JPH0220406Y2 - - Google Patents

Info

Publication number
JPH0220406Y2
JPH0220406Y2 JP1983046147U JP4614783U JPH0220406Y2 JP H0220406 Y2 JPH0220406 Y2 JP H0220406Y2 JP 1983046147 U JP1983046147 U JP 1983046147U JP 4614783 U JP4614783 U JP 4614783U JP H0220406 Y2 JPH0220406 Y2 JP H0220406Y2
Authority
JP
Japan
Prior art keywords
tappet
valve
intake
load
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983046147U
Other languages
Japanese (ja)
Other versions
JPS59157508U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4614783U priority Critical patent/JPS59157508U/en
Publication of JPS59157508U publication Critical patent/JPS59157508U/en
Application granted granted Critical
Publication of JPH0220406Y2 publication Critical patent/JPH0220406Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、エンジンのバルブ駆動装置に関し、
特に、該装置に組み込まれるタペツトの構造に関
する。
[Detailed description of the invention] (Field of industrial application) The invention relates to an engine valve drive device.
In particular, it relates to the structure of the tappet incorporated into the device.

(従来技術の問題点) 従来、例えば、実公昭52−42263号公報にも記
載されているように、エンジンの吸排気弁を開閉
する構造としてシリンダヘツドに設けたカムによ
り、タペツトを介して吸排気弁を駆動する所謂ダ
イレクトタイプの動弁装置が公知である。また、
エンジンの吸気、排気のタイミングは、エンジン
の運転状態に応じて変えることが好ましい。たと
えば、エンジンの高負荷運転のためには、吸気弁
の開弁時間を長くして充填効率を高めることが高
出力を得る上で必要になるが、吸気弁の開弁時間
を長くすることは、高負荷低回転運転時に吸気の
吹き返しの問題を生ずる。したがつて、吸気弁の
開弁時間はエンジン負荷だけでなくエンジン回転
数に対応して考慮する必要がある。また、吸、排
気弁のオーバーラツプ期間は吸気中の残留既燃ガ
ス量に影響を持つものであるが、エンジンの低負
荷運転時には、このオーバーラツプ期間をできる
だけ短かくして残留既燃ガス量を減少させること
が、燃焼の安定性を得る上で好ましく、その結
果、アイドリング回転数を低くでき、燃料経済性
の向上、排気中の未燃焼有害成分の減少といつた
有利な結果を得ることができる。しかし、オーバ
ーラツプ期間を短かくすることは、吸気弁の開弁
時間を短かくすることになり、高負荷運転時の充
填量不足を招来するものであり、また高速高負運
転時には吸気流の慣性が大きくなり充填効率が高
まるもので、オーバーラツプ期間を大きくしても
特に悪影響は生じず、むしろ高出力を得る目的で
充填量を増加させるためにはオーバーラツプ期間
は大きい方が良い。
(Problems with the Prior Art) Conventionally, as described in Japanese Utility Model Publication No. 52-42263, a cam installed in the cylinder head was used to open and close the intake and exhaust valves of the engine, and the intake and exhaust valves were opened and closed through the tappet. A so-called direct type valve operating device that drives an exhaust valve is known. Also,
It is preferable that the timing of intake and exhaust of the engine be changed depending on the operating state of the engine. For example, for high-load engine operation, it is necessary to increase the filling efficiency by increasing the intake valve opening time in order to obtain high output, but it is necessary to increase the intake valve opening time. , which causes problems with intake air blowback during high-load, low-speed operation. Therefore, it is necessary to consider the opening time of the intake valve in accordance with not only the engine load but also the engine speed. In addition, the overlap period between the intake and exhaust valves has an effect on the amount of residual burnt gas in the intake air, but when the engine is operating at low load, this overlap period should be made as short as possible to reduce the amount of residual burnt gas. is preferable in terms of combustion stability, and as a result, the idling speed can be lowered, and advantageous results such as improved fuel economy and a reduction in unburned harmful components in the exhaust gas can be obtained. However, shortening the overlap period shortens the opening time of the intake valve, which leads to insufficient filling during high-load operation, and also reduces the inertia of the intake flow during high-speed, high-negative operation. This increases the filling efficiency, and increasing the overlap period does not cause any particular adverse effects.In fact, in order to increase the filling amount for the purpose of obtaining high output, the longer the overlap period is, the better.

このような要求を満足させるため、エンジンの
開弁時期をエンジン運転状態に応じて可変制御す
ることは、従来から公知である。たとえば、特公
昭52−35819号公報には、エンジンの出力軸とカ
ム軸との間に遠心ガバナにより制御される遊星歯
車機構を介在させ、エンジン回転数に応じてエン
ジン出力軸とカム軸との間に位相変化を生じさせ
るようにした構造が開示されている。また、この
他にも、軸方向に形状の変化するカムをカム軸に
形成し、該カム軸をエンジン運転条件に応じて軸
方向に移動させ、開弁時期を変えるようにした構
造も知られている。しかし、この種従来の開弁時
期制御装置は、いずれも構造が複雑であり、前者
すなわち特公昭52−35819号に開示された構造で
は、エンジン回転数に応じてしか開弁時期の制御
を行ない得ない、という制約があり、また後者の
構造では、カム軸を軸方向に動かすものであるか
ら作動の応答性および信頼性に欠ける、という問
題がある。
In order to satisfy such demands, it is conventionally known to variably control the valve opening timing of the engine depending on the engine operating state. For example, in Japanese Patent Publication No. 52-35819, a planetary gear mechanism controlled by a centrifugal governor is interposed between the engine output shaft and the camshaft, and the engine output shaft and the camshaft are adjusted according to the engine speed. A structure is disclosed in which a phase change is caused between the two. In addition, there is also a known structure in which a cam whose shape changes in the axial direction is formed on the camshaft, and the camshaft is moved in the axial direction according to engine operating conditions to change the valve opening timing. ing. However, all of these conventional valve opening timing control devices have complicated structures, and the former structure disclosed in Japanese Patent Publication No. 52-35819 controls the valve opening timing only in accordance with the engine speed. In addition, the latter structure has the problem of lacking operational responsiveness and reliability because it moves the camshaft in the axial direction.

このような実情に鑑み、本出願人は先に特願昭
57−175578(特開昭59−65509号公報参照)によ
り、エンジンの動力系において、バルブタイミン
グを可変制御するバルブタイミング制御装置とし
て、タペツトを摺動自在に収容した嵌装孔を備え
た回動部材をカムシヤフトまわりに回動自在にな
るように支持し、運転状態の変化に応じて回動部
材をカムシヤフトのまわりに回動させたとき、カ
ムがタペツトに力を与え始める点の位相が変化す
るようにしてタイミングを変更することを提案し
た。いずれにしても、カムによりタペツトを駆動
する場合、カム面からタペツトの受圧部に作用す
る力の方向とバルブステムからタペツトに作用す
る反力の方向が一致しないため、タペツトに倒れ
が生じる。特に上記特願昭57−175578号の装置は
構造的に簡単であり、確実な作動が期待できるも
のではあるが、カムに対してタペツトを円周方向
にずらすことによつて、バルブタイミングの変更
するものであるため、タペツトの摺動方向と、バ
ルブステムの運動方向とが一致しなくなる場合が
必然的に生じる。この場合には、カム面からタペ
ツトの受圧部に作用する力と、バルブステムから
タペツトの押圧部に作用する反力との方向が一致
しないのでタペツトには、摺動方向と直交する方
向にも力が作用する。すなわち、タペツトを回動
部材の嵌装面に押しつける力が作用する。このた
め、タペツトの摺動抵抗が増大し、摺動部の摩
耗、及びバルブタイミング制御装置の応答性及び
信頼性の低下等の問題が生じる。
In view of these circumstances, the applicant first filed a patent application
No. 57-175578 (see Japanese Patent Application Laid-open No. 59-65509), a rotary valve timing control device with a fitting hole that slidably accommodates a tappet is used as a valve timing control device to variably control valve timing in an engine power system. A member is supported so that it can rotate freely around the camshaft, and when the rotating member is rotated around the camshaft in response to changes in operating conditions, the phase at which the cam begins to apply force to the tappet changes. I suggested changing the timing. In any case, when the tappet is driven by a cam, the direction of the force acting on the pressure-receiving portion of the tappet from the cam surface and the direction of the reaction force acting on the tappet from the valve stem do not match, causing the tappet to tilt. In particular, the device disclosed in Japanese Patent Application No. 57-175578 is structurally simple and can be expected to operate reliably, but it is possible to change the valve timing by shifting the tappet in the circumferential direction relative to the cam. Therefore, the sliding direction of the tappet and the direction of movement of the valve stem inevitably occur. In this case, the direction of the force acting on the pressure receiving part of the tappet from the cam surface and the reaction force acting on the pressing part of the tappet from the valve stem do not match, so there is no force on the tappet in the direction perpendicular to the sliding direction. Force acts. That is, a force is applied that presses the tappet against the fitting surface of the rotating member. As a result, the sliding resistance of the tappet increases, causing problems such as wear of the sliding portion and a decrease in the responsiveness and reliability of the valve timing control device.

(本考案の目的) 従つて、本考案の目的は摺動抵抗を減少させる
ことができるタペツト構造を与えて応答性及び信
頼性の高いエンジンのバルブタイミング制御装置
を提供することである。
(Objective of the Present Invention) Therefore, an object of the present invention is to provide an engine valve timing control device with high responsiveness and reliability by providing a tappet structure capable of reducing sliding resistance.

(本考案の構成) 本考案の構成は、カムとバルブステムとの間
に、嵌装孔に摺動自在に嵌装されたタペツトを介
装してなるエンジンのバルブ駆動装置において、
前記タペツトの前記嵌装孔に嵌装される外周壁
が、その摺動方向中心部が僅かに外側にふくらむ
ように湾曲形成されるとともに、前記タペツトの
前記バルブステムとの当接面が、少なくともカム
シヤフトの回転軸と直交する平面内において、前
記バルブステム方向に突出する曲面に形成された
ことを特徴とする。
(Configuration of the present invention) The configuration of the present invention is an engine valve driving device in which a tappet slidably fitted into a fitting hole is interposed between a cam and a valve stem.
The outer circumferential wall of the tappet to be fitted into the fitting hole is curved so that its center in the sliding direction bulges slightly outward, and the abutting surface of the tappet with the valve stem is at least The valve stem is characterized in that it is formed into a curved surface that projects in the direction of the valve stem in a plane perpendicular to the rotation axis of the camshaft.

(本考案の作用及び効果) タペツトの摺動方向とバルブステムの運動方向
とがずれる場合には、タペツトを回動部材の嵌装
孔内面に押しつける力が作用し、タペツトの連結
部と受圧部又は押圧部との接続部すなわち、エツ
ジ部が嵌装孔内面に接触する。この接触状態は、
線接触に近いものであるため接触圧が高く、接触
圧Pと摺動速度Vとの積であるPV値が大きくな
り、摩耗量が大きくなる。本考案によれば、タペ
ツト連結部の中央部を外側にわずかにふくらませ
た構造にしている。これにより、タペツト摺動方
向とバルブステム運動方向とがずれる場合には、
タペツトと回動部材嵌装孔内面との接触位置が連
結部の中央寄りに移行するので、上記エツジ部に
おける線接触状態を緩和することができ、接触圧
すなわち、PV値を下げることができる。従つて、
タペツト及び嵌装孔内面の摩耗を減少させること
ができるとともに、タペツトの摺動抵抗が減少す
るので装置の高い応答性及び信頼性を確保するこ
とができる。
(Operations and effects of the present invention) When the sliding direction of the tappet and the movement direction of the valve stem deviate from each other, a force that presses the tappet against the inner surface of the fitting hole of the rotating member acts, causing the connection part of the tappet and the pressure receiving part to Alternatively, the connecting portion with the pressing portion, that is, the edge portion contacts the inner surface of the fitting hole. This contact state is
Since it is close to a line contact, the contact pressure is high, and the PV value, which is the product of the contact pressure P and the sliding speed V, becomes large, and the amount of wear increases. According to the present invention, the central portion of the tapepet connecting portion is slightly bulged outward. As a result, if the tapepet sliding direction and the valve stem movement direction deviate,
Since the contact position between the tappet and the inner surface of the rotary member fitting hole is shifted toward the center of the connecting portion, the line contact condition at the edge portion can be relaxed, and the contact pressure, that is, the PV value can be lowered. Therefore,
The wear of the tappet and the inner surface of the fitting hole can be reduced, and since the sliding resistance of the tappet is reduced, high responsiveness and reliability of the device can be ensured.

また、本考案においては、タペツト連結部の中
央部を外側にわずかにふくらませた構造としてい
るため、タペツトが、嵌装孔内で、倒れを生ずる
ことが起こり得、かかる場合に、タペツトのバル
ブステムとの当接面が平面状に形成されていると
きは、タペツトのバルブステムとの当接面とバル
ブステムとの間でエツジ当たりが生ずることは避
けられず、タペツトのバルブステムとの当接面お
よび/またはバルブステムのタペツトとの当接面
が偏摩耗したり、場合によつては、バルブステム
が所定の方向から倒れるという現象が起こり得る
が、本考案においては、タペツトのバルブステム
との当接面が、少なくともカムシヤフトの回転軸
と直交する平面内において、バルブステム方向に
突出する曲面に形成されているので、嵌装孔内
で、たとえタペツトが倒れを生じても、タペツト
のバルブステムとの当接面とバルブステムとの間
でエツジ当たりが生ずることを確実に防止するこ
とができ、タペツトのバルブステムとの当接面お
よび/またはバルブステムのタペツトとの当接面
が偏摩耗したり、バルブステムが所定の方向から
倒れたりすることを効果的に防止することが可能
になる。
In addition, in the present invention, since the central part of the tappet connecting part is slightly bulged outward, the tappet may fall down in the fitting hole, and in such a case, the valve stem of the tappet When the abutting surface of the tappet with the valve stem is formed in a flat shape, it is inevitable that edge contact will occur between the abutting surface of the tappet with the valve stem and the valve stem. The surface and/or the contact surface of the valve stem with the tappet may wear unevenly, or in some cases, the valve stem may fall from a predetermined direction. The contact surface of the tappet is formed into a curved surface that protrudes toward the valve stem at least in a plane orthogonal to the rotation axis of the camshaft, so even if the tappet falls in the fitting hole, the valve of the tappet Edge contact between the valve stem and the valve stem can be reliably prevented from occurring, and the contact surface of the tappet with the valve stem and/or the contact surface of the valve stem with the tappet can be prevented from being biased. It becomes possible to effectively prevent wear and the valve stem from falling in a predetermined direction.

(実施例の説明) 以下、図面を参照して本考案の実施例を詳細に
説明する。
(Description of Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施例の説明) 第1図および第2図は、1つの気筒に対して低
負荷用および高負荷用の各1対の吸気ポート、排
気ポートが設けられたデユアルインダクシヨン方
式の4気筒エンジンに本考案を適用した実施例を
示す。エンジン本体1には、その中心線lに沿つ
て直列状に第1〜第4気筒2a〜2dが形成され
ており、各気筒2a〜2dには各々、低負荷用お
よび高負荷用の1対の吸気ポート3a,3bと、
第1および第2の1対の排気ポート4a,4bと
がそれぞれ気筒列方向と略平行な方向に並列して
開口するように設けられている。第1気筒2aと
第2気筒2bの各高負荷用吸気ポート3b,3b
同士、および各第2排気ポート4b,4b同士は
それぞれ互いに背中合せ状態に隣接するように配
置され、同様に第3気筒2cと第4気筒2dの各
高負荷用吸気ポート3b,3b同士、および各第
2排気ポート4b,4b同士も互いに隣接するつ
うに配置されている。
(Description of the first embodiment) Figures 1 and 2 show a dual induction system in which each cylinder is provided with one pair of intake ports and one pair of exhaust ports for low load and high load. An example in which the present invention is applied to a cylinder engine will be shown. In the engine body 1, first to fourth cylinders 2a to 2d are formed in series along the center line l, and each cylinder 2a to 2d has one pair for low load and one for high load. intake ports 3a, 3b,
A pair of first and second exhaust ports 4a, 4b are provided so as to open in parallel in a direction substantially parallel to the cylinder row direction. Each high-load intake port 3b, 3b of the first cylinder 2a and the second cylinder 2b
The high-load intake ports 3b and 3b of the third cylinder 2c and the fourth cylinder 2d, and each The second exhaust ports 4b, 4b are also arranged adjacent to each other.

各気筒2a〜2dの低負荷用および高負荷用吸
気ポート3a,3bの気筒への開口部には該各吸
気ポート3a,3bをそれぞれ所定のタイミング
で開閉する低負荷用および高負荷用の吸気弁5
a,5bが配設されており、一方各気筒2a〜2
dの第1および第2排気ポート4a,4bの気筒
への開口部には該各排気ポート4a,4bをそれ
ぞれ所定のタイミングで開閉する第1および第2
の排気弁6a,6bが配設されている。また、各
気筒2a〜2dの高負荷用吸気ポート3bに接続
される吸気マニホールドの高負荷用吸気通路7b
には、エンジンの高負荷運転時に開かれる開閉弁
7が配設されており、エンジンの低負荷運転時に
は低負荷用吸気通路7aに連通する低負荷用吸気
ポート3aのみから各気筒2a〜2dに吸気を供
給する一方、エンジンの高負荷運転時には低負荷
用および高負荷用吸気ポート3a,3bの両方か
ら吸気を供給するようにしている。一方、各気筒
2a〜2dの第1、第2排気ポート4a,4bは
それぞれ、第1、第2排気通路7c,7dに連通
されている。
The low-load and high-load intake ports 3a and 3b of each cylinder 2a to 2d are connected to the openings of the low-load and high-load intake ports 3a and 3b to open and close the intake ports 3a and 3b at predetermined timings, respectively. Valve 5
a, 5b are arranged, while each cylinder 2a to 2
The openings of the first and second exhaust ports 4a and 4b of d to the cylinders have first and second exhaust ports that open and close the exhaust ports 4a and 4b at predetermined timings, respectively.
Exhaust valves 6a and 6b are provided. In addition, the high-load intake passage 7b of the intake manifold is connected to the high-load intake port 3b of each cylinder 2a to 2d.
is provided with an on-off valve 7 that is opened during high-load operation of the engine, and when the engine is operated at low load, the air is connected to each cylinder 2a to 2d from only the low-load intake port 3a communicating with the low-load intake passage 7a. While supplying intake air, during high-load operation of the engine, intake air is supplied from both the low-load and high-load intake ports 3a and 3b. On the other hand, the first and second exhaust ports 4a and 4b of each cylinder 2a to 2d are communicated with first and second exhaust passages 7c and 7d, respectively.

エンジン本体1上部には、各気筒2a〜2dに
おける低負荷用および高負荷用吸気弁5a,5b
を開閉制御する吸気側動弁機構8aと、第1およ
び第2排気弁6a,6bを開閉制御する排気側動
弁機構8bとが設けられている。
At the top of the engine body 1, low-load and high-load intake valves 5a and 5b for each cylinder 2a to 2d are provided.
An intake side valve operating mechanism 8a that controls the opening and closing of the first and second exhaust valves 6a and 6b is provided, and an exhaust side valve operating mechanism 8b that controls the opening and closing of the first and second exhaust valves 6a and 6b.

吸気側動弁機構8aは、エンジン本体1の吸気
側にエンジン本体中心線lと平行に配されタイミ
ングベルト110を介してエンジンのクランクシ
ヤフト(図示せず)によつて回転駆動される吸気
側カムシヤフト9を有し、該吸気側カムシヤフト
9には各気筒2a〜2dの低負荷用および高負荷
用吸気弁5a,5bに対応するカム面9a,9b
が同形状に形成され、この吸気側カムシヤフト9
の回転により低負荷用吸気弁5aと高負荷用吸気
弁5bが開閉されるようになつている。一方排気
側動弁機構8bは、エンジン本体1の排気側にエ
ンジン本体中心線lと平行に配され同じくタイミ
ングベルト110により回動駆動される排気側カ
ムシヤフト10を有し、該排気側カムシヤフト1
0には各気筒2a〜2dの第1、第2排気弁6
a,6bに対応するカム面10a,10bが同形
状に形成され、この排気側カムシヤフト10の回
転により第1排気弁6aと第2排気弁6bが開閉
されるようになつている。
The intake side valve mechanism 8a is an intake side camshaft that is disposed on the intake side of the engine body 1 in parallel with the engine body center line l and is rotationally driven by the engine crankshaft (not shown) via the timing belt 110. 9, and the intake side camshaft 9 has cam surfaces 9a, 9b corresponding to the low-load and high-load intake valves 5a, 5b of each cylinder 2a to 2d.
are formed in the same shape, and this intake side camshaft 9
The rotation of the engine opens and closes the low-load intake valve 5a and the high-load intake valve 5b. On the other hand, the exhaust side valve mechanism 8b has an exhaust side camshaft 10 arranged parallel to the engine body center line l on the exhaust side of the engine body 1 and rotationally driven by a timing belt 110.
0 includes the first and second exhaust valves 6 of each cylinder 2a to 2d.
Cam surfaces 10a and 10b corresponding to a and 6b are formed in the same shape, and rotation of the exhaust side camshaft 10 opens and closes the first exhaust valve 6a and the second exhaust valve 6b.

上記吸気側動弁機構8aには、第1気筒2aと
第2気筒2bの互いに隣接する両高負荷用吸気弁
5b,5b、および第3気筒2cと第4気筒2d
の互いに隣接する両高負荷用吸気弁5b,5bの
バルブタイミングをそれぞれ可変制御する、本考
案に係る2つの第1可変機構11,11が設けら
れており、また排気側動弁機構8bにも、互いに
隣接する第1、第2気筒2a,2bの第2排気弁
6b,6bと、第3、第4気筒2c,2dの第2
排気弁6b,6bのバルブタイミングをそれぞれ
可変制御する、本考案に係る2つの第2可変機構
12,12が設けられている。
The intake valve mechanism 8a includes two adjacent high-load intake valves 5b, 5b of the first cylinder 2a and the second cylinder 2b, and the third cylinder 2c and the fourth cylinder 2d.
Two first variable mechanisms 11, 11 according to the present invention are provided to variably control the valve timings of the two adjacent high-load intake valves 5b, 5b, respectively, and the exhaust side valve operating mechanism 8b is also provided with two first variable mechanisms 11, 11 according to the present invention. , second exhaust valves 6b and 6b of the first and second cylinders 2a and 2b adjacent to each other, and second exhaust valves of the third and fourth cylinders 2c and 2d.
Two second variable mechanisms 12, 12 according to the present invention are provided to variably control the valve timing of the exhaust valves 6b, 6b, respectively.

これら第1および第2可変機構11,12は、
第3図に拡大図示するように同じ構成によつてな
る。
These first and second variable mechanisms 11 and 12 are
As shown in an enlarged view in FIG. 3, they have the same structure.

すなわち、第1可変機構11は、カム9bとバ
ルブステムとの間に介在するタペツト13と、該
タペツトが摺動自在に嵌装保持される嵌装孔14
aを有するとともに、上記エンジン本体1の円弧
状面1aに対応して円弧状に形成された下面14
bを有し、上記吸気側カムシヤフト9に対して回
動自在に支承されて該吸気側カムシヤフト9のま
わりを回動しうる回動部材14と、該回動部材1
4をエンジンの運転状態に応じて上記吸気側カム
シヤフト9の回転軸まわりに回動させる操作装置
15とを備えてなる(第2可変機構12は第1可
変機構11の構成要素に「′」(ダツシユ)を付し
て表わす)。
That is, the first variable mechanism 11 includes a tappet 13 interposed between the cam 9b and the valve stem, and a fitting hole 14 into which the tappet is slidably fitted and held.
a, and a lower surface 14 formed in an arcuate shape corresponding to the arcuate surface 1a of the engine main body 1.
b, a rotating member 14 rotatably supported on the intake camshaft 9 and capable of rotating around the intake camshaft 9, and the rotating member 1
4 around the rotation axis of the intake camshaft 9 according to the operating state of the engine. ).

回動部材14は、吸気側カムシヤフト9に支承
される部分において上下に分割されており、ボル
ト16,16で一体に結合されている。操作装置
15は、エンジン本体中心線lに平行に配され2
つの第1可変機構11,11の各回動部材14,
14の上端部を連結する揺動軸17と、この揺動
軸17に対して直角に配され該揺動軸17の中央
部に係合するとともに第2図中左右方向に往復動
自在に形成された往復動軸18と、例えばモータ
の回転運動を往復運動に変換して上記往復動軸1
8を上記方向に往復動させ、揺動軸17を介して
回動部材14を前記のように回動させる駆動装置
19とを備えてなる。この駆動装置19には、エ
ンジンの回転数を検出する回転数センサ20が出
力する回転数信号S1と、エンジン負荷を検出する
センサ21が出力する負荷信号S2が入力され、エ
ンジンの特定運転時としての高負荷高回転時に該
駆動装置19は、前記往復動軸18を第2図中右
方向に移動させるように駆動される。このような
往復動軸18の移動により、揺動軸17は吸気側
カムシヤフト9の回転方向Xと同方向(第2図中
時計方向)に回動し、回動部材14,14が吸気
側カムシヤフト9を中心に上記X方向に回動され
る。
The rotating member 14 is divided into upper and lower parts at a portion supported by the intake side camshaft 9, and is integrally connected with bolts 16,16. The operating device 15 is arranged parallel to the center line l of the engine body 2.
each rotating member 14 of the two first variable mechanisms 11, 11,
14, and a swing shaft 17 that connects the upper end of the swing shaft 14, and a swing shaft 17 that is disposed at right angles to the swing shaft 17, engages with the center of the swing shaft 17, and is formed to be able to reciprocate in the left-right direction in FIG. The reciprocating shaft 18, for example, converts the rotational motion of a motor into reciprocating motion, and
8 in the above-mentioned direction, and a drive device 19 that rotates the rotating member 14 as described above via the swing shaft 17. A rotation speed signal S 1 outputted by a rotation speed sensor 20 that detects the engine rotation speed, and a load signal S 2 outputted from a sensor 21 that detects the engine load are input to the drive device 19 , and the engine is operated in a specific manner. The drive device 19 is driven to move the reciprocating shaft 18 rightward in FIG. 2 at times when the load is high and the rotation is high. Due to such movement of the reciprocating shaft 18, the swing shaft 17 rotates in the same direction as the rotation direction X of the intake camshaft 9 (clockwise in FIG. 2), and the rotating members 14, 9 in the X direction.

高負荷用吸気弁5bは通常の吸、排気弁と同様
に、バルブガイド32に摺動自在に支承されバル
ブスプリング31によつて上方すなわち弁閉方向
に付勢されているが、吸気側カムシヤフト9が上
記X方向に回転してそのカム面9bがタペツト1
3の受圧部13aを押圧し、該タペツト13が嵌
挿孔14a内を押し下げられると、上記バルブス
プリング31の付勢力に抗して該タペツト13の
押圧部13bによつて押し下げられ、高負荷用吸
気ポート3bを開く(勿論低負荷用吸気弁5aも
同様にして開かれる)。回動部材14,14が上
述のようにX方向に回動されると、タペツト1
3,13も回動部材14,14とともに移動し、
吸気側カムシヤフト9の特定角度位置に対するカ
ム面9b,9bとタペツト受圧部13a,13a
の接触位置が吸気側カムシヤフト9の回転方向X
に対して変化して、各高負荷用吸気弁5b,5b
のバルブタイミングがずらされる。以上の動作は
第2可変機構12により、同時に第2排気バルブ
6bに対しても行なわれる。
Like normal intake and exhaust valves, the high-load intake valve 5b is slidably supported by a valve guide 32 and biased upward, that is, in the valve closing direction, by a valve spring 31. rotates in the X direction, and its cam surface 9b touches the tappet 1.
When the tappet 13 is pressed down in the insertion hole 14a by pressing the pressure receiving part 13a of the tappet 13, the tappet 13 is pushed down by the pressing part 13b of the tappet 13 against the biasing force of the valve spring 31. Open the intake port 3b (of course, the low-load intake valve 5a is also opened in the same way). When the rotating members 14, 14 are rotated in the X direction as described above, the tappet 1
3 and 13 also move together with the rotating members 14 and 14,
Cam surfaces 9b, 9b and tappet pressure receiving portions 13a, 13a for specific angular positions of the intake side camshaft 9
The contact position is in the rotation direction of the intake side camshaft 9
, each high-load intake valve 5b, 5b
valve timing is shifted. The above operation is simultaneously performed on the second exhaust valve 6b by the second variable mechanism 12.

タペツト13の構造について説明すれば、タペ
ツト13はほぼ円筒形状をしており、第4図に示
すように内部は中空でボツクス状になつている。
該タペツト13は、カム面9bと当接する受圧面
を備えたほぼ円板状の受圧部13aと、カムシヤ
フトの回転軸を中心とする円弧状の曲面、あるい
は該円弧を含む球面か、該円弧を含みカムシヤフ
ト9の方向に他の曲率を有するような3次元的曲
面を備え、バルブステムの頂部に当接してカムか
らの力をバルブステムに伝達する押圧部13b
と、外面が嵌装孔14aの内面に摺接し、該受圧
部13aと押圧部13bを連結する円筒状の連結
部13cとを備えている、この連結部13cの外
面は、中央部が外側に僅かにふくらむように湾曲
しており、タペツト摺動方向とバルブステム運動
方向とが一致しない場合においても、嵌装孔14
aの内面との接触圧が大きくならないようになつ
ている。受圧部13aは下側に環状の脚部13d
を備えており、該脚部13dの外周面と、連結部
13cの内周面とが接触するような状態で、受圧
部13aは連結部13cに嵌合している。また受
圧部13aの外径と、連結部13cの外径とは同
じになつており、タペツト13は嵌装孔14a内
をなめらかに摺動する。
To explain the structure of the tapepet 13, the tapepet 13 has a substantially cylindrical shape, and as shown in FIG. 4, the inside is hollow and box-shaped.
The tappet 13 includes a substantially disk-shaped pressure receiving portion 13a having a pressure receiving surface that comes into contact with the cam surface 9b, and a circular arc-shaped curved surface centered on the rotation axis of the camshaft, a spherical surface including the circular arc, or a spherical surface including the circular arc. a pressing portion 13b having a three-dimensional curved surface having a different curvature in the direction of the camshaft 9 and abutting against the top of the valve stem to transmit force from the cam to the valve stem;
and a cylindrical connecting part 13c whose outer surface is in sliding contact with the inner surface of the fitting hole 14a and which connects the pressure receiving part 13a and the pressing part 13b. The fitting hole 14 is curved so as to bulge slightly, and even if the sliding direction of the tappet and the direction of valve stem movement do not match, the fitting hole 14
The contact pressure with the inner surface of a is prevented from increasing. The pressure receiving part 13a has an annular leg part 13d on the lower side.
The pressure receiving part 13a is fitted into the connecting part 13c in such a state that the outer peripheral surface of the leg part 13d and the inner peripheral surface of the connecting part 13c are in contact with each other. Further, the outer diameter of the pressure receiving portion 13a and the outer diameter of the connecting portion 13c are the same, so that the tappet 13 slides smoothly within the fitting hole 14a.

第4図は、タペツト13の摺動方向とバルブス
テムの運動方向とが一致している場合を示してお
り、この状態ではバルブステムは押圧部13bの
押圧面との間にすべりを生じない。第5図は第4
図の状態から回動部材14がカムシヤフト9のま
わりに回動して、タペツトの運動方向と、バルブ
ステムの運動方向とが一致しなくなつた場合であ
る。この状態ではタペツト13が嵌装孔14a内
を摺動すると、バルブステムは押圧部13bの押
圧面上をすべりつつ上下動して吸気又は排気ポー
トを開閉する。
FIG. 4 shows a case where the sliding direction of the tappet 13 and the moving direction of the valve stem coincide, and in this state, the valve stem does not slip between the pressing surface of the pressing portion 13b. Figure 5 is the 4th
This is a case where the rotating member 14 rotates around the camshaft 9 from the state shown in the figure, and the direction of movement of the tappet and the direction of movement of the valve stem no longer match. In this state, when the tappet 13 slides within the fitting hole 14a, the valve stem slides on the pressing surface of the pressing portion 13b and moves up and down to open and close the intake or exhaust port.

(第1実施例の作動) 以上の装置において、エンジンの低負荷低回転
運転時には、第1および第2可変機構11,12
が非作動状態にあり、各気筒2a〜2dにおける
低負荷用、高負荷用吸気弁5a,5bおよび第
1、第2排気弁6a,6bはそれぞれ吸気側およ
び排気側動弁機構8a,8bによつて各々所定の
バルブタイミングで開閉制御される。すなわち第
6図実線で示すように、第1および第2排気弁6
a,6bのバルブタイミングは共に、ピストンの
下死点付近で開いたのち上死点付近で閉じるよう
に制御され、また低負荷用および高負荷用吸気弁
5a,5bのバルブタイミングは共に排気弁6
a,6bとのオーバーラツプ期間を短くしてピス
トン上死点付近で開いたのち下死点付近で閉じる
ように制御される。また、各気筒2a〜2dにお
ける高負荷用吸気通路7bは開閉弁7の閉作動に
つて閉塞されており、低負荷用吸気ポート3aの
みから吸気がなされる。本例では、この状態は、
第4図に示すような回動部材14の非回転位置で
生じる。
(Operation of the first embodiment) In the above device, when the engine is operated at low load and low rotation speed, the first and second variable mechanisms 11 and 12
are in a non-operating state, and the low-load and high-load intake valves 5a and 5b and the first and second exhaust valves 6a and 6b in each cylinder 2a to 2d are connected to the intake and exhaust side valve mechanisms 8a and 8b, respectively. Therefore, the opening and closing of each valve is controlled at predetermined valve timing. That is, as shown by the solid line in FIG. 6, the first and second exhaust valves 6
The valve timings of both valves a and 6b are controlled to open near the bottom dead center of the piston and close near the top dead center, and the valve timings of the low-load and high-load intake valves 5a and 5b are both controlled to match the exhaust valve. 6
The overlap period with a and 6b is shortened, and the piston is controlled to open near the top dead center and then close near the bottom dead center of the piston. Furthermore, the high-load intake passages 7b in each of the cylinders 2a to 2d are closed when the on-off valves 7 are closed, and air is taken in only from the low-load intake ports 3a. In this example, this state is
This occurs in the non-rotational position of the pivoting member 14 as shown in FIG.

一方エンジンの高負荷低回転運転時には、高負
荷用吸気通路7bの開閉弁7が開かれ、低負荷用
吸気ポート3aに加えて高負荷用吸気ポート3b
からも吸気が行なわれるが、第1および第2可変
機構11,12は共に非作動の状態に設定されて
おり、吸、排気弁5a,5bと6a,6bのオー
バーラツプ期間が短く、吸気の吹き返しが防止さ
れ、充填効率が高められる。
On the other hand, during high-load, low-speed operation of the engine, the on-off valve 7 of the high-load intake passage 7b is opened, and in addition to the low-load intake port 3a, the high-load intake port 3b is opened.
Intake is also performed from is prevented and filling efficiency is increased.

エンジンの高負荷高回転運転時には、第1およ
び第2可変機構11,12が共に作動され、第2
可変機構12の回動部材14が第5図で示す位置
に回動して、第6図仮想線で示すように、各気筒
2a〜2dにおける1対の排気弁6a,6bのう
ち第2排気弁6bのバルブタイミングが遅れ側に
変化し、また1対の吸気弁5a,5bのうち高負
荷用吸気弁5bのバルブタイミングも同様に第1
可変機構11によつて遅れ側に変化するように制
御される。また各気筒2a〜2dの高負荷用吸気
通路7bは開閉弁7の開作動により開かれてお
り、前述した高負荷低回転運転時と同様に高負荷
用吸気ポート3bからも吸気がなされる。
During high-load, high-speed engine operation, both the first and second variable mechanisms 11 and 12 are operated, and the second
The rotating member 14 of the variable mechanism 12 rotates to the position shown in FIG. 5, and as shown by the imaginary line in FIG. The valve timing of the valve 6b changes to the delayed side, and the valve timing of the high-load intake valve 5b of the pair of intake valves 5a and 5b similarly changes to the first one.
It is controlled by the variable mechanism 11 to change to the delay side. Further, the high-load intake passages 7b of each cylinder 2a to 2d are opened by the opening operation of the on-off valve 7, and air is also taken in from the high-load intake port 3b in the same manner as during the high-load, low-speed operation described above.

従つて、高負荷高回転時においてはオーバーラ
ツプ期間が長くなり、高充填効率を得ることがで
きる。本例のような、バルブタイミング制御を行
うことにより、低回転運転時には、残留既燃ガス
の量を減少させて充填効率を高め得るとともに、
燃焼の安定性を向上させることができ、高負荷高
回転時においては、充填効率が高められることに
より高出力が得られる。
Therefore, under high load and high rotation, the overlap period becomes longer and high filling efficiency can be obtained. By performing valve timing control as in this example, during low-speed operation, it is possible to reduce the amount of residual burnt gas and increase charging efficiency.
Combustion stability can be improved, and at times of high load and high rotation, high power can be obtained by increasing charging efficiency.

本例のタペツト13は、連結部13c中央がわ
ずかに外側にふくらんでいるので、高負荷高回転
時において、第5図のようにタペツト摺動方向と
バルブステム運動方向とがずれた場合に、タペツ
トのエンジン当たりを回避することができる。こ
れによつて、タペツトの摺動抵抗の増大を抑える
ことができ、従つて、このような状態でも装置の
高い応答性及び信頼性を維持することができる。
In the tappet 13 of this example, the center of the connecting portion 13c is slightly bulged outward, so that when the tappet sliding direction and the valve stem movement direction deviate as shown in FIG. 5 during high load and high rotation, It is possible to avoid the tappet hitting the engine. This makes it possible to suppress an increase in the sliding resistance of the tapepet, and therefore maintain high responsiveness and reliability of the device even under such conditions.

(第2実施例の説明) 上記実施例は、低負荷用と高負荷用の吸気ポー
トを有するデユアルインダクシヨン方式の4バル
ブエンジンに本考案が適用されたものであるが、
本考案はその他のエンジンに対しても勿論適用可
能である。例えば本考案は第7図に示すように、
1つの気筒102a〜102dに対して単一の吸
気ポート103と単一の排気ポート104とを有
する通常の4気筒エンジンに対しても適用でき、
この場合、互いに隣り合う第1気筒102aと第
2気筒102b、および第3気筒102cと第4
気筒102dにおいて吸気ポート103,103
(または排気ポート104,104)を隣接配置
し、動弁系のカムシヤフト中心sにおいてその吸
気弁同士(または排気弁同士)間に跨つて前述の
可変機構11,12と同様の可変機構111,1
12を配設すればよい。
(Description of Second Embodiment) In the above embodiment, the present invention is applied to a dual induction 4-valve engine having intake ports for low load and high load.
The present invention is of course applicable to other engines as well. For example, the present invention, as shown in Figure 7,
It can also be applied to a normal four-cylinder engine having a single intake port 103 and a single exhaust port 104 for each cylinder 102a to 102d,
In this case, the first cylinder 102a and the second cylinder 102b are adjacent to each other, and the third cylinder 102c and the fourth cylinder are adjacent to each other.
Intake ports 103, 103 in cylinder 102d
(or exhaust ports 104, 104) are arranged adjacent to each other, and a variable mechanism 111, 1 similar to the above-mentioned variable mechanisms 11, 12 is installed between the intake valves (or between the exhaust valves) at the camshaft center s of the valve train.
12 may be provided.

またタペツト13は第1実施例と同一の構造の
タペツトが用いられる。
Further, as the tappet 13, a tappet having the same structure as in the first embodiment is used.

このようにして吸気弁のバルブタイミングを可
変とした場合にはバルブタイミングは第8図に示
されるように設定される。すなわちエンジンの高
負荷高回転運転時には、第8図仮想線で示すよう
に吸気弁のバルブタイミングが遅れ側にずらされ
る。このように吸気の慣性作用の大きい遅れ側に
開弁期間を設定することにより吸気の充填効率が
向上され、出力性能が向上する。
When the valve timing of the intake valve is made variable in this way, the valve timing is set as shown in FIG. That is, when the engine is operated under high load and high speed, the valve timing of the intake valve is shifted to the delayed side as shown by the imaginary line in FIG. In this way, by setting the valve opening period on the delayed side where the inertial effect of the intake air is large, the filling efficiency of the intake air is improved, and the output performance is improved.

本例においても第1実施例と同様、タペツトの
エツジ当たりが回避されるのでバルブタイミング
装置の応答性及び信頼性を確保することができ
る。
In this embodiment as well, as in the first embodiment, contact with the edge of the tappet is avoided, so that responsiveness and reliability of the valve timing device can be ensured.

また前記第1図の実施例においては、吸、排気
弁5b,6bのバルブタイミングを可変制御する
エンジンの特定運転時をエンジンの高負荷高回転
時としたが、その他の運転時においても必要に応
じてバルブタイミングを可変制御してもよい。
In addition, in the embodiment shown in FIG. 1, the specific engine operation during which the valve timing of the intake and exhaust valves 5b and 6b is variably controlled is set as the engine's high-load, high-speed rotation, but it is also necessary during other operations. Valve timing may be variably controlled accordingly.

さらにまた前記第1図の実施例においては、各
気筒2a〜2dにおける1対の吸気ポート3a,
3bおよび1対の吸気弁5a,5bと、1対の排
気ポート4a,4bおよび1対の排気弁6a,6
bとを、それぞれエンジン本体1の吸気側と排気
側とに分けて中心線l方向に平行に配置し、かつ
高負荷用吸気弁5a,5b同士および第2排気弁
6b,6b同士を隣接配置したが、その他の配置
構成にしてもよいことは勿論である。しかし前記
第1図の実施例におけるような配置構成は、各カ
ムシヤフト9,10の軸受部30,30の配置を
簡素化し、隣り合う気筒(2aと2b,2cと2
d)間の高負荷用吸気弁5b,5b同士および第
2排気弁6b,6b同士をそれぞれ1つの可変機
構11,12で制御できるので有利である。
Furthermore, in the embodiment shown in FIG. 1, a pair of intake ports 3a,
3b, a pair of intake valves 5a, 5b, a pair of exhaust ports 4a, 4b, and a pair of exhaust valves 6a, 6.
b are divided into the intake side and the exhaust side of the engine body 1 and arranged parallel to the center line l direction, and the high-load intake valves 5a and 5b and the second exhaust valves 6b and 6b are arranged adjacent to each other. However, it goes without saying that other arrangements may be used. However, the arrangement as in the embodiment shown in FIG. 1 simplifies the arrangement of the bearing parts 30, 30 of each camshaft 9, 10, and
It is advantageous that the high-load intake valves 5b, 5b between d) and the second exhaust valves 6b, 6b can be controlled by one variable mechanism 11, 12, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案をデユアルインダクシヨン方式
の4気筒エンジンに適用した実施例を示す一部破
断平面図、第2図は第1図の実施例の縦断面図、
第3図は第1図の実施例の可変機構部分の拡大斜
視図、第4図及び第5図は第1図の実施例の可変
機構のタペツトまわりを示す縦断面図、第6図は
第1図の実施例における吸、排気弁のバルブタイ
ミングを示す説明図、第7図は本考案を通常の4
気筒エンジンに適用した実施例を示す概略図、第
8図は第7図の実施例における吸、排気弁のバル
ブタイミングを示す説明図である。 5a,5b……吸気弁、5s……バルブステ
ム、6a,6b……排気弁、9,10……カムシ
ヤフト、9a,9b,10a,10b……カム
面、11……第1可変機構、12……第2可変機
構、13,13′……タペツト、13a,13′a
……タペツト受圧部、13b,13′b……タペ
ツト押圧部、14,14′……回動部材、14a,
14′a……嵌挿孔、15,15′……操作装置。
FIG. 1 is a partially cutaway plan view showing an embodiment in which the present invention is applied to a dual induction four-cylinder engine, FIG. 2 is a longitudinal sectional view of the embodiment shown in FIG. 1,
3 is an enlarged perspective view of the variable mechanism portion of the embodiment shown in FIG. 1, FIGS. 4 and 5 are longitudinal sectional views showing the area around the tappet of the variable mechanism of the embodiment shown in FIG. Fig. 1 is an explanatory diagram showing the valve timing of the intake and exhaust valves in the embodiment, and Fig. 7 is an explanatory diagram showing the valve timing of the intake and exhaust valves in the embodiment.
A schematic diagram showing an embodiment applied to a cylinder engine, and FIG. 8 is an explanatory diagram showing valve timings of intake and exhaust valves in the embodiment of FIG. 7. 5a, 5b... Intake valve, 5s... Valve stem, 6a, 6b... Exhaust valve, 9, 10... Camshaft, 9a, 9b, 10a, 10b... Cam surface, 11... First variable mechanism, 12 ... Second variable mechanism, 13, 13'... Tappet, 13a, 13'a
... Tappet pressure receiving part, 13b, 13'b... Tappet pressing part, 14, 14'... Rotating member, 14a,
14'a... Fitting hole, 15, 15'... Operating device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] カムとバルブステムとの間に、嵌装孔に摺動自
在に嵌装されたタペツトを介装してなるエンジン
のバルブ駆動装置において、前記タペツトの前記
嵌装孔に嵌装される外周壁が、その摺動方向中心
部が僅かに外側にふくらむように湾曲形成される
とともに、前記タペツトの前記バルブステムとの
当接面が、少なくともカムシヤフトの回転軸と直
交する平面内において、前記バルブステム方向に
突出する曲面に形成されたことを特徴とするエン
ジンのバルブ駆動装置。
In an engine valve driving device comprising a tappet slidably fitted into a fitting hole between a cam and a valve stem, an outer peripheral wall of the tappet fitted into the fitting hole is provided. , the center part in the sliding direction is curved so as to bulge slightly outward, and the contact surface of the tappet with the valve stem is formed in the direction of the valve stem at least in a plane orthogonal to the rotation axis of the camshaft. An engine valve drive device characterized by being formed into a curved surface that protrudes from above.
JP4614783U 1983-03-30 1983-03-30 engine valve drive Granted JPS59157508U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4614783U JPS59157508U (en) 1983-03-30 1983-03-30 engine valve drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4614783U JPS59157508U (en) 1983-03-30 1983-03-30 engine valve drive

Publications (2)

Publication Number Publication Date
JPS59157508U JPS59157508U (en) 1984-10-23
JPH0220406Y2 true JPH0220406Y2 (en) 1990-06-04

Family

ID=30176691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4614783U Granted JPS59157508U (en) 1983-03-30 1983-03-30 engine valve drive

Country Status (1)

Country Link
JP (1) JPS59157508U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538415A (en) * 1976-07-13 1978-01-25 Toyota Motor Corp Hydraulic valve lifter assembly for overhead cam-type engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124208U (en) * 1980-02-23 1981-09-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538415A (en) * 1976-07-13 1978-01-25 Toyota Motor Corp Hydraulic valve lifter assembly for overhead cam-type engine

Also Published As

Publication number Publication date
JPS59157508U (en) 1984-10-23

Similar Documents

Publication Publication Date Title
CN1965150B (en) Valve gear for multi-cylinder internal combustion engine
JP3783589B2 (en) Variable valve operating device for internal combustion engine
JPH0131003B2 (en)
JPH0128205B2 (en)
JPH0220406Y2 (en)
US20060102122A1 (en) Variable valve train of internal combustion engine
JPH0580561B2 (en)
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP4031973B2 (en) Variable valve operating device for internal combustion engine
JPS5946308A (en) Valve timing control device of engine
JP4157649B2 (en) Variable valve operating device for internal combustion engine
JP4085886B2 (en) Variable valve operating device for internal combustion engine
JPS61129411A (en) Variable change mechanism of valve action in engine
JP4367317B2 (en) Variable valve operating device for internal combustion engine
JP5020339B2 (en) Variable valve operating device for internal combustion engine
JPH0475366B2 (en)
JPH0450457Y2 (en)
JPH0125881B2 (en)
JPH0355643B2 (en)
JPH0627492B2 (en) Intake / exhaust valve lift control device for internal combustion engine
JPH039026A (en) Intake and exhaust device for internal combustion engine
JPH0359244B2 (en)
JPS59188010A (en) Valve timing control device for engine
JPS62174513A (en) Intake pipe control valve
JPH0454043B2 (en)