JPH02201133A - Sensing method of distribution type optical fiber sensor - Google Patents

Sensing method of distribution type optical fiber sensor

Info

Publication number
JPH02201133A
JPH02201133A JP1019996A JP1999689A JPH02201133A JP H02201133 A JPH02201133 A JP H02201133A JP 1019996 A JP1019996 A JP 1019996A JP 1999689 A JP1999689 A JP 1999689A JP H02201133 A JPH02201133 A JP H02201133A
Authority
JP
Japan
Prior art keywords
data group
averaging processing
main data
change
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1019996A
Other languages
Japanese (ja)
Other versions
JPH0786436B2 (en
Inventor
Yasuo Ozawa
保夫 小沢
Teruaki Tsutsui
筒井 輝明
Satoru Yamamoto
哲 山本
Yorio Ando
安藤 順夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP1019996A priority Critical patent/JPH0786436B2/en
Publication of JPH02201133A publication Critical patent/JPH02201133A/en
Publication of JPH0786436B2 publication Critical patent/JPH0786436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To accurately measure the temperature of an object which changes according to time or place by deciding whether the change of physical quantity in terms of time is easy or sudden based on the magnitude of a difference between a data group and a main data group obtained just before it with respect to a decision level. CONSTITUTION:Light pulse is made incident from one end of the optical fiber 4 and the distribution of the scattered light of a part along the optical fiber, that is, temperature distribution is obtained by a distribution type sensor which uses an OTDR method for detecting the backscattered light. Then, the data group D1 obtained by performing N1 times of averaging processing less than N0 times of averaging processing in which measuring accuracy in a state where a series of sampling and the change of physical quantity are temporally easy is high is conducted to an averaging processing selection device 2. The group D1 is compared with every data corresponding to the main data group D0 obtained just before it so as to generate a difference DELTAD, which is compared with the decision level so as to obtain a new data group based on the magnitude of the difference by averaging processing. Meanwhile, when the change is sudden, the measurement is performed by setting the data group D1 obtained by N1 times of processing as a new main data group. As a result, temperature distribution arithmetic display 3 is performed.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は光ファイバの後方散乱光を利用した、分布形光
ファイバセンサのセンシング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a sensing method using a distributed optical fiber sensor that utilizes backscattered light from an optical fiber.

[従来の技術] 光ファイバーgJから光パルスを入射し、後方散乱光を
検出するO T D R(Optical TiIe 
Dona+nRef Iectonetry)手法を用
いた分布形センサがある。
[Prior art] OTD R (Optical TiIe) in which a light pulse is input from an optical fiber gJ and backscattered light is detected.
There is a distributed sensor using the Dona+nRef Iectonetry) method.

特に温度センサとして後方散乱光の中でもレーレ散乱や
ラマン敗乱光の利用が盛んである。即ち光ファイバの長
手方向各部ではその温度に対応した散乱が生じるので、
短時間幅のパルスを入射し、それが光ファイバを伝播し
て行く時に各部で発生する後方散乱光を入射r4側で時
間変化として捕らえ、ファイバ中の光伝播速度を用いて
距離に換算すると、光ファイバに沿った各部の散乱光の
分布、即ち温度分布を求めることができる。
In particular, among backscattered light, Lehre scattering and Raman scattered light are widely used as temperature sensors. In other words, since scattering occurs at each part in the longitudinal direction of the optical fiber in accordance with its temperature,
When a short-time pulse is input and the backscattered light generated at each part as it propagates through the optical fiber is captured as a time change on the input r4 side and converted to distance using the light propagation speed in the fiber, we get: The distribution of scattered light at each part along the optical fiber, that is, the temperature distribution can be determined.

しかし、後方散乱光は極めて微弱であるため、光信号段
階やこれを電気信号に変換する時、或いは電気信号段階
において外雑の影響を受は易いこと、また散乱光発生は
確率過程によること等のために、単一パルスによる後方
散乱光のみでは、温度分布を求めることは出来ない、こ
のため、多数回の光パルスに対する受信信号のタイミン
グを合わせた平均値を求めることにより、光ファイバに
沿った温度を求める手法が採られる。このような多数回
の平均化処理は、ごく単純に光ファイバの損失を測定す
るための0TDRでも採用されており、104回程度の
レーレ散乱光の平均化処理を行っているのが普通である
However, because backscattered light is extremely weak, it is easily affected by external interference at the optical signal stage, when converting it to an electrical signal, or at the electrical signal stage, and the generation of scattered light is due to a stochastic process. Therefore, it is not possible to determine the temperature distribution using only the backscattered light from a single pulse. Therefore, by determining the average value of the timing of the received signal for multiple optical pulses, it is possible to calculate the temperature distribution along the optical fiber. A method is used to find the temperature. This type of averaging process performed many times is also used in 0TDR, which is used to simply measure the loss of optical fibers, and it is common to average Lehle scattered light about 104 times. .

温度検出のための後方散乱光のうち、ラマン敗乱光はレ
ーレ散乱光の約1/1000程度の微弱光であるため、
ますます外雑及び確率過程の影響を受は易く、ある程度
の精度を確保するには106回以上の平均化処理を行う
必要が生じる場合がある。
Of the backscattered light for temperature detection, Raman scattered light is weak light that is about 1/1000 of Lehre scattered light.
It is increasingly susceptible to the influence of extraneous noise and stochastic processes, and it may be necessary to perform averaging processing 106 times or more to ensure a certain degree of accuracy.

光フアイバセンサの対象温度が時間的に安定している場
合には、必要回数の平均化処理を行った後、温度分布を
出力すれば十分な精度で測定が可能となる。
If the target temperature of the optical fiber sensor is stable over time, measurement can be performed with sufficient accuracy by outputting the temperature distribution after performing averaging processing a necessary number of times.

[発明が解決しよとする課J!l!] しかし、対象温度が所定の平均化処理を行うのに要する
時間内で変化する場合には、その時間内の平均温度とし
ては所期の精度で測定できるが、実際の対象物の温度と
の比較においては、大きな誤差を生じることになる。逆
に、短時間での温度変化にある程度追随した温度分布を
得る目的で平均化処理回数を減らすと、対象物の温度変
化にはある程度追随できるが、対象物の温度変化が小さ
いか一定温度が保たれている場合の測定精度が落ちる。
[Section J that inventions aim to solve! l! ] However, if the target temperature changes within the time required to perform the predetermined averaging process, the average temperature within that time can be measured with the desired accuracy, but it may differ from the actual temperature of the target. A large error will occur in the comparison. Conversely, if you reduce the number of averaging processes in order to obtain a temperature distribution that follows temperature changes to some extent over a short period of time, you can follow the temperature changes of the target object to some extent, but if the temperature change of the target object is small or the temperature is constant. Measurement accuracy decreases when the temperature is maintained.

現用の各種0TDR手法では、平均化処理回数を手動で
変更することは可能であるが、元来が処理時間と同等オ
ーダで刻々と時間変化する測定を対象とはしていないた
め、温度分布の測定等、特に時間変化を伴う物理量分布
を自動的に適確に測定することができない。
In the various current 0TDR methods, it is possible to manually change the number of averaging processes, but they are not originally intended for measurements that change moment by moment on the same order as the processing time, so it is not possible to change the temperature distribution. Measurements, etc., especially physical quantity distributions that change over time cannot be automatically and accurately measured.

本発明の目的は、従来の後方数置光検出による測定の精
度と時間変化の把握という矛盾を解決し、時間変化に伴
い実質的に精度の高い分布形光ファイバセンサのセンシ
ング方法を提供することにある。
An object of the present invention is to solve the contradiction between the accuracy of measurement using conventional backward light detection and the grasp of changes over time, and to provide a sensing method using a distributed optical fiber sensor that has substantially high accuracy over changes over time. It is in.

[課題を解決するための手Pl] 本発明の分布形光ファイバセンサのセンシング方法は、
基本的には、位置及び時1mにより変化する物理量を光
ファイバの後方散乱光を利用して測定するセンシングシ
ステムにおいて、パルス入射光に対する後方散乱光をサ
ンプリングし、同一サンプリングタイミングに相当する
データを逐次多数回平均化処理するに当って、一連のサ
ンプリングと物理量の変化が時間的に緩やかな状態での
測定精度が高い平均化処理回数Noよりも回数が少ない
平均化処Fl!回数N+ とを行って得たデータ群D1
を平均化処理選択手段に導き、該手段において、このデ
ータ群D1をその直前に得ている主データ群Doとを対
応するデータ毎に対比して差分ΔDを作成し、その差分
ΔDを判定レベルと比較し、差分ΔDと判定レベルより
の大小関係により、物理量の変化が時間的に緩やかな状
態のときは、上記N1回処理のデータ群D1とその直前
に得ている主データ群Doの回数の重味を考慮した平均
化処理により新たなデータ群を得て、これを新たな主デ
ータ群として測定を行い、物理量の時間変化が急激な状
態のときは、上記N1回処理のデータ群D1を新たな主
データ群として測定を行うものである。
[Measures to solve the problem Pl] The sensing method of the distributed optical fiber sensor of the present invention is as follows:
Basically, in a sensing system that uses backscattered light from an optical fiber to measure physical quantities that change depending on position and time, 1m, the backscattered light for pulsed incident light is sampled, and data corresponding to the same sampling timing is sequentially collected. When performing averaging processing many times, the averaging processing Fl! is performed less often than the averaging processing number No. which has high measurement accuracy in a state where a series of samplings and changes in physical quantities are gradual over time. Data group D1 obtained by performing N+ times
is guided to an averaging processing selection means, and in the means, a difference ΔD is created by comparing this data group D1 with the main data group Do obtained immediately before for each corresponding data, and the difference ΔD is set as a judgment level. When the change in the physical quantity is gradual over time due to the magnitude relationship between the difference ΔD and the judgment level, the number of times of the data group D1 processed N1 times and the main data group Do obtained immediately before A new data group is obtained through averaging processing that takes into account the weight of is measured as a new main data group.

より好ましい形態としては、判定レベルを5132  
(Sl <S2 )の2種とし、N1回処理のデータ群
D+ とその直前に得ている主データ群DOとを対比し
て得た上記差分ΔDを判定レベルS+82と比較し、Δ
D<3+のときには、N1回処理のデータ群D+ とそ
の直前に得ている主データ群の回数の重味を考慮した平
均化処理により新たなデータ群を得て、これを新たな主
データ群とし、物理量の変化が時間的によりMやかな状
態での高精度認定を行い、またΔD>82のときは、N
1回処理のデータ群を新たな主データ群として、物理量
の時間変化がより急激な状態での高精度測定を行い、更
にS1≦ΔD≦S2のときには、その継続性により上記
いずれかの処理により、新たなデータ群を得て、物理量
の時間変化が中間的な状態での高精度測定を行う、この
場合、判断レベルの設定は、定常状態での理論上の測定
誤差として、N1回処理時の誤差に1とNo見回処理時
誤差KOとの間に、K+ cc(W”;)”WT −K
oが成り立つ関係において、上記判断レベルをSl =
Ko 。
As a more preferable form, the judgment level is set to 5132.
(Sl < S2), and the difference ΔD obtained by comparing the data group D+ processed N1 times with the main data group DO obtained immediately before that is compared with the judgment level S+82, and Δ
When D<3+, a new data group is obtained by averaging processing that takes into account the weight of the data group D+ processed N1 times and the main data group obtained immediately before, and this is used as a new main data group. Then, high accuracy certification is performed under conditions where physical quantity changes are more rapid over time, and when ΔD>82, N
Using the data group processed once as a new main data group, high-precision measurement is performed in a state where physical quantities change more rapidly over time, and when S1≦ΔD≦S2, one of the above processes is performed due to the continuity. , obtain a new data group and perform high-precision measurement in a state where the time change of the physical quantity is intermediate. In this case, the judgment level is set as a theoretical measurement error in a steady state, and N1 processing times. Between the error of 1 and the error KO when processing No., K + cc(W”;)”WT −K
In the relationship where o holds, let the above judgment level be Sl =
Ko.

S2 =に+ と設定することができる。S2= can be set as +.

[作用] 平均化処理選択手段は、0TDR信号の平均化処理回数
を比較的少ない一定回数とする、即ち短時間毎に現信号
を得る、ということにより、現信号と、記憶されている
その直前のデータとを比較し、現データ作成の平均化処
理回数を選択する。
[Operation] The averaging processing selection means sets the number of averaging processings of the 0TDR signal to a relatively small fixed number of times, that is, obtains the current signal every short period of time, so that the current signal and the stored immediately preceding , and select the number of times of averaging processing to create the current data.

それによって物理量の時間変化のM肉を的確に把握する
と共に、刻々の変化を最も高い精度で測定することを可
能にする。
This makes it possible to accurately grasp the time variation of physical quantities and to measure momentary changes with the highest precision.

平均化処Pl!選択手段がなければ、物理量の変化が時
間的に緩やかな状態での測定精度が高い平均化処理回数
Noにより処理すると、物理量の時間変化が急激な状態
に追随することが元来困難となる。しかし、このような
状態のときは、本平均化処理選択手段が、データ群D1
とその直前に得ている主データ群Doとの差分ΔDを判
定レベルに対する大小関係より、物理量の変化が時間的
に緩やかな状態と判定する。そして、上記N1回処理の
データ群D1とその直前に得ている主データ群Doの回
数の重味を考慮した平均化処理により新たなデータ群を
得て、これを新たな主データ群として測定を行う、この
なめ、物理量の時間変化が急激な状態に追随することが
できるようになる。
Averaging process Pl! If there is no selection means, if processing is performed using an averaging processing number number with high measurement accuracy in a state where the physical quantity changes slowly over time, it will be difficult to follow a state where the physical quantity changes rapidly over time. However, in such a state, the averaging processing selection means selects the data group D1.
Based on the magnitude relationship between the difference ΔD and the main data group Do obtained immediately before that with respect to the determination level, it is determined that the change in the physical quantity is gradual over time. Then, a new data group is obtained by averaging processing that takes into consideration the weight of the number of times of the data group D1 processed N1 times and the main data group Do obtained immediately before, and this is measured as a new main data group. By doing this, we will be able to follow conditions where physical quantities change rapidly over time.

一方、平均化処理回数Noよりも回数が少ない平均化処
理回数N1は、元来平均化処理回数NOの場合よりも測
定精度が落ちるが、平均化処理選択手段が、上記差分Δ
Dの判定レベルに対する大小関係より、物理量の時間変
化が急激な状態であるときを捕らえ、そのときだけ上記
N1回処理のデータ群D1を新たな主データ群として測
定を行わせる。このため、全体の測定精度が低下せず、
且つ、物理量の時間変化が急激な状態にも追随できるこ
ととなる。
On the other hand, the number of averaging processes N1, which is smaller than the number of averaging processes No, originally has lower measurement accuracy than the case where the number of averaging processes is NO.
Based on the magnitude relationship of D with respect to the determination level, the time when the physical quantity changes rapidly is detected, and only at that time, the data group D1 processed N1 times is measured as a new main data group. Therefore, the overall measurement accuracy does not deteriorate, and
In addition, it is possible to follow a state in which the physical quantity changes rapidly over time.

[実施例] 先ず、温度計測上の矛盾を具体例で示す。[Example] First, we will show a specific example of a contradiction in temperature measurement.

測定対象物がプラント配管システムであるとし、その中
のある点の温度が、第6図の実線で示すような時間変化
をしたとする。
Assume that the object to be measured is a plant piping system, and that the temperature at a certain point within the system changes over time as shown by the solid line in FIG.

平均化処理回数が80回のときの処理タイミングが図中
のa r * a 2・・・a、、平均化処理回数がN
1回(No >N+ )の時の処理タイミングが1)l
 、  bi −”  bm とする、 a (〜a 
mで測定される温度は図中の黒丸と一点鎖線で示すよう
な階段状の変化を示し、またb1〜b、の温度はX印と
破線で示すような変化を示すことになる。
The processing timing when the number of averaging processing is 80 is a r * a 2...a in the figure, and the number of averaging processing is N.
The processing timing when 1 time (No > N+) is 1)l
, bi −”bm, a (~a
The temperature measured at m shows a step-like change as shown by the black circle and a dashed line in the figure, and the temperature at b1 to b shows a change as shown by an X mark and a broken line.

第6図中、50℃付近がプラント正常運転の状態であり
、常時はこれを±1℃の精度で制御しており、この制御
系が誤動伴をしたとき、70℃を越えると[異常」とし
て運転停止し、100℃を越えると「危険」として警報
を出すことになっている。
In Figure 6, around 50℃ is the state of normal plant operation, which is normally controlled with an accuracy of ±1℃, and when this control system malfunctions and the temperature exceeds 70℃ '', and if the temperature exceeds 100℃, a warning will be issued as a ``danger''.

また、平均化処理回数はNo=10’で、これにより温
度測定誤差KOが±1℃未満に保たれている。一方、平
均化処理回数がN+=10’では、統計処理の考え方か
ら、ランダムな雑音に基づく誤差がn−]1Gに比例す
るので、測定誤差に+は±3℃となる。
Further, the number of times of averaging processing is No=10', thereby keeping the temperature measurement error KO below ±1°C. On the other hand, when the number of times of averaging processing is N+=10', the error based on random noise is proportional to n-]1G from the perspective of statistical processing, so the measurement error + is ±3°C.

このような状況で、常時の運転制御を正確に行うため、
No回の平均化処理(測定誤差KOが±1゛C)を行っ
ていると、82時点では70’C未満であるので「異常
」が検出できず、本来危険となる100℃に近い83時
点でようやく「異常」を検出し、更にその後に「危険」
を検知することになり、「異常」 「危険」に対する処
理が手遅れとなる。
In such situations, in order to accurately control operation at all times,
If the averaging process is performed No times (measurement error KO is ±1°C), the temperature at point 82 is less than 70'C, so an "abnormality" cannot be detected, and the temperature at point 83 is close to 100°C, which is dangerous. ``Abnormality'' was finally detected, and then ``Danger'' was detected.
This means that it will be too late to deal with the ``abnormality'' or ``danger''.

一方、N1回平均化処理をしていると、正常時の測定誤
差かに+  (−±3℃)となるため、±1℃の制御が
不可能となる。しかし、ba時点で「異常」を検出し、
bzo時点で「危険」を検出することができる。尚、測
定誤差を(’Fうので、これらの検出時点がそれぞれt
)1.b2+となることもあり得るが、いずれにしても
80回の平均化処理をしている場合の処理タイミングa
 ) + a 4よりも遥かに早く検出可能である。
On the other hand, if the averaging process is performed N1 times, the measurement error during normal operation will be + (-±3°C), making it impossible to control the temperature within ±1°C. However, an "abnormality" was detected at the time of ba,
"Danger" can be detected at the time of bzo. Furthermore, since the measurement error is ('F), each of these detection points is t.
)1. It is possible that it will be b2+, but in any case, the processing timing a when averaging processing is performed 80 times.
) + a It can be detected much earlier than 4.

上記不都合に対し、以下に述べる本発明の実施例によれ
ば、正常時にはNo回の平均処理と同等の測定誤差Ko
を確保でき、かつ異常な温度上昇に対してはN1回と同
等の早さで、これを検出することが可能となる。
In order to solve the above-mentioned inconvenience, according to the embodiment of the present invention described below, during normal operation, the measurement error Ko is equivalent to No averaging processing.
It is possible to ensure this, and to detect an abnormal temperature rise as quickly as N1 times.

以下、本発明の実施例の内容を詳述する。Hereinafter, the contents of the embodiments of the present invention will be explained in detail.

第1図に示すように、0TDR装置1、平均化処理選択
回路2、温度分布演算・表示回路3.光フアイバセンサ
4を主構成要素としており、次のような処理を行う。
As shown in FIG. 1, an 0TDR device 1, an averaging process selection circuit 2, a temperature distribution calculation/display circuit 3. The optical fiber sensor 4 is the main component and performs the following processing.

先ず、0TDR装置1では、N1回の平均化処理(測定
誤差に1は例えば±3℃)によるデータ群(場所による
変化)を基礎とする。このデータ群を0TDR装置1の
出力とし、本発明の主体となる平均化処理選択回路2へ
入力する。
First, the 0TDR device 1 is based on a data group (changes depending on location) obtained by averaging N1 times (1 for measurement error is, for example, ±3° C.). This data group is output from the 0TDR device 1 and input to the averaging processing selection circuit 2, which is the main subject of the present invention.

平均化処理選択回路2では、以下のような判定処理によ
り、適確な温度分布のためのデータを得る。尚、ここで
平均化処理回数NOとN1 (N+<No )は、No
 =MN+  (Mは2以上の整数)の関係にあり、従
って、平均化処理回数Noによる測定誤差Koは、0T
DR装置1のN1回の平均化処理の測定誤差に1よりも
高く、例えば±1℃であるとする。
The averaging process selection circuit 2 obtains data for accurate temperature distribution through the following determination process. In addition, here, the number of times of averaging processing NO and N1 (N+<No) are No.
= MN+ (M is an integer greater than or equal to 2). Therefore, the measurement error Ko due to the number of averaging processes is 0T.
It is assumed that the measurement error of N1 averaging processes of the DR device 1 is higher than 1, for example, ±1°C.

第2図を参照しながら、平均化処理選択回路2の判定処
理の仕方を説明する。
With reference to FIG. 2, the method of determination processing by the averaging processing selection circuit 2 will be explained.

(1)今回、0TDR装置1から平均化処理回数N+(
NIP誤差に+ )に基づいて得られたデータ群を受け
た時、各位置に対応したデータ毎に、その直前の最新主
データ群と比較する(第2図のステップ■)。
(1) This time, the number of averaging processes N+(
When a data group obtained based on the NIP error (+) is received, each data corresponding to each position is compared with the latest main data group immediately before it (step 2 in FIG. 2).

(2) 11I定誤差を含めた温度変化に関し、予め2
つのレベル31  N2  (St <N2 )を設定
しておき、データ間の変化幅ΔDにより、ΔD<Stの
場合、ΔD>S2の場合、S1≦ΔD≦82の場合とい
う3ケースに分ける(第2図のステップ■) ゲース1;ΔD<Stの場合 全てのデータ間でΔD<Stのときは、温度変化が緩慢
であり、異常温度変化の可能性が小さいので、正常時の
精確な温度演算処理をする。即ち、最新の主データ群と
今回のデータ群の各位置に対応したデータ毎に平均化処
理を行い、それを最新の主データ群とすると共に(第2
図のステップ■■■)、全ての指定ポイントを解除する
(第2図のステップ■■■)、「指定ポイント解除」と
は、それまで設定されていた後述するケース2.ゲース
3の(i)c目)で校定される指定ポイントを全て無と
し、「継続性無し」とすることである、平均化処理(第
2図のステップ■)における新たな主データ群の作成方
法についての詳細は後述する。
(2) Regarding temperature changes including 11I constant error, please check 2 in advance.
One level 31 N2 (St < N2) is set, and it is divided into three cases depending on the change width ΔD between data: ΔD<St, ΔD>S2, and S1≦ΔD≦82 (second Step ■ in the figure) Gauge 1: When ΔD<St When ΔD<St among all data, the temperature change is slow and the possibility of abnormal temperature change is small, so accurate temperature calculation processing under normal conditions is required. do. That is, average processing is performed for each data corresponding to each position of the latest main data group and the current data group, and this is used as the latest main data group (second
(Step ■■■ in the figure), cancel all designated points (Step ■■■ in Figure 2), "Cancellation of designated points" refers to Case 2, which will be described later, that had been set up until then. For the new main data group in the averaging process (step ■ in Figure 2), all the specified points calibrated in (i) cth) of game 3 are set to zero, and there is no continuity. Details of the creation method will be described later.

ケース2:ΔD > S 2の場合 対象とする場所で一点でもΔD>S2のときは、急激な
温度変化が生じた可能性が高いので、異常な温度上昇と
してのMX処理をする。即ち、今回のデータ群のみで、
その回数重味分を考慮した平均化処理を行い、これを最
新主データ群とすると共に(第2図のステップ■■■)
、ΔD>S2を満したポイント(複数個ら有り得る)を
指定ポイントとして設定する(第2図のステップ■■■
)。
Case 2: When ΔD>S2 If ΔD>S2 at even one point in the target location, there is a high possibility that a sudden temperature change has occurred, so MX processing is performed as an abnormal temperature rise. In other words, with only this data group,
An averaging process is performed that takes into account the weight of the number of times, and this is used as the latest main data group (step ■■■ in Figure 2).
, ΔD>S2 (there may be more than one point) is set as the designated point (step ■■■ in Figure 2).
).

ここで「指定ポイント」は、長手方向の各ポイントに相
当する時間サブリング毎の各データの順序番号のうち、
その番号のデータが本ケース2におけるΔD>S2の条
件を満たした場合に、その順序番号を指定ポイントとす
る(複数個の場合も有る)。
Here, the "designated point" is one of the order numbers of each data for each time subring corresponding to each point in the longitudinal direction.
When the data of that number satisfies the condition of ΔD>S2 in this case 2, that sequence number is set as a designated point (there may be multiple points).

ケース3;S1≦ΔD≦S2の場合 対象とする場所で一点でらS1≦ΔD≦82のときは、
急激な温度変化が生じた可能性はあるが、測定誤差によ
るばらつきのため、正常状態を誤って温度変化があるか
のようなデータとなった可能性もある。そこで、両者の
いずれであるかを判定するための演算処理をする。即ち
、 m指定ポイントが校定されていないとき、あるいは今回
S1≦ΔD≦S2を溝たしたポイントと指定ポイントが
全く一致しないときには、急激な温度変化によるのでは
なく測定誤差に起因するとみなし、ケース1と同じ考え
方で、今回のデータ群を加えて平均化処理を行い(第2
図のステップ■■■■■)、これを最新主データ群とす
ると共に(第2図のステップ■■)今回Sl≦DO≦8
2を満たしたポイントを指定ポイントとして設定する(
第2図のステップ■■■)、[指定ポイント」は、長手
方向の各ポイントに相当する時間サブリング毎の各デー
タの順序番号のうち、今回S1≦Do≦82を満たしな
順序番号を指定ポイントとする。
Case 3: When S1≦ΔD≦S2 If S1≦ΔD≦82 at one point at the target location,
Although it is possible that a sudden temperature change occurred, it is also possible that due to variations due to measurement errors, the data may have been mistaken for a normal state and given the impression that there was a temperature change. Therefore, arithmetic processing is performed to determine which of the two is the case. In other words, if the m specified point has not been calibrated, or if the point where S1≦ΔD≦S2 does not coincide with the specified point at all, it is assumed that the cause is not due to a sudden temperature change but a measurement error, and the case is determined. Using the same idea as in 1, add this data group and perform averaging processing (second
Step ■■■■■ in the figure), and set this as the latest main data group (step ■■ in Figure 2) This time Sl≦DO≦8
Set the point that satisfies 2 as the specified point (
In step ■■■ in Figure 2), [designated point] specifies the sequence number that does not satisfy S1≦Do≦82 this time among the sequence numbers of each data for each time subring corresponding to each point in the longitudinal direction. Make it a point.

(11)指定ポイントが設定されており、今回S1≦Δ
D≦S2を満たしたポイントと指定ポイントが1組以上
一致したときは、その位置で急激な温度変化の傾向が続
いているとみなし、それを新たな指定ポイントとして設
定すると共に(第2図のステップ■■[相][相]■)
、ケース2と同じく今回のデータ群のみで、その回数重
味分を考慮した平均化処理を行い、これを最新主データ
群とする(第2図のステップ[相]■■)、ここでは、
指定ポイントは複数の場合があり得る。
(11) The specified point is set, and this time S1≦Δ
When one or more pairs of specified points match points that satisfy D≦S2, it is assumed that the trend of rapid temperature change continues at that position, and this point is set as a new specified point (as shown in Figure 2). Step■■[phase][phase]■)
, As in Case 2, only this data group is subjected to averaging processing that takes into account the weight of the number of times, and this is made the latest main data group (step [phase] ■■ in Figure 2).Here,
There may be multiple designated points.

(3)以下、(1)〜(2)を繰り返す、かくして平均
化処理選択回路2で最新主データ群を得る。
(3) Hereafter, (1) and (2) are repeated, thus obtaining the latest main data group in the averaging process selection circuit 2.

この最新主データ群を用いて、温度分布演算・表示回路
3により、適宜温度分布を得る。尚、ケース1(ΔD<
3+ )の場合は、後述のしく新たな主データ群を作る
べくなされるN1回処理データ群の平均化処理回数)が
L= 2〜Mの任意の所で温度分布を得れば良く、L=
M以降はNo回相当の平均化処理回数でデータを得る。
Using this latest main data group, the temperature distribution calculation/display circuit 3 obtains an appropriate temperature distribution. In addition, case 1 (ΔD<
In the case of 3+), it is sufficient to obtain the temperature distribution at any point between L=2 and M (the number of times of averaging processing of the data group processed N1 times to create a new main data group, which will be described later). =
After M, data is obtained by averaging the number of times equivalent to No times.

ここで、ケース1〜ゲース3の平均化処理で新たな主デ
ータ群を作るときは、次のようにして行う。
Here, when creating a new main data group by averaging processing of cases 1 to 3, it is performed as follows.

(4)ケース1及びケース3の(i)の場合、即ち第2
図のステップ■■の場合には、それまでの主データ群が
N1回処理データ群のL回分の平均化処理からなってい
るとすると、 ((それまでの主データ群の多値)XL十(今回のN1
回処理のデータ群の多値))/(L+1ン という(L+1>回分の平均化処理を行って作る。
(4) Case 1 and case 3 (i), that is, the second
In the case of step ■■ in the figure, if the main data group up to that point consists of averaging processing of the data group processed N1 times, then ((multi-values of the main data group up to that point) XL (This time N1
It is created by performing averaging processing for (L+1>times) called multivalued data group)/(L+1 times).

L=Mの場合には、LをM−1としてM回分の平均化処
理により作る。
When L=M, it is created by averaging M times with L being M-1.

(5)一方、ケース2及びケース3の(ii)の場合、
即ち第2図のステップ■の場合には、今回のN+回処理
のデータ群により、そのまま新たな主データ群を作る。
(5) On the other hand, in case 2 and case 3 (ii),
That is, in the case of step (2) in FIG. 2, a new main data group is created as is from the data group processed N+ times this time.

以上の0TDR装置の処理、上記(1)〜(3)の処理
を、上記(4)(5)の条件で実行すると、以下のよう
な効果が得られる。
When the above 0TDR device processes, the processes (1) to (3) above, are executed under the conditions (4) and (5) above, the following effects can be obtained.

(a)測定誤差を含めて温度変化がSI相当以下の場合
(ケース1の場合)には、N0回平均化処理相当、即ち
測定誤差Ko  (例えば上記±1℃)以下の高精度で
温度測定ができる。
(a) If the temperature change including the measurement error is less than the SI equivalent (case 1), the temperature is measured with high accuracy equivalent to the N0 averaging process, that is, the measurement error Ko (e.g. ±1°C above) or less. Can be done.

(b) l定誤差を含めて温度変化が82相当以上の場
合(ケース2の場合)には、N1回処理の時間、即ちN
o回処理の場合の1/Mの短時間で温度変化を把握でき
、またその実質的測定精度をNo回処理で後刻に測定さ
れるはずのものより小さくすることができる。
(b) If the temperature change including l constant error is equivalent to 82 or more (case 2), the time for N1 processing, that is, N
Temperature changes can be ascertained in a short time of 1/M compared to the o-times process, and the actual measurement accuracy can be made smaller than that which would be measured later in the no-times process.

(c) ill定誤差を考慮すると、温度が変化してい
るか否か不確かであるSlと82間になる場合(ケース
3の場合)では、その温度が変化する傾向が1回だけの
場合には誤差と見なし、その傾向が続いている(指定ポ
イントが一致)場合には、温度変化あつと見なして、そ
れぞれに適した平均化処理で、より高い精度の温度測定
ができる。
(c) Considering the ill constant error, in the case where it is uncertain whether the temperature is changing or not, when it is between SL and 82 (case 3), if the temperature tends to change only once, It is regarded as an error, and if the trend continues (specified points match), it is assumed that there is a temperature change, and temperature measurement can be performed with higher precision by averaging processing appropriate for each.

(d)急激な温度変化が終息しつつあるときには、平均
化処理回数を増して、測定精度を高精度の測定誤差Ko
の状態へ近付けることができる。
(d) When rapid temperature changes are coming to an end, increase the number of averaging processes to reduce the measurement accuracy to a high-precision measurement error.
It is possible to approach the state of

fe)その時点の温度に相当する主データ群は1紐のみ
で済むので、温度分布演算回路に要する記憶呈が少なく
なる。尚、記憶装置の量が十分確保されている場合には
、N1回平均化処理による過去のデータ群(最大M組)
をそれぞれを記憶させておき、その中から適宜取り出し
て(4)(5)の平均化処理を行うことができる。
fe) Since only one string is required for the main data group corresponding to the temperature at that time, the memory required for the temperature distribution calculation circuit is reduced. In addition, if the amount of storage device is sufficiently secured, past data groups (maximum M groups) obtained by averaging N1 times
It is possible to memorize each of them, take them out as appropriate, and perform the averaging process of (4) and (5).

以上のように本発明によれば、時間的、場所的に変化す
る対象物の温度を、その状況に応じて精度よく測定する
ことが可能となる。
As described above, according to the present invention, it is possible to accurately measure the temperature of an object, which changes over time and location, depending on the situation.

尚、上記の実施例の他、次のような方法を採ることもで
きる。
In addition to the above embodiments, the following method may also be adopted.

(1)平均化処理回数を3組以上、No >N+ >N
2・・・、あるいは判定レベルをSl 、N2 、N3
・・・と設定しておき、N+ 、N2  ;N2 、N
3を用いて上記手法を適用し、その主データ群に対し、
No 、N1 ;Sl 、82を適用すること等により
(1) Number of times of averaging processing is 3 or more, No >N+ >N
2...or the judgment level is Sl, N2, N3
..., N+, N2; N2, N
Apply the above method using 3, and to the main data group,
By applying No, N1; Sl, 82, etc.

更に測定精度且つ時間変化の検出を容易にすることがで
きる。
Furthermore, measurement accuracy and detection of time changes can be facilitated.

(2)平均化処理回数No 、N+等は、上記例ではN
oがN1の整数倍として説明したが、必ずしも整数倍の
必要はない、但し、平均化処理を行うときその倍数を考
慮する必要はある。
(2) The number of times of averaging processing, N+, etc. is N in the above example.
Although it has been explained that o is an integer multiple of N1, it does not necessarily have to be an integer multiple, but it is necessary to consider the multiple when performing averaging processing.

(3)判定レベルをSl <32と設定したが、Sl 
=32とし、判定レベルを1つとすることもTil能で
ある。この時、ケース3については、ΔD=S+  (
=82)として扱うことができる。また、ΔD=S+ 
をケース1あるいはケース2に含めて処理し、ケース3
の処理は省略することもできる。
(3) Although the judgment level was set as Sl < 32,
= 32, and setting the determination level to one is also possible. At this time, for case 3, ΔD=S+ (
=82). Also, ΔD=S+
is included in case 1 or case 2, and case 3 is processed.
This process can also be omitted.

(4)尚、一般的にはSl :Ko 、N2 ’yK+
(−Jゴ「「]7Nコー・Ko )とすれば良いが、得
られた温度分布の使用目的によっては、S1≦82で!
)る限りSl >Ko 、N2 >Klの任意の値を設
定することも可能である− 尚、Sl<Ko、又はN2 <Klとすると、平均化処
理回数に依存する誤差分内となり、ケース1〜ケース3
の繰り返しに不都合が生じる場合があるので、その選定
は慎重に行わなければならない。
(4) In general, Sl:Ko, N2'yK+
(-Jgo ""]7Nko・Ko ) However, depending on the purpose of use of the obtained temperature distribution, S1≦82!
), it is also possible to set arbitrary values for Sl > Ko and N2 > Kl - Note that if Sl < Ko or N2 < Kl, the error will be within the error depending on the number of averaging processes, and Case 1 ~Case 3
The selection must be made carefully, as repeating may cause inconvenience.

(5)OTDR装置1の入力としては、ラマン散乱光(
複数)、レーレ散乱光のいずれか、あるいはそれらの複
数を用いることができ、また、入力光あるいは入力光レ
ベル間の演算そのものをデータとするか、それぞれ温度
に換算した後のものをデータとすることや、0TDR装
置1あるいは平均化処理選択回路2又は温度分布演算出
力回路3を適宜複数個用いること等の点にも限界がなく
、本発明の精神の範囲内で任意に変えることができる。
(5) As input to the OTDR device 1, Raman scattered light (
(multiple), Lehle scattered light, or a plurality of them can be used, and the input light or the calculation between the input light levels itself can be used as data, or the data after each has been converted into temperature. There is also no limit to the use of a plurality of 0TDR devices 1, averaging processing selection circuits 2, or temperature distribution calculation output circuits 3 as appropriate, and any changes can be made within the scope of the spirit of the present invention.

尚、本発明は後方散乱光を用いた分布形温度センサに関
するものとして記述したが、その他、歪。
Although the present invention has been described as relating to a distributed temperature sensor using backscattered light, other distortions may occur.

応力2曲げ、電磁界等、サンプリングと平均化処理によ
り、場所的に、時間的に変化する対象量を測定すること
に応用できることは明らかである。
It is clear that the present invention can be applied to measuring target quantities that vary in location and time, such as stress 2 bending, electromagnetic field, etc., by sampling and averaging processing.

次に、本発明の具体例を第3図の試作品を用いて説明す
る。
Next, a specific example of the present invention will be explained using a prototype shown in FIG.

第3図において、0TDR装置1の中味は、概略、パル
スレーザ発光源11、光合分波器(或いは光分岐器)1
2.13、ストークス光とアンテイストークス光分離用
フィルタ14、受光器15、増幅・平均化処理回路16
から成っており、ストークス光、アンチストークス光に
ついての演算をなす温度分布演算回路5が接続される。
In FIG. 3, the contents of the 0TDR device 1 are roughly as follows: a pulsed laser emission source 11, an optical multiplexer/demultiplexer (or optical splitter) 1
2.13, Stokes light and Antei Stokes light separation filter 14, light receiver 15, amplification/averaging processing circuit 16
It is connected to a temperature distribution calculation circuit 5 that performs calculations on Stokes light and anti-Stokes light.

尚、発光パルスとサンプリングのタイミングを整合する
ために、増幅・平均化処理回路16とパルスレーザ発光
源11間も結ばれている。
Incidentally, in order to match the timing of the light emission pulse and the sampling, the amplification/averaging processing circuit 16 and the pulsed laser light emission source 11 are also connected.

今回の試作では、0TDR装置1による平均化早埋凹数
N1を105回とした。距離の分解能1mを得るため、
光フアイバセンサ4中の光速200m/′μsに基づい
て、サンプリング間隔をIonsとした。また発光パル
ス間隔を50μs、センサ長を2000mとした。
In this prototype, the average number N1 of early burial recesses by the 0TDR device 1 was set to 105. To obtain a distance resolution of 1m,
Based on the speed of light in the optical fiber sensor 4 of 200 m/'μs, the sampling interval was set to Ions. Further, the emission pulse interval was set to 50 μs, and the sensor length was set to 2000 m.

このような装置により、温度−20℃から150℃の範
囲で時間的に変化しない状態で実測したところ、測定温
度の精度は±3.4℃であることが確認できた。即ち、
50μs X 10’回=5秒毎に、2000点の温度
が±3.4℃の精度で測定されたことになる。
When such an apparatus was used to actually measure the temperature in the range of -20°C to 150°C without changing over time, it was confirmed that the accuracy of the measured temperature was ±3.4°C. That is,
This means that the temperature at 2000 points was measured every 5 seconds (50 μs x 10' times) with an accuracy of ±3.4°C.

一方、平均化処理選択回路2の中味は、主データ群と指
定ポイント等の記憶装置21、データ比軸器22を主体
としており、今回の検討ではNo =1.5 xtO’
回、S+=1℃、52=4℃と設定した。
On the other hand, the contents of the averaging process selection circuit 2 mainly include a storage device 21 for the main data group and designated points, etc., and a data ratio scaler 22. In this study, No = 1.5 xtO'
times, S+=1°C, and 52=4°C.

前述の性能の0TDR装置1と温度分布演算回路5に平
均化処理選択回路2を接続し、時間的に変化しない状態
での温度分布を測定したところ、その精度は約±0.9
°Cであることが確認できた。
When the averaging processing selection circuit 2 was connected to the 0TDR device 1 and the temperature distribution calculation circuit 5 having the performance described above, and the temperature distribution was measured in a state where it did not change over time, the accuracy was approximately ±0.9.
It was confirmed that the temperature was °C.

このときの平均化処理回数は自動的に1.5 x10’
が選択された。
The number of times of averaging processing at this time is automatically 1.5 x 10'
was selected.

即ち、75秒毎に2000点の温度が±0,9℃の精度
で測定されたことになる。
That is, the temperature at 2000 points was measured every 75 seconds with an accuracy of ±0.9°C.

次に、2000mの光フアイバセンサ4の一部をヒータ
上に密着させておき、その温度を第4図のように変化さ
せた。このとき0TDR装置1の平均化処理回数を一定
値105回(手法■)及び10′回(手法■)とし、第
3図の平均化処理選択回路2を使用せずに測定した場合
のその部分の測定結果を、それぞれ第4図にX印及び・
印で示した。そして、本発明による平均化処理選択回路
を使用したとき(手法■)の測定結果をO印で示した。
Next, a part of the 2000 m optical fiber sensor 4 was placed in close contact with the heater, and its temperature was varied as shown in FIG. At this time, the number of times of averaging processing of the 0TDR device 1 is set to a constant value of 105 times (method ■) and 10' times (method ■), and the part is measured without using the averaging processing selection circuit 2 in Fig. 3. The measurement results are marked with an X and
Indicated with a mark. The measurement results obtained when the averaging process selection circuit according to the present invention was used (method ①) are indicated by an O mark.

尚、この場合温度変化の激しい時間帯は5秒毎のデータ
が、温度変化の小さい時間帯は75秒間の平均処理のデ
ータが出力されることになる。
In this case, data for every 5 seconds is output during periods of rapid temperature change, and data averaged over 75 seconds is output for periods of small temperature change.

その間は直前のデータがそのまま成り立つと見なせる。During that time, it can be assumed that the previous data holds as is.

このようにして得られた上記3つの測定手法l、■、■
によるABCD各時点(第4図)での温度を、ヒータの
温度(真値)と比較して、第5図に示す、定常時のA、
D点では手法■、■の精度が良好で、手法Iでは最大3
.1℃の誤差が生じ、変化時のB点あるいは0点では手
法■の誤差が7.6°Cにも達するのに対し、千法工で
は2.1℃、手法■では2.2°Cに納まっており、総
合的に手法■の秀れていることが確認できた。
The above three measurement methods obtained in this way l, ■, ■
By comparing the temperature at each point in ABCD (Fig. 4) with the temperature (true value) of the heater, the temperature A at steady state shown in Fig. 5,
At point D, the accuracy of methods ■ and ■ is good, and the accuracy of method I is up to 3.
.. An error of 1°C occurs, and at point B or 0 at the time of change, the error for method ■ reaches 7.6°C, while for Senboko it is 2.1°C, and for method ■ it is 2.2°C. It was confirmed that method ■ is superior overall.

[発明の効果] 以上のように本発明によれば、平均化処理選択手段によ
って、データ群D1とその直前に得ている主データ群D
Oとの差分ΔDの判定レベルに対する大小関係より、物
理量の変化が時間的に綬やかな状悪か、或いは時間変化
が急激な状態にあるかが判定され、それぞれに応じた適
切な主データ群に基づいて測定が行われる。このため、
従来の後方散乱光検出による測定の精度と時間変化の把
握という矛盾が解決され、時間的、場所的に変化する対
象物の温度を、その状況に応じて精度よく測定すること
ができる。
[Effects of the Invention] As described above, according to the present invention, the averaging process selection means selects the data group D1 and the main data group D obtained immediately before it.
Based on the magnitude relationship of the difference ΔD with O with respect to the determination level, it is determined whether the change in the physical quantity is irregular over time, or whether the change over time is rapid, and an appropriate main data group is selected according to each. Measurements are taken based on. For this reason,
The contradiction between the accuracy of measurement using conventional backscattered light detection and the understanding of changes over time is resolved, and the temperature of an object, which changes over time and location, can be measured with high accuracy depending on the situation.

−本の光ファイバで、それに沿った多点の物理量が一度
に測定できる分布形光ファイバセンシングシステムは、
それ自体従来にない工業的、経済的効果を生み出すこと
は明らかである。しかし、現実の工業分野では定常状態
のみならず過度変化状態の把握、あるいは突発的な異常
状態の把握も併せて、極力精度よく行うことが望まれる
。この点に関し本発明は極めて大きな効果を発揮し、分
布形光ファイバセンサの適用分野を拡げ、多くの産業分
野に適合し得る高性能のセンシングシステムの構築を可
能にする。
-A distributed optical fiber sensing system that can measure physical quantities at multiple points along a single optical fiber at once.
It is clear that this in itself will produce unprecedented industrial and economic effects. However, in the actual industrial field, it is desirable to grasp not only steady states but also transient states, or sudden abnormal states, with as much precision as possible. In this regard, the present invention exhibits an extremely large effect, expands the field of application of distributed optical fiber sensors, and makes it possible to construct a high-performance sensing system that can be adapted to many industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成図、第2図は本発明の方法に
おける主要部の平均化処理選択回路の処理手順を示す図
、第3図は本発明に基づき試作した装置の構成図、第4
図はその装置を用いて得られた高精度の温度変化測定結
果を示す図、また第5図はその具体的数値データを示し
た図、第6図は従来のセンシングシステムの動作説明図
である。 図中、1は0TDR装置、2は平均化処理選択回路、3
は温度演算・表示装置、4はセンサ光ファイバ、5は温
度分布演算装置、11はパルスレーザ発光源、12.1
3は光合分波器或いは光分岐器、14は光学フィルタ、
15は受光器、16は増幅・サンプリング・平均化処理
装置を示す。
FIG. 1 is a basic configuration diagram of the present invention, FIG. 2 is a diagram showing the processing procedure of the averaging process selection circuit, which is the main part of the method of the present invention, and FIG. 3 is a configuration diagram of a device prototyped based on the present invention. Fourth
The figure shows the highly accurate temperature change measurement results obtained using the device, Figure 5 shows the specific numerical data, and Figure 6 is an explanatory diagram of the operation of the conventional sensing system. . In the figure, 1 is the 0TDR device, 2 is the averaging process selection circuit, and 3
1 is a temperature calculation/display device, 4 is a sensor optical fiber, 5 is a temperature distribution calculation device, 11 is a pulsed laser light source, 12.1
3 is an optical multiplexer/demultiplexer or optical splitter; 14 is an optical filter;
15 is a light receiver, and 16 is an amplification/sampling/average processing device.

Claims (1)

【特許請求の範囲】 1、位置及び時間により変化する物理量を光ファイバの
後方散乱光を利用して測定するセンシングシステムにお
いて、パルス入射光に対する後方散乱光をサンプリング
し、同一サンプリングタイミングに相当するデータを逐
次多数回平均化処理するに当って、一連のサンプリング
と物理量の変化が時間的に緩やかな状態での測定精度が
高い平均化処理回数N_0よりも回数が少ない平均化処
理回数N_1とを行って得たデータ群D_1を平均化処
理選択手段に導き、該手段において、このデータ群 D_1をその直前に得ている主データ群D_0とを対応
するデータ毎に対比して差分ΔDを作成し、その差分Δ
Dを判定レベルと比較し、差分ΔDと判定レベルよりの
大小関係により、物理量の変化が時間的に緩やかな状態
のときは、上記N_1回処理のデータ群D_1とその直
前に得ている主データ群D_0の回数の重味を考慮した
平均化処理により新たなデータ群を得て、これを新たな
主データ群として測定を行い、物理量の時間変化が急激
な状態のときは、上記N_1回処理のデータ群D_1を
新たな主データ群として測定を行うことを特徴とする分
布形光ファイバセンサのセンシング方法。 2、判定レベルをS_1、S_2(S_1<S_2)の
2種とし、N_1回処理のデータ群D_1とその直前に
得ている主データ群D_0とを対比して得た上記差分Δ
Dを判定レベルS_1、S_2と比較し、 ΔD<S_1のときには、N_1回処理のデータ群D1
とその直前に得ている主データ群の回数の重味を考慮し
た平均化処理により新たなデータ群を得て、これを新た
な主データ群とし、物理量の変化が時間的により緩やか
な状態での高精度測定を行い、 またΔD>S_2のときは、N_1回処理のデータ群を
新たな主データ群として、物理量の時間変化がより急激
な状態での高精度測定を行い、 更にS_1≦ΔD≦S_2のときには、その継続性によ
り上記いずれかの処理により、新たなデータ群を得て、
物理量の時間変化が中間的な状態での高精度測定を行う
ことを特徴とする請求項1記載の分布形光ファイバセン
サのセンシング方法。 3、定常状態での理論上の測定誤差として、N_1回処
理時の誤差K_1とN_0回処理時の誤差K_0との間
に、K_1∝√(N_0/N_1)・K_0が成り立つ
関係において、上記判断レベルをS_1=K_0、S_
2=K_1と設定することを特徴とする請求項2記載の
分布形光ファイバセンサのセンシング方法。
[Claims] 1. In a sensing system that uses backscattered light of an optical fiber to measure physical quantities that change depending on position and time, backscattered light with respect to pulsed incident light is sampled and data corresponding to the same sampling timing is obtained. In sequentially performing averaging processing many times, a series of samplings and an averaging processing number N_1, which is smaller than the averaging processing number N_0, which has high measurement accuracy in a state where physical quantities change gradually over time, are performed. The data group D_1 obtained by the method is led to an averaging processing selection means, and in the means, this data group D_1 is compared with the main data group D_0 obtained immediately before it for each corresponding data to create a difference ΔD, The difference Δ
D is compared with the judgment level, and if the change in the physical quantity is gradual over time, the difference ΔD is larger than the judgment level, and if the change in the physical quantity is gradual over time, the data group D_1 processed N_1 times and the main data obtained immediately before it are A new data group is obtained through averaging processing that takes into account the importance of the number of times of group D_0, and this is measured as a new main data group, and when the physical quantity changes rapidly over time, the above N_1 processing is performed. A sensing method for a distributed optical fiber sensor, characterized in that measurement is performed using a data group D_1 as a new main data group. 2. The difference Δ obtained by comparing the data group D_1 processed N_1 times with the main data group D_0 obtained immediately before using two determination levels, S_1 and S_2 (S_1<S_2).
Compare D with judgment levels S_1 and S_2, and when ΔD<S_1, data group D1 processed N_1 times.
A new data group is obtained by averaging processing that takes into consideration the weight of the number of times the main data group obtained immediately before that, and this is used as a new main data group, and the changes in physical quantities are more gradual over time. Furthermore, when ΔD>S_2, the data group processed N_1 times is used as a new main data group, and high-precision measurement is performed in a state where the time change of the physical quantity is more rapid. Furthermore, when S_1≦ΔD When ≦S_2, a new data group is obtained by any of the above processes due to its continuity,
2. The sensing method for a distributed optical fiber sensor according to claim 1, wherein highly accurate measurement is performed in a state where the physical quantity changes over time in an intermediate state. 3. The above judgment is made based on the relationship that K_1∝√(N_0/N_1)・K_0 holds between the error K_1 when processing N_1 times and the error K_0 when processing N_0 times as a theoretical measurement error in a steady state. Set the level to S_1=K_0, S_
3. The sensing method for a distributed optical fiber sensor according to claim 2, wherein 2=K_1.
JP1019996A 1989-01-30 1989-01-30 Sensing method of distributed optical fiber sensor Expired - Fee Related JPH0786436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019996A JPH0786436B2 (en) 1989-01-30 1989-01-30 Sensing method of distributed optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019996A JPH0786436B2 (en) 1989-01-30 1989-01-30 Sensing method of distributed optical fiber sensor

Publications (2)

Publication Number Publication Date
JPH02201133A true JPH02201133A (en) 1990-08-09
JPH0786436B2 JPH0786436B2 (en) 1995-09-20

Family

ID=12014771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019996A Expired - Fee Related JPH0786436B2 (en) 1989-01-30 1989-01-30 Sensing method of distributed optical fiber sensor

Country Status (1)

Country Link
JP (1) JPH0786436B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151505A (en) * 2015-02-18 2016-08-22 富士通株式会社 Temperature measurement system, temperature measurement method and program
US9816878B2 (en) 2012-10-26 2017-11-14 Fujitsu Limited Temperature measurement system and abnormality detection method
JP2019090696A (en) * 2017-11-15 2019-06-13 横河電機株式会社 Temperature measuring system and temperature measuring method
US10712211B2 (en) 2015-05-13 2020-07-14 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815159A (en) * 1981-07-21 1983-01-28 Fanuc Ltd Digital speed detecting system
JPS61270632A (en) * 1985-05-25 1986-11-29 Hitachi Cable Ltd Optical fiber type measuring instrument for temperature distribution
JPS62110160A (en) * 1985-08-20 1987-05-21 ヨ−ク・リミテツド Optical time-region reflection measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815159A (en) * 1981-07-21 1983-01-28 Fanuc Ltd Digital speed detecting system
JPS61270632A (en) * 1985-05-25 1986-11-29 Hitachi Cable Ltd Optical fiber type measuring instrument for temperature distribution
JPS62110160A (en) * 1985-08-20 1987-05-21 ヨ−ク・リミテツド Optical time-region reflection measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816878B2 (en) 2012-10-26 2017-11-14 Fujitsu Limited Temperature measurement system and abnormality detection method
JP2016151505A (en) * 2015-02-18 2016-08-22 富士通株式会社 Temperature measurement system, temperature measurement method and program
US10267689B2 (en) 2015-02-18 2019-04-23 Fujitsu Limited Temperature measuring system and temperature measuring method
US10712211B2 (en) 2015-05-13 2020-07-14 Fujitsu Limited Temperature measurement device, temperature measurement method, and computer-readable non-transitory medium
JP2019090696A (en) * 2017-11-15 2019-06-13 横河電機株式会社 Temperature measuring system and temperature measuring method

Also Published As

Publication number Publication date
JPH0786436B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US9046425B2 (en) Opticalfiber temperature distribution measurement apparatus
CA2692804C (en) Dual source auto-correction in distributed temperature systems
CN110160569B (en) Noise reduction method and system for distributed optical fiber sensing signal and storage medium
US10018517B2 (en) Optical fiber temperature distribution measuring device
CN108592962B (en) Fiber Bragg grating sensing system with wavelength scale calibration function
EP2350587A2 (en) Auto-correcting or self-calibrating dts temperature sensing sytems and methods
WO2004010098A1 (en) Optical fiber polarization mode dispersion measurement method and measurement device
CN109029770B (en) Distributed optical fiber Raman temperature and strain demodulation method based on loop demodulation
EP1393033B1 (en) A cryogenic optical fibre temperature sensor
JP7200989B2 (en) Optical fiber transmission loss measurement method and OTDR measurement device
JPH02201133A (en) Sensing method of distribution type optical fiber sensor
RU2417349C1 (en) Procedure for measurement of relative deformations of structures with multi-pointed tensometric measuring system
JP5493571B2 (en) OTDR waveform judgment method
CN110006330B (en) Strain test return-to-zero circuit of wide-resistance-value-range resistance strain sensor
KR101960888B1 (en) Temperature sensor correcting device, temperature sensor, and temperature sensor correcting method
JPH05172656A (en) Optical fiber distributed sensor
JPH07243920A (en) Optical fiber temperature distribution measuring system
JPH04332835A (en) Corrective processing method of distributed temperature data
JP2977373B2 (en) Optical fiber temperature distribution sensor
JPS6215424A (en) Object temperature measuring method utilizing radiation
CN113237575B (en) Temperature sensor dynamic calibration method based on dual-temperature excitation
EP3067706A1 (en) Device and method for detecting a break of at least one wired sensor
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
RU2143669C1 (en) Process of metrological diagnostics of flowmeters
CN105784270A (en) Uncertainty evaluation device and method of indirect full-optical path spectrum detection system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees