JPH03744A (en) Preparation of foamed synthetic resin
JP3028119B2 (en) Manufacturing method of rigid foam synthetic resin
JPH0220534A (en) Production of expanded synthetic resin
JP2526974B2 (en) Method for producing foamed synthetic resin
JPH0220535A (en) Production of expanded synthetic resin
JPH01225611A (en) Preparation of expanded synthetic resin
JPH02113034A (en) Preparation of foamed synthetic resin
JPH03746A (en) Preparation of foamed synthetic resin
JPH01225614A (en) Preparation of expanded synthetic resin
JPH03743A (en) Preparation of foamed synthetic resin
JPH03126714A (en) Production of foamed synthetic resin
JPH01213327A (en) Production of expanded synthetic resin
JPH01240512A (en) Production of expanded synthetic resin
JPH03122110A (en) Production of foamable synthetic resin
JPH01268732A (en) Production of foamed synthetic resin
JPH03122109A (en) Production of foamable synthetic resin
JPH01225615A (en) Preparation of expanded synthetic resin
JPH01135816A (en) Production of expanded synthetic resin
JPH01313541A (en) Production of expanded synthetic resin
JPH01225608A (en) Preparation of expanded synthetic resin