JPH02202329A - Ac motor - Google Patents

Ac motor

Info

Publication number
JPH02202329A
JPH02202329A JP1018399A JP1839989A JPH02202329A JP H02202329 A JPH02202329 A JP H02202329A JP 1018399 A JP1018399 A JP 1018399A JP 1839989 A JP1839989 A JP 1839989A JP H02202329 A JPH02202329 A JP H02202329A
Authority
JP
Japan
Prior art keywords
length
magnet
magnetic poles
motor
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1018399A
Other languages
Japanese (ja)
Other versions
JP2649403B2 (en
Inventor
Yasumi Kawabata
康己 川端
Ryoji Mizutani
良治 水谷
Yukio Inaguma
幸雄 稲熊
Taiji Ootatsu
泰治 大立
Toshifumi Arakawa
俊史 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP1018399A priority Critical patent/JP2649403B2/en
Publication of JPH02202329A publication Critical patent/JPH02202329A/en
Application granted granted Critical
Publication of JP2649403B2 publication Critical patent/JP2649403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To reduce the cogging torque of an apparatus to almost zero by specifying the circumferential length L of a permanent magnet. CONSTITUTION:The external cylinder of an apparatus forms a stator 34, where magnetic poles 33 are arranged, and the internal cylinder thereof a rotor 38 where magnets 36 are arranged. Further, the circumferential length L of each permanent magnet (20, 36) is determined as follows: L=n.Pp+a.g+b.gp+c.Pp (when n is an arbitrary integer, a is 0.4 to 0.6, b is 0.3 to 0.5 and c is -0.06 to -0.04.) In this manner, the rotation of the title motor is made smooth.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、多数の磁極を備えるステータと多数の永久磁
石を備えるロータとを有する交流モータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an AC motor having a stator with a large number of magnetic poles and a rotor with a large number of permanent magnets.

[従来の技術] 上記交流モータでは、回転時の磁極と永久磁石との位置
関係により、コイル電流とは無関係に出力トルクが変動
し、いわゆるコギングトルクが発生する。従来より、こ
のコギングトルクを低減し、交流モータの回転をスムー
ズにするために、様々な提案がなされている。品も単純
には、磁極と磁石との間の距離(ギャップ)を大きくす
れはよいのであるが、これではモータの出力トルクが低
下し、効率が悪くなる。それに対し、例えば特開昭59
−1714348号公報では、多極着磁磁石の磁極の厚
みを周方向で変えることにより、コギングトルクを理論
的にゼロにすることができると述べている。
[Prior Art] In the AC motor described above, the output torque fluctuates regardless of the coil current due to the positional relationship between the magnetic poles and the permanent magnets during rotation, and so-called cogging torque occurs. Conventionally, various proposals have been made to reduce this cogging torque and smoothen the rotation of the AC motor. Simply increasing the distance (gap) between the magnetic poles and the magnet would be a good idea, but this would reduce the output torque of the motor and reduce efficiency. On the other hand, for example,
Publication No. 1714348 states that the cogging torque can be theoretically reduced to zero by changing the thickness of the magnetic poles of a multipolar magnetized magnet in the circumferential direction.

ただし、この場合の磁石は1つの円環状連続体である。However, the magnet in this case is one annular continuous body.

特開昭[32−104459号では四角形の磁石の角を
削って六角形にして、コギングトルクを低減しようとし
ている。
In Japanese Patent Application Laid-Open No. 32-104459, the corners of a square magnet are cut into hexagons in order to reduce cogging torque.

なお、従来、永久磁石はフェライト磁石が一般的であっ
たが、近年、フェライトよりも更に磁気特性の優れた、
すなわち残留磁束密度および保持力の大きい、希土類磁
石が用いられつつある。
In the past, ferrite magnets were commonly used as permanent magnets, but in recent years, magnets with even better magnetic properties than ferrite have been used.
That is, rare earth magnets with high residual magnetic flux density and high coercive force are being used.

[発明が解決しようとする課題] 磁石の形状によりコギングトルクを低減する場合には、
磁石をそのような形状に加工することが必要となる。し
かし、フェライト磁石や上記希土類磁石は加工が困難な
ことが多く、成形加工のコストアップ要因となる。また
、たとえ加工ができたとしても、最適な磁石形状は、磁
極ピッチ、磁極間ギャップ、磁極−磁石間のギャップ等
の大きさにより異なってくるため、それらの異なるモー
タを設計する度に最適形状を設計し直さなければならな
いという面倒さもある。さらに、磁石の角を削る等の手
段は、部分的に磁石と磁極との距離を大きくすることに
他ならず、多少の出力トルクの低下が避けられない。
[Problem to be solved by the invention] When reducing cogging torque by changing the shape of the magnet,
It is necessary to process the magnet into such a shape. However, ferrite magnets and the above-mentioned rare earth magnets are often difficult to process, which increases the cost of molding. Furthermore, even if machining is possible, the optimal magnet shape will differ depending on the size of the magnetic pole pitch, the gap between magnetic poles, the gap between magnetic poles and magnets, etc., so each time a motor with these different shapes is designed, the optimal shape There is also the hassle of having to redesign the system. Furthermore, measures such as cutting the corners of the magnets only partially increase the distance between the magnets and the magnetic poles, which inevitably results in some reduction in the output torque.

上記2つの従来技術は共に、磁極−磁石間のギヤ・ンブ
を変えてコギングトルクを小さくしようとするものであ
り、そのために、■成形加工に伴うコストアップ、■出
力トルクの低下、という問題があった。
Both of the above two conventional technologies attempt to reduce the cogging torque by changing the gear/movement between the magnetic poles and the magnet, and as a result, there are problems such as: (1) increased cost due to molding process, (2) decreased output torque. there were.

本発明は、磁極−磁石間ギャップを均一とするシンプル
な形状をとることにより、出力トルクの低下を防止する
と共に、成形を容易にして加工のコストを低くした上で
、最適な寸法を選ぶことにより、コギングトルクを大幅
に小さくする(ゼロにする)ことを可能にする。すなわ
ち、本発明は、モータの出力トルクをできるだけ大きく
してモータの効率を良好なものとしつつ、そのための磁
石形状の設計・製造の面倒さをなくして、様々な磁極ピ
・ソチ、磁極間ギヤ・ンプ、磁極−磁石間のギャップの
大きさに対して一般的にコギングトルクをほぼゼロとす
る交流モータを提供するものである。
The present invention prevents a decrease in output torque by adopting a simple shape with a uniform gap between the magnetic poles and magnets, and also makes it easy to form and reduce processing costs, and allows selection of optimal dimensions. This makes it possible to significantly reduce cogging torque (to zero). That is, the present invention improves motor efficiency by increasing the output torque of the motor as much as possible, and eliminates the trouble of designing and manufacturing the magnet shape for this purpose. - Provides an AC motor in which the cogging torque is generally approximately zero for the size of the gap between the pump and the magnetic poles and the magnet.

[課題を解決するための手段] 上記課題を解決する本発明では、隣接8!L極間に長さ
gpの空隙(ギャップ)を設けて円周上に一定のピッチ
ppで配列された複数の磁極を有するステータと、その
磁極に対して径方向に長さgの空隙(ギヤ・ンプ)を設
けて円周上に配列された多数の永久磁石を有するロータ
とを備える交流モータにおいて、各永久磁石の円周方向
の長さLを、L=n4Pρ+a◆g+b舎gp+c◆P
p    (1)で定め、ここで、nを任意の整数に、
aを0.4〜0.6に、bを0.3〜0.5に、 Cを
 −0,06〜−0,04にすることを特徴とする。
[Means for Solving the Problems] In the present invention that solves the above problems, adjacent 8! A stator has a plurality of magnetic poles arranged at a constant pitch pp on the circumference with a gap of length gp between the L poles, and a gap (gap) of length g in the radial direction with respect to the magnetic poles.・In an AC motor equipped with a rotor having a large number of permanent magnets arranged on the circumference, the length L in the circumferential direction of each permanent magnet is L=n4Pρ+a◆g+bgp+c◆P
p (1), where n is an arbitrary integer,
It is characterized in that a is set to 0.4 to 0.6, b is set to 0.3 to 0.5, and C is set to -0.06 to -0.04.

[作用コ 本来円形であるモータのステータ12とロータ1へとを
直線状に展開して示した第1図の模式図により説明する
。ステータ12には多数の磁極16が等ピッチPpで並
び、各磁極16の支柱部分16aにはコイルが巻かれ、
先端部分16bは支柱部分16aよりも幅広くされてい
る。隣接する磁極先端部分16b間のギャップの長さは
gpである。ロータ14には長さしの磁石20が多数、
等ピッチで並ぶが、第1図にはそのうちの1個のみを示
した。磁極先端部分16bと磁石20との間のギヤ・ン
プの長さはgである。
[The operation will be explained with reference to the schematic diagram of FIG. 1, which shows the stator 12 and rotor 1 of the motor, which are originally circular, developed in a straight line. A large number of magnetic poles 16 are arranged in the stator 12 at an equal pitch Pp, and a coil is wound around the support portion 16a of each magnetic pole 16.
The tip portion 16b is wider than the support portion 16a. The length of the gap between adjacent magnetic pole tip portions 16b is gp. The rotor 14 has many long magnets 20,
Although they are arranged at equal pitches, only one of them is shown in Figure 1. The length of the gear pump between the pole tip portion 16b and the magnet 20 is g.

ここで、この磁石20の長さしを単純に磁極ビ・ンチP
pの整数倍(L=n−Pp)とすると、磁石20に対向
する磁極間ギャップの長さ(gp)の総和は、磁石20
の位置にかかわらず、常に一定となる。このため、磁極
先端16bと磁石20間の磁束の流れが、厳密にモータ
の径方向(第1図では上下方向)のみであれは、この状
態(すなわち、L=n*Pρ)ではコギングトルクは生
じない。しかし、実際には、第2図のコンピュータシミ
ュレーション結果に示されるように、磁極先端16bの
角の部分や磁石20の角の部分で磁束は径方向から外れ
、回転方向(第1.2図では左右方向)の成分を有する
ようになる。このような場合には、コギングトルクを最
小とする磁石20の長さしは、F11極ピッチppの整
数倍からずれ、それに付加長さLαを加えた値となる。
Here, the length of this magnet 20 is simply calculated by the magnetic pole bit P.
If p is an integer multiple (L=n-Pp), the total length (gp) of the gap between the magnetic poles facing the magnet 20 is
is always constant regardless of its position. Therefore, if the flow of magnetic flux between the magnetic pole tip 16b and the magnet 20 is strictly only in the radial direction of the motor (in the vertical direction in FIG. 1), the cogging torque will not be Does not occur. However, in reality, as shown in the computer simulation results in Figure 2, the magnetic flux deviates from the radial direction at the corner of the magnetic pole tip 16b and the corner of the magnet 20, and the magnetic flux deviates from the radial direction (in Figure 1.2). It has a component in the horizontal direction). In such a case, the length of the magnet 20 that minimizes the cogging torque deviates from an integral multiple of the F11 pole pitch pp, and becomes a value obtained by adding the additional length Lα to the length.

本発明は、この付加長さを Lα=a◆g+b−gp+c−Pp      (Lり
と、磁極−磁石間ギャップ長さg、磁極間ギャップ長さ
gp、それに磁極ピッチPpの関数として定め、各々の
パラメータの係数aSb、  cを前記範囲内にしたも
のである。このように定めた理由は次の通りである。
In the present invention, this additional length is determined as a function of Lα=a◆g+b−gp+c−Pp (L), the magnetic pole-magnet gap length g, the magnetic pole gap length gp, and the magnetic pole pitch Pp, and each The parameter coefficients aSb and c are set within the above range.The reason for setting them in this way is as follows.

第1図のような配置の下で磁石20の長さしを種々に変
化させ、各長さの場合について第2図のような磁場解析
(第2図中、多数の曲線は磁束を衷す)を行って、コギ
ングトルク(ここでは、ロータ14の最大推力)がどの
ようになるかを計算した。
Under the arrangement shown in Fig. 1, the length of the magnet 20 is varied, and magnetic field analysis is performed for each length as shown in Fig. 2 (in Fig. 2, many curves indicate magnetic flux ) to calculate the cogging torque (in this case, the maximum thrust of the rotor 14).

その結果、第3図に示す通り、磁石長さLに対してコギ
ングトルクの最大値は周期的に正負に変化(発生方向が
逆転)し、コギングトルクの最大値がゼロとなるときの
磁石長さLl、L2は磁極ピッチPpの整数倍長さより
も少し長くなっている。ここで、(Ll−Pp)あるい
は(L2−2◆Pp)が付加長さLαである。
As a result, as shown in Figure 3, the maximum value of the cogging torque changes periodically between positive and negative (the direction of generation is reversed) with respect to the magnet length L, and the magnet length when the maximum value of the cogging torque becomes zero The lengths Ll and L2 are slightly longer than an integral multiple of the magnetic pole pitch Pp. Here, (Ll-Pp) or (L2-2◆Pp) is the additional length Lα.

第3図は81極間ギャップ長さgpと磁極−磁石間ギャ
ップ長さgを一定の値に固定して計算した結果のグラフ
であるが、それらを変化させて同様の解析を行った結果
得られたグラフが第4図である。
Figure 3 is a graph of the results calculated by fixing the 81-pole gap length gp and the magnetic pole-magnet gap length g to constant values, but the results were obtained by performing the same analysis by changing them. The resulting graph is shown in Figure 4.

第4図においては全てのパラメータが磁極ピッチPpで
除して一般化されているが、横軸は磁極−磁石間キャッ
プ長さg/Pp、縦軸は付加長さLα/Ppを表し、図
中の直線は各磁極間ギヤ・ンブ長さgp/Ppをパラメ
ータとして描かれている。なお、図の視認性のために磁
極間ギャップ長さgρ/Ppは2つの値の場合のみを掲
げた。第4図より、付加長さLα/Ppは他の2つのパ
ラメータg/Pp。
In Fig. 4, all parameters are generalized by dividing by the magnetic pole pitch Pp, the horizontal axis represents the magnetic pole-magnet cap length g/Pp, and the vertical axis represents the additional length Lα/Pp. The straight line inside is drawn using each magnetic pole gear length gp/Pp as a parameter. Note that for the sake of visibility in the figure, only two values of the inter-pole gap length gρ/Pp are listed. From FIG. 4, the additional length Lα/Pp is the other two parameters g/Pp.

gp/Pの一次式でほぼ表されることがわかる。すなわ
ち、 Lα/Pp=a(g/Pp)+b・(gp/P)+cあ
るいは、 Lα=a11g+ b11gρ+ C令Ppとなる。多
数回の計算を基に、この式の係数a、b、  cを求め
ると、 a=0.5、b=0.4、c = −0,05であるこ
とがわかる。更に、それらの係数の(直の変動がコギン
グトルクの大きさに及ぼす影響を解析した結果、0.4
≦a≦0.6.0.3≦b≦0.5、−0.06≦C≦
−0,04の範囲であれば、コギングトルクは最大1I
Ii(第3図のピーク高さFm)の20%程度以下に抑
えることができ、実用上問題の無いものとなることが判
明した。
It can be seen that it is approximately expressed by the linear expression gp/P. That is, Lα/Pp=a(g/Pp)+b·(gp/P)+c or Lα=a11g+b11gρ+C order Pp. When the coefficients a, b, and c of this equation are determined based on multiple calculations, it is found that a=0.5, b=0.4, and c=−0.05. Furthermore, as a result of analyzing the influence of the direct fluctuation of these coefficients on the magnitude of cogging torque, it was found that 0.4
≦a≦0.6, 0.3≦b≦0.5, -0.06≦C≦
-0.04 range, cogging torque is maximum 1I
It has been found that it can be suppressed to about 20% or less of Ii (peak height Fm in FIG. 3), and there is no problem in practical use.

[実施例] 本発明を、第5図に示すような出カフ00Wの3相交流
モータ30に適用した例を次に述べる。本実施例では、
外筒が、その内面に18個の磁極32を配列したステー
タ34となり、内筒が、その外周に6個の磁石36を配
列したロータ38となる。ステータ34の磁極32の先
端部32bは回転中心0から半径20mmの距離にあり
、その円周上の磁極ピッチはPp=2X20Xπ/1B
=6.98 mm。
[Example] An example in which the present invention is applied to a three-phase AC motor 30 with an output power of 00 W as shown in FIG. 5 will be described below. In this example,
The outer cylinder serves as a stator 34 with 18 magnetic poles 32 arranged on its inner surface, and the inner cylinder serves as a rotor 38 with 6 magnets 36 arranged on its outer periphery. The tip 32b of the magnetic pole 32 of the stator 34 is located at a distance of 20 mm radius from the rotation center 0, and the magnetic pole pitch on the circumference is Pp = 2X20Xπ/1B
=6.98 mm.

磁極間ギャップ長さは gρ=2.0mm。The gap length between magnetic poles is gρ=2.0mm.

そして、磁極−磁石間キャップ長さは g=0.9mm である。これらの値を前記式(2)に代入すると、Lα
=0.5X0.9+〇、4X2.O−0,05X6.9
B=0.90 従って、式(1)のnを2とすると、 L = 2 X 6.9B+ 0.90= 14.8 
mmとなる。
The length of the magnetic pole-magnet cap is g=0.9 mm. Substituting these values into equation (2) above, Lα
=0.5X0.9+○,4X2. O-0,05X6.9
B=0.90 Therefore, if n in equation (1) is 2, L = 2 x 6.9B+ 0.90= 14.8
It becomes mm.

このようにして磁石36の円周方向の長さを定めた交流
モータ30の回転は滑らかであり、コギングトルクはほ
ぼゼロとなる。
The AC motor 30 whose length in the circumferential direction of the magnet 36 is determined in this way rotates smoothly, and the cogging torque becomes almost zero.

なお、上記例ではn=1としても、第3図から明らかな
ように、コギングトルクはほぼゼロになるが、n=2と
した方が磁石36間の距離が小さくなり、より大きな出
力トルクが得られる。
In addition, in the above example, even if n=1, the cogging torque becomes almost zero as is clear from FIG. 3, but if n=2, the distance between the magnets 36 becomes smaller and a larger output torque is obtained. can get.

[発明の効果コ 交流モータを設計する際に、磁極ピッチ、磁極間ギャッ
プ、磁極−磁石間のギャップの諸元が定まれば、磁極に
対向する磁石の長さしを本発明に従い定めることにより
、そのモータのコギングトルクをほぼゼロとすることが
できる。これにより、コギングトルクの発生を抑えなが
ら磁極−磁石間のギャップを小さくすることができるた
め、高効率のモータが得られる。また、磁石の形状が単
純なものでよいため、加工が容易になるとともに、磁石
の形状変更に伴う出力トルクの低下(モータ効率の低下
)も避けられる。
[Effects of the invention] When designing an AC motor, once the specifications of the magnetic pole pitch, the gap between magnetic poles, and the gap between magnetic poles and magnets are determined, by determining the length of the magnet facing the magnetic pole according to the present invention. , the cogging torque of the motor can be reduced to almost zero. This makes it possible to reduce the gap between the magnetic poles and the magnets while suppressing the generation of cogging torque, resulting in a highly efficient motor. Furthermore, since the magnet may have a simple shape, processing becomes easy and a decrease in output torque (deterioration in motor efficiency) due to a change in the shape of the magnet can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁極と磁石の位置関係を示す模式図、第2図は
コンピュータシミュレーション結果である磁束線図、第
3図は磁石長さしに対するコギングトルクの変化を示す
グラフ、第4図は磁極−磁石間ギャップ長さgおよび磁
極間ギヤ・ンブ長さgpに対するコギングトルクがゼロ
となる磁石の付加長さLαの関係を磁極ピ・ンチPρに
より無次元化して示したグラフ、第5図は本発明を実施
した3相交流モータの断面図である。
Figure 1 is a schematic diagram showing the positional relationship between magnetic poles and magnets, Figure 2 is a magnetic flux line diagram that is the result of a computer simulation, Figure 3 is a graph showing changes in cogging torque with respect to magnet length, and Figure 4 is a graph showing magnetic poles. - A graph showing the relationship of the additional length Lα of the magnet at which the cogging torque becomes zero with respect to the inter-magnet gap length g and the inter-pole gear band length gp, which is made dimensionless by the magnetic pole pinch Pρ. 1 is a sectional view of a three-phase AC motor implementing the present invention.

Claims (1)

【特許請求の範囲】 隣接磁極間に長さgpの空隙を設けて円周上に一定のピ
ッチPpで配列された複数の磁極を有するステータと、
その磁極に対して径方向に長さgの空隙を設けて円周上
に配列された多数の永久磁石を有するロータとを備える
交流モータにおいて、各永久磁石の円周方向の長さLを
、 L=n・Pp+a・g+b・gp+c・Ppで定め、こ
こで、nを任意の整数に、aを0.4〜0.6に、bを
0.3〜0.5に、cを−0.06〜−0.04にする
ことを特徴とする交流モータ。
[Claims] A stator having a plurality of magnetic poles arranged at a constant pitch Pp on a circumference with a gap of length gp between adjacent magnetic poles;
In an AC motor equipped with a rotor having a large number of permanent magnets arranged on the circumference with a gap of length g in the radial direction relative to the magnetic poles, the length L in the circumferential direction of each permanent magnet is L=n・Pp+a・g+b・gp+c・Pp, where n is an arbitrary integer, a is 0.4 to 0.6, b is 0.3 to 0.5, and c is -0. An AC motor characterized in that the voltage is set to .06 to -0.04.
JP1018399A 1989-01-27 1989-01-27 AC motor Expired - Lifetime JP2649403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018399A JP2649403B2 (en) 1989-01-27 1989-01-27 AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018399A JP2649403B2 (en) 1989-01-27 1989-01-27 AC motor

Publications (2)

Publication Number Publication Date
JPH02202329A true JPH02202329A (en) 1990-08-10
JP2649403B2 JP2649403B2 (en) 1997-09-03

Family

ID=11970613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018399A Expired - Lifetime JP2649403B2 (en) 1989-01-27 1989-01-27 AC motor

Country Status (1)

Country Link
JP (1) JP2649403B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631512A (en) * 1994-04-13 1997-05-20 Toyota Jidosha Kabushiki Kaisha Synchronous motor having magnetic poles of permanent magnet and magnetic poles of a soft magnetic material
EP0901214A2 (en) * 1997-09-05 1999-03-10 Toyota Jidosha Kabushiki Kaisha Magnets containing-type alternating-current motor and method of designing the same
US6025691A (en) * 1995-05-29 2000-02-15 Toyota Jidosha Kabushiki Kaisha Synchronous motor control system and method of controlling synchronous motor
JP2001251827A (en) * 2000-03-03 2001-09-14 Hitachi Ltd Permanent magnet dynamo-electric machine and hybrid electric car using the same
JP2005269693A (en) * 2004-03-16 2005-09-29 Mitsubishi Electric Corp Permanent magnet motor
JP2010022088A (en) * 2008-07-08 2010-01-28 Kokusan Denki Co Ltd Magnet rotation type rotary electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035330B (en) * 2009-10-07 2014-09-24 阿斯莫有限公司 Motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261344A (en) * 1984-06-06 1985-12-24 Mitsubishi Chem Ind Ltd Motor
JPS6158455A (en) * 1984-08-30 1986-03-25 Mitsubishi Chem Ind Ltd Motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261344A (en) * 1984-06-06 1985-12-24 Mitsubishi Chem Ind Ltd Motor
JPS6158455A (en) * 1984-08-30 1986-03-25 Mitsubishi Chem Ind Ltd Motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631512A (en) * 1994-04-13 1997-05-20 Toyota Jidosha Kabushiki Kaisha Synchronous motor having magnetic poles of permanent magnet and magnetic poles of a soft magnetic material
US6025691A (en) * 1995-05-29 2000-02-15 Toyota Jidosha Kabushiki Kaisha Synchronous motor control system and method of controlling synchronous motor
EP0901214A2 (en) * 1997-09-05 1999-03-10 Toyota Jidosha Kabushiki Kaisha Magnets containing-type alternating-current motor and method of designing the same
US5990592A (en) * 1997-09-05 1999-11-23 Toyota Jidosha Kabushiki Kaisha Magnets containing-type alternating-current motor and method of designing the same
JP2001251827A (en) * 2000-03-03 2001-09-14 Hitachi Ltd Permanent magnet dynamo-electric machine and hybrid electric car using the same
JP2005269693A (en) * 2004-03-16 2005-09-29 Mitsubishi Electric Corp Permanent magnet motor
JP2010022088A (en) * 2008-07-08 2010-01-28 Kokusan Denki Co Ltd Magnet rotation type rotary electric machine

Also Published As

Publication number Publication date
JP2649403B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US6313558B1 (en) Electric rotary machine having concentrated winding stator
US7342338B2 (en) Permanent magnet electric motor with reduced cogging torque
US4998032A (en) Permanent magnet excited electric motor
US11456633B2 (en) Permanent magnet rotating electric machine
US6057613A (en) Hybrid stepper motor having optimized torque density
EP0841738A1 (en) Motor
JPH10285839A (en) Stator for brushless motor and circular-arc forming thereof
CN212323827U (en) Permanent magnet brushless motor and actuator and robot comprising same
KR20060090570A (en) Radial airgap, transverse flux motor
US6774521B2 (en) Brushless DC motor
US6882080B2 (en) Permanent magnet synchronous motor
JP2009118739A (en) Manufacturing method of permanent magnet type rotating electric machine, and the permanent magnet type rotating electric machine
US9559555B2 (en) Rotor and motor
KR20180134762A (en) motor
JPH06245419A (en) Yoke for motor or generator
JP4709495B2 (en) Permanent magnet embedded motor
JPH02202329A (en) Ac motor
JP2004159492A (en) Permanent magnet rotary electric machine
US6847150B2 (en) Rotating electrical machine for vehicle
JP4898692B2 (en) Rotor-stator structure for electrical machines
CN110350693A (en) Rotor assembly and magneto
JP2542600B2 (en) Segment magnet
JP2502942B2 (en) Motor
CN219351382U (en) Rotor structure and motor
JP2020022225A (en) Electric motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12