JPH02199375A - Composite type noncontact seal device - Google Patents

Composite type noncontact seal device

Info

Publication number
JPH02199375A
JPH02199375A JP1856489A JP1856489A JPH02199375A JP H02199375 A JPH02199375 A JP H02199375A JP 1856489 A JP1856489 A JP 1856489A JP 1856489 A JP1856489 A JP 1856489A JP H02199375 A JPH02199375 A JP H02199375A
Authority
JP
Japan
Prior art keywords
sealing
seal
sealing ring
rotary
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1856489A
Other languages
Japanese (ja)
Other versions
JPH0444145B2 (en
Inventor
Toshihiko Fuse
敏彦 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP1856489A priority Critical patent/JPH02199375A/en
Publication of JPH02199375A publication Critical patent/JPH02199375A/en
Publication of JPH0444145B2 publication Critical patent/JPH0444145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

PURPOSE:To prevent seal breakdown and the infiltration of a foreign object by selectively connecting a passage to a seal fluid feed source or an auxiliary seal fluid feed source with a switching mechanism provided on a pipe and setting and forming start ends and terminal ends of multiple groups of a rotary seal ring. CONSTITUTION:A switching mechanism 9 is provided on a pipe 6, and one of a seal fluid feed source 7 and an auxiliary seal fluid feed source 10 is connected to the passage 5 of a casing 3. Start ends 8a and terminal ends 8b of multiple groups 8 are set and formed in the seal face 2a of a rotary seal ring 2A. A seal fluid is invariably fed to the seal face, the contact between seal faces is avoided, seal breakdown is prevented, no foreign object is fed between seal faces, and the infiltration of the foreign object into the inside of a low- pressure machine can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は非接触シール装置に係り、特にオリフィス形非
接触シールとグループ形非接触シールとを組み合わせた
複合式非接触シール装置に関する。 [従来の技術] 従来より1機内の低圧(例えば真空)状態を保持してお
く必要のある被軸封機器において、その軸封部に適用さ
れるシール装置として、第4図に示す複合式非接触シー
ル装置が知られている。 この種のシール装置は、被軸封機器の回転部材1(図示
例では回転軸IAと同時回転する回転スリーブIB)と
同時回転する回転密封環2Aを設けた回転側シール要素
2と、被軸封機器のケーシング3側のフランジ3Aに1
周方向等間隔で配置した複数の回り止めピン3Bを介し
て回転不能に保持され、かつスプリング3Cにより回転
密封環2A側に常時付勢される静止密封環4Aを設けた
固定側シール要素4を有し、静止密封環4Aのシール面
4aに周溝4bを形成するとともに、この周溝4bに開
口するオリフィス5aを介設した絞り通路5が形成され
ている。 また、絞り通路5の入口には管路6を介してシール流体
供給源7が接続され、このシール流体供給源7から管路
6および絞り通路5を通してシール流体(例えばN2ガ
ス等の不活性ガス)を供給圧として静止密封環4Aと回
転密封環2Aのシール面4a、2aの間に導入するよう
になっている。そして、この導入された流体がシール面
4a、2aに作用してシール面4aをシール面2aから
離す方向に付勢し、シール面4aをシール面2aに当接
させる方向に付勢しているスプリング3Cのばね力との
バランス点の圧力、つまりポケット圧によってシール面
4a、2a間に例えば5〜20gm程度の狭いシール隙
間を形成する。 一方、回転密封環2Aのシール面2aには、例えば第5
図に示すように、回転方向(矢印a)に前進角を有して
周方向に交差し、かつその終端が高圧(例えば大気圧)
機外側Yに開口している複数のグループ8が形成されて
いる。したがって、回転密封環2Aが回転すると、その
回転方向に前進角を有する複数のグループ8に機外側Y
の流体(例えば空気)が進入して、シール面2a 、 
4aの間に動圧を発生させることになる。 即ち、前記シール隙間は、主としてシール流体供給源7
.管路および絞り通路5を通って、シール面4a、2a
の間にシール流体を供給圧として導入させることによっ
て、スプリング3Cのばね力とのバランス点で生じるポ
ケット圧によって形成され、回転密封環2Aの回転時に
おいて複数のグループ8から流体が進入することによっ
て生じる動圧を補助的に作用させるようにして、低圧機
内側Xと高圧機外側Yを非接触状態でシールするように
構成されている。 [発明が解決しようとする課題] ところが、前記従来の複合式非接触シール装置では、管
路6においてシール流体の移動が不能な異常事態を生じ
て、供給圧が0に近ずくと、ポケット圧が低下し、該ポ
ケット圧とスプリング3Cのばね力とのバランス点が損
なわれて所定のシール隙間を形成し得なくなる。この場
合でも、グループ8の作用によって生じる動圧がシール
面2a、4aに負荷されてはいるけれども、この動圧は
前述の供給圧と比較して著しく小さく補助的なものであ
るから、静止密封環4Aがスプリング3Cのばね力によ
って回転密封環2A側に移動して、シール面4a、2a
同士が接触してシール破壊を生じるごとになる。 また、複数のグループ8は、それぞれの終端を高圧機外
側Yに開口して形成しであるので、機外側流体とともに
オイルミスト等の異物がシール面2a、4a間に巻き込
まれるおそれを有し、異物がシール面2a、4a間に巻
き込まれると、この異物が低圧機内側Xに浸入する不都
合を生じることになる。 本発明は、このような事情に鑑みなされたもので、管路
においてシール流体の移動が不能な異常事態を生じて、
供給圧が低下したとしても、所定時間シール隙間を保持
しておくことの可能なポケット圧を確保して、シール面
同士の接触を回避して、シール破壊を防止するとともに
、オイルミスト等の異物が高圧機外側からシール面の間
に巻き込まれず、したがって異物が低圧機内側に浸入す
る不都合を確保に防止できる複合式非接触シール装置の
提供を目的としている。
[Industrial Field of Application] The present invention relates to a non-contact seal device, and more particularly to a composite non-contact seal device that combines an orifice-type non-contact seal and a group-type non-contact seal. [Prior Art] Conventionally, in shaft-sealed equipment that needs to maintain a low-pressure (e.g., vacuum) state within a single machine, a composite type non-sealing device shown in Fig. 4 has been used as a sealing device applied to the shaft sealing part of the shaft-sealed equipment. Contact seal devices are known. This type of sealing device includes a rotating seal element 2 provided with a rotary sealing ring 2A that rotates simultaneously with a rotating member 1 of a shaft-sealed device (in the illustrated example, a rotating sleeve IB that rotates simultaneously with a rotating shaft IA), and 1 on the flange 3A on the casing 3 side of the sealed equipment
A stationary seal element 4 is provided with a stationary seal ring 4A that is held non-rotatably through a plurality of rotation prevention pins 3B arranged at equal intervals in the circumferential direction and is always urged toward the rotating seal ring 2A by a spring 3C. A circumferential groove 4b is formed in the seal surface 4a of the stationary sealing ring 4A, and a throttle passage 5 is formed with an orifice 5a opening in the circumferential groove 4b. Further, a seal fluid supply source 7 is connected to the entrance of the throttle passage 5 through a pipe line 6, and a seal fluid (for example, inert gas such as N2 gas) is passed from the seal fluid supply source 7 through the pipe line 6 and the throttle passage 5. ) is introduced as a supply pressure between the seal surfaces 4a and 2a of the stationary seal ring 4A and the rotating seal ring 2A. The introduced fluid acts on the seal surfaces 4a and 2a, biasing the seal surface 4a in a direction away from the seal surface 2a, and biasing the seal surface 4a in a direction to bring the seal surface 4a into contact with the seal surface 2a. A narrow seal gap of, for example, about 5 to 20 gm is formed between the seal surfaces 4a and 2a by the pressure at the balance point with the spring force of the spring 3C, that is, the pocket pressure. On the other hand, on the sealing surface 2a of the rotary seal ring 2A, for example, a fifth
As shown in the figure, it has an advancing angle in the rotation direction (arrow a) and intersects in the circumferential direction, and its terminal end is under high pressure (e.g. atmospheric pressure).
A plurality of groups 8 are formed which are open to the outside Y of the machine. Therefore, when the rotary sealing ring 2A rotates, a plurality of groups 8 having an advance angle in the direction of rotation are formed on the outboard side Y.
The fluid (for example, air) enters the sealing surface 2a,
Dynamic pressure will be generated between 4a. That is, the seal gap is mainly formed by the seal fluid supply source 7.
.. Through the conduit and throttle passage 5, the sealing surfaces 4a, 2a
By introducing sealing fluid as a supply pressure between them, a pocket pressure is generated at the balance point with the spring force of the spring 3C, and when the rotary sealing ring 2A rotates, fluid enters from the plurality of groups 8. The structure is such that the generated dynamic pressure acts auxiliary to seal the low-pressure machine inside X and the high-pressure machine outside Y in a non-contact state. [Problems to be Solved by the Invention] However, in the conventional composite type non-contact sealing device, when an abnormal situation occurs in which the sealing fluid cannot move in the pipe line 6 and the supply pressure approaches 0, the pocket pressure increases. decreases, and the balance point between the pocket pressure and the spring force of the spring 3C is lost, making it impossible to form a predetermined seal gap. Even in this case, although the dynamic pressure generated by the action of group 8 is applied to the sealing surfaces 2a, 4a, this dynamic pressure is significantly smaller than the aforementioned supply pressure and is supplementary, so static sealing is not possible. The ring 4A moves toward the rotary sealing ring 2A by the spring force of the spring 3C, and the sealing surfaces 4a, 2a
If they come into contact with each other, the seal will break. In addition, since the plurality of groups 8 are formed with their respective terminal ends opened to the outside Y of the high-pressure machine, there is a risk that foreign matter such as oil mist may be caught between the seal surfaces 2a and 4a together with the fluid outside the machine. If foreign matter is caught between the seal surfaces 2a and 4a, this foreign matter will enter the inside X of the low pressure machine, causing a problem. The present invention has been made in view of the above circumstances, and is intended to prevent the sealing fluid from moving in the pipe line due to an abnormal situation in which the sealing fluid cannot move.
Even if the supply pressure decreases, the pocket pressure that can maintain the seal gap for a predetermined period of time is ensured to avoid contact between seal surfaces, prevent seal breakage, and prevent foreign matter such as oil mist. The object of the present invention is to provide a composite non-contact sealing device that prevents foreign matter from getting caught between the sealing surfaces from the outside of the high-pressure machine, and therefore prevents foreign matter from entering the inside of the low-pressure machine.

【課題を解決するための手段】[Means to solve the problem]

前記目的を達成するために、本発明は、静止密封環に形
成され該静止密封環のシール面に開口する通路とシール
流体供給源とを接続する管路に。 前記通路をシール流体供給源と補助シール流体供給源に
切り換えて接続させる。切換え機構を介設し、かつ複数
のグループそれぞれの始端および終端をシール面内に設
定して形成したものである。 [作用] 本発明によれば、管路においてシール流体の移動が不能
になる異常事態を生じて、シール流体供給源からの供給
圧が低下すると、この状態が検出され切換え機構を切換
える。これにより、補助シ−ル流体供給源から管路およ
び通路を通つ−C補助シール流体が静止密封環と回転密
封環のシール面の間に送り込まれる。 シール面の間に送り込まれた補助シール流体は、始端お
よび終端をそれぞれ回転密封環のシール面内に設定して
形成した複数のグループに捕捉されることになる。その
ため、スプリングのばね力に抗して所定のシール間隙を
形成するのに必要なポケット圧が発生して、シール面同
士の接触を回避する。 また、前述のように始端および終端をそれぞれ回転密封
環のシール面内に設定して形成した複数のグループでは
、高圧機外側流体およびオイルミスト等の異物をシール
面間に巻き込むことがない、そのため、異物の低圧機内
側への浸入を防止できる。 [実施例] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。 第1図は本発明に係る複合式非接触シール装置の半裁断
面図、第2図は回転密封環の半裁正面図である。なお本
発明の特徴は、通路をシール流体供給源と、補助シール
流体供給源に切り換えて接続させる切換え機構を管路に
介設したことと、複数のグループそれぞれの始端および
終端を回転密封環のシール面内に設定して形成した構成
に係り、これらを除く他の部材およびその構成は従来例
と異ならないので、第1図および第2図において、第4
図および第5図に相当する部分には、それぞれ同一符号
を付して、その詳細な説明は省略する。 第1図および第2図において、管路6に切換機構9が介
設されている。この切換機構9は、例えば切換電磁弁に
よってなり、そのメインボート9aがシール流体供給源
7に接続され、補助ボート9bが例えばN2ガス等の不
活性ガスを充填した補助用のバッファタンクによってな
る補助シール流体供給源10に接続されている。 また、複数のグループ8それぞれの始端8aおよび終端
8bを回転密封環2Aのシール面2a内に設定して形成
しである。なおこれらグループ8の深さは1〜5pmの
範囲とし、シール面2aに範囲に設定している。 前記構成において、通常、切換機構9はそのメインボー
ト9aと共通ボート9Cとを連通させるように保持され
ている。したがって、シール流体供給源7から管路6お
よび絞り通路5を通してシール流体(例えばN2ガス等
の不活性ガス)が供給圧として静止密封環4Aと回転密
封環2Aのシール面4a、2aの間に導入され、この導
入された流体がシール面4a、2aに作用してシール面
4aをシール面2aから離す方向に付勢し、シール面4
aをシール面2aに当接させる方向に付勢しているスプ
リング3Cのばね力とのバランス点の圧力、つまりポケ
ット圧によってシール面4a、2a間に例えば5〜20
pm程度の狭いシール隙間を形成し、低圧機内側Xと高
圧機外側Yを非接触状態でシールする。 管路6においてシール流体供給源7からのシール流体の
移動が不能になる異常事態を生じて、シール流体供給源
7からの供給圧が低下すると、この状態が図示されてい
ない検出手段によって検出され、該検出手段からの信号
によって切換え機構9を切換え、その補助ボー)9bと
共通ボート9Cとを連通させる。したがって、補助シー
ル流体供給[(10から管路6および通路5を通って、
例えばN2ガス等の不活性ガスによってなる補助シール
流体が供給圧として静止密封環4Aと回転密封環2Aの
シール面4a、2aの間に送り込まれる。 シール面4a、2aの間に送り込まれた補助シール流体
は、始端8aおよび終端8bをそれぞれ回転密封環2A
のシール面2a内に設定して形成した複数のグループ8
に捕捉される。そのため、5〜207zmのシール隙間
を形成するのに必要なポケット圧が発生して、スプリン
グ3Cとのバランス点まで、該スプリング3Cのばね力
に抗して静止密封環4Aを後退させ、シール面4a、2
a同士の接触を回避し、シール破壊を防止する。 複数のグループ8は、それぞれその始端8aおよび終端
8bを回転密封環2Aのシール面2a内に設定して形成
しているので、従来のグループ8のように、回転密封環
2Aの回転時に高圧機外側Yの流体およびオイルミスト
等の異物をシール面2a、4a間に巻き込むことがない
、そのため、異物の低圧機内側Xへの浸入を防止できる
。 なお、補助シール流体供給源lOとして前述のバッファ
タンクに代えて大気を活用するようにしてもよい、また
、第3図に示すように、プルーブ8をちどり形に形成し
てもよい。 [発明の効果] 以上のように、本発明によれば、静止密封環に形成され
該静止密封環のシール面に開口する通路とシール流体供
給源とを接続する管路に、前記通路をシール流体供給源
と補助シール流体供給源に切り換えて接続させる、切換
え機構を介設し、かつ複数のグループそれぞれの始端お
よび終端をシール面内に設定しているから、管路におい
てシール流体の移動が不能になる異常事態を生じても。 切換え機構の切り換えによって、補助シール流体をシー
ル面間に送り込むことができ、しかも回転密封環のシー
ル面内に始端および終端を設定して形成した複数のグル
ープで、送り込まれた補助シール流体を捕捉して、所定
のシール隙間を形成するのに必要なポケット圧を発生さ
せることができるので、シール面同士の接触を回避し、
シール破壊を確実に防止することができる。 また、始端および終端をそれぞれ回転密封環のシール面
内に設定して形成した複数のグループでは、高圧機外側
流体およびオイルミスト等の異物をシール面間に巻き込
むことがない、そのため。 異物の低圧機内側への浸入を防止できる。
To achieve the above object, the present invention provides a conduit that connects a sealing fluid supply source with a passage formed in a stationary sealing ring and opening to a sealing surface of the stationary sealing ring. The passageway is switched and connected to a sealing fluid supply source and an auxiliary sealing fluid supply source. A switching mechanism is provided and the starting and ending ends of each of the plurality of groups are set within the sealing surface. [Operation] According to the present invention, when an abnormal situation occurs in which the movement of the seal fluid becomes impossible in the pipeline and the supply pressure from the seal fluid supply source decreases, this state is detected and the switching mechanism is switched. This forces -C auxiliary seal fluid from the auxiliary seal fluid supply through the conduits and passages between the sealing surfaces of the stationary and rotating seal rings. The auxiliary sealing fluid sent between the sealing surfaces is trapped in a plurality of groups formed by having starting and ending ends set within the sealing surfaces of the rotary sealing ring. Therefore, pocket pressure necessary to form a predetermined seal gap is generated against the spring force of the spring, thereby avoiding contact between the seal surfaces. In addition, as mentioned above, in the multiple groups formed by setting the starting end and the ending end within the sealing surface of the rotary sealing ring, foreign matter such as fluid outside the high-pressure machine and oil mist is not caught between the sealing surfaces. , it is possible to prevent foreign matter from entering the inside of the low-pressure machine. [Example] Hereinafter, the present invention will be described in detail based on an example shown in the drawings. FIG. 1 is a half-cut sectional view of a composite non-contact sealing device according to the present invention, and FIG. 2 is a half-cut front view of a rotary sealing ring. The features of the present invention are that a switching mechanism is provided in the pipe line to switch the passage between the sealing fluid supply source and the auxiliary sealing fluid supply source, and that the starting and ending ends of each of the plurality of groups are connected to the rotating sealing ring. Regarding the configuration formed within the sealing surface, other members and their configurations other than these are the same as the conventional example, so in FIGS. 1 and 2,
Portions corresponding to those in FIG. 5 and FIG. 5 are designated by the same reference numerals, and detailed explanation thereof will be omitted. In FIGS. 1 and 2, a switching mechanism 9 is provided in the conduit 6. The switching mechanism 9 includes, for example, a switching solenoid valve, and its main boat 9a is connected to the sealing fluid supply source 7, and the auxiliary boat 9b is an auxiliary buffer tank filled with an inert gas such as N2 gas. It is connected to a sealing fluid supply source 10 . Further, the starting end 8a and the ending end 8b of each of the plurality of groups 8 are set within the sealing surface 2a of the rotary sealing ring 2A. Note that the depth of these groups 8 is in the range of 1 to 5 pm, and is set within the range of the sealing surface 2a. In the above configuration, the switching mechanism 9 is normally held so as to communicate the main boat 9a and the common boat 9C. Therefore, sealing fluid (for example, inert gas such as N2 gas) is supplied from the sealing fluid supply source 7 through the pipe line 6 and the throttle passage 5 between the sealing surfaces 4a and 2a of the stationary sealing ring 4A and the rotating sealing ring 2A. The introduced fluid acts on the seal surfaces 4a, 2a and urges the seal surface 4a away from the seal surface 2a, causing the seal surface 4 to move away from the seal surface 2a.
The pressure at the balance point with the spring force of the spring 3C that urges a into contact with the sealing surface 2a, that is, the pocket pressure, causes a pressure of, for example, 5 to 20 mm between the sealing surfaces 4a and 2a.
A narrow seal gap of about pm is formed to seal the low-pressure machine inside X and the high-pressure machine outside Y in a non-contact state. When an abnormal situation occurs in which the seal fluid cannot move from the seal fluid supply source 7 in the pipe line 6 and the supply pressure from the seal fluid supply source 7 decreases, this state is detected by a detection means (not shown). , the switching mechanism 9 is switched by the signal from the detection means, and the auxiliary boat 9b is communicated with the common boat 9C. Therefore, the auxiliary sealing fluid supply [(from 10 through line 6 and passage 5;
For example, an auxiliary sealing fluid made of an inert gas such as N2 gas is fed as a supply pressure between the sealing surfaces 4a, 2a of the stationary sealing ring 4A and the rotating sealing ring 2A. The auxiliary sealing fluid sent between the sealing surfaces 4a and 2a rotates the starting end 8a and the terminal end 8b, respectively, into the rotating sealing ring 2A.
A plurality of groups 8 formed by setting within the sealing surface 2a of
captured by Therefore, pocket pressure necessary to form a seal gap of 5 to 207 zm is generated, and the stationary sealing ring 4A is retreated against the spring force of the spring 3C to the balance point with the spring 3C, and the sealing surface is 4a, 2
Avoid contact between a and prevent seal breakage. Since the plurality of groups 8 are formed by setting their starting ends 8a and terminal ends 8b within the sealing surface 2a of the rotary sealing ring 2A, unlike the conventional groups 8, when the rotary sealing ring 2A rotates, the high pressure machine Foreign matter such as fluid and oil mist on the outside Y is not caught between the seal surfaces 2a and 4a, and therefore foreign matter can be prevented from entering the inside X of the low-pressure machine. Note that the atmosphere may be used as the auxiliary sealing fluid supply source lO in place of the buffer tank described above, and the probe 8 may be formed in a zigzag shape as shown in FIG. [Effects of the Invention] As described above, according to the present invention, the passageway is sealed to the conduit connecting the sealing fluid supply source to the passageway formed in the stationary sealing ring and opening to the sealing surface of the stationary sealing ring. A switching mechanism is provided to switch and connect the fluid supply source and the auxiliary sealing fluid supply source, and the starting and ending ends of each of the multiple groups are set within the sealing surface, making it possible to prevent the movement of sealing fluid in the pipeline. Even if an abnormal situation occurs that makes it impossible. By switching the switching mechanism, the auxiliary sealing fluid can be sent between the sealing surfaces, and the auxiliary sealing fluid is captured in multiple groups formed by setting the starting and ending ends within the sealing surface of the rotating seal ring. This can generate the pocket pressure necessary to form a predetermined seal gap, thereby avoiding contact between the seal surfaces.
Breakage of the seal can be reliably prevented. Furthermore, in the case of a plurality of groups in which the starting end and the ending end are each set within the sealing surface of the rotary sealing ring, foreign matter such as the fluid outside the high-pressure machine and oil mist is not caught between the sealing surfaces. Prevents foreign matter from entering the inside of the low-pressure machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の実施例を示し、第1図は
その全体機構を示す半裁断面図、第2図は回転密封環の
半裁正面図、第3図はグループの他の例を示す半裁正面
図、また第4図および第5図は従来例を示し、第4図は
その全体構成を示す半裁正面図、第5図は回転密封環の
半裁正面図である。 1・・・回転部材 2・・・回転側シール要素 2A・・・回転密封環 2a・・・シール面 3・・・ケーシング 3C・・・スプリング 4・・・固定側シール要素 4A・・・静止密封環 4a・・・シール面 5・・・通路 6・・・管路 7・・・シール流体供給源 8・・・グループ 8a・・・始端 8b・・・終端 9・・・切換え機構 10・・・補助シール流体供給源 第4図 第 5 図
1 to 3 show embodiments of the present invention, FIG. 1 is a half-cut sectional view showing the overall mechanism, FIG. 2 is a half-cut front view of the rotary sealing ring, and FIG. 3 is another example of the group. FIG. 4 and FIG. 5 show a conventional example, FIG. 4 is a half-cut front view showing the overall structure, and FIG. 5 is a half-cut front view of the rotary sealing ring. 1...Rotating member 2...Rotating side sealing element 2A...Rotating seal ring 2a...Sealing surface 3...Casing 3C...Spring 4...Stationary side sealing element 4A...Stationary Sealing ring 4a...Sealing surface 5...Passage 6...Pipe line 7...Sealing fluid supply source 8...Group 8a...Starting end 8b...Terminal end 9...Switching mechanism 10. ...Auxiliary seal fluid supply source Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (1)被軸封機器の回転部材と同時回転する回転密封環
を設けた回転側シール要素と、被軸封機器のケーシング
側に回転不能に保持され、かつスプリングにより回転密
封環側に常時付勢される静止密封環を設けた固定側シー
ル要素を有し、静止密封環に該静止密封環のシール面に
開口する通路が形成され、この通路に管路を介してシー
ル流体を静止密封環と回転密封環それぞれのシール面の
間に導入するシール流体供給源が接続されるとともに、
回転密封環のシール面に複数のグループが周方向に交差
して形成された複合式非接触シール装置において、前記
管路に前記通路をシール流体供給源と補助シール流体供
給源に切り換えて接続させる切換機構が介設され、かつ
前記複数のグループそれぞれの始端および終端がシール
面に設定して形成されていることを特徴とする複合式非
接触シール装置。
(1) A rotary-side seal element equipped with a rotary sealing ring that rotates simultaneously with the rotating member of the shaft-sealed device, and a rotary-side seal element that is non-rotatably held on the casing side of the shaft-sealed device and is always attached to the rotary sealing ring side by a spring. The stationary sealing element has a stationary sealing element provided with a stationary sealing ring that is energized, and the stationary sealing ring has a passage that opens to the sealing surface of the stationary sealing ring, and the sealing fluid is supplied to the passage through a conduit to the stationary sealing ring. and a sealing fluid supply source to be introduced between the sealing surfaces of the rotary sealing ring and the rotary sealing ring, and
In a composite non-contact sealing device in which a plurality of groups are formed to intersect in the circumferential direction on a sealing surface of a rotary sealing ring, the passageway is connected to the conduit by switching between a sealing fluid supply source and an auxiliary sealing fluid supply source. 1. A composite non-contact sealing device, characterized in that a switching mechanism is provided, and a starting end and a terminal end of each of the plurality of groups are set on a sealing surface.
JP1856489A 1989-01-27 1989-01-27 Composite type noncontact seal device Granted JPH02199375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1856489A JPH02199375A (en) 1989-01-27 1989-01-27 Composite type noncontact seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1856489A JPH02199375A (en) 1989-01-27 1989-01-27 Composite type noncontact seal device

Publications (2)

Publication Number Publication Date
JPH02199375A true JPH02199375A (en) 1990-08-07
JPH0444145B2 JPH0444145B2 (en) 1992-07-20

Family

ID=11975111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1856489A Granted JPH02199375A (en) 1989-01-27 1989-01-27 Composite type noncontact seal device

Country Status (1)

Country Link
JP (1) JPH02199375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044470B2 (en) 2000-07-12 2006-05-16 Perkinelmer, Inc. Rotary face seal assembly
JP2010164090A (en) * 2009-01-13 2010-07-29 Jtekt Corp Sealing device and sealing method for rotating shaft
JP2021092259A (en) * 2019-12-09 2021-06-17 イーグル工業株式会社 mechanical seal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044470B2 (en) 2000-07-12 2006-05-16 Perkinelmer, Inc. Rotary face seal assembly
JP2007263374A (en) * 2000-07-12 2007-10-11 Perkinelmer Fluid Sciences Rotary face seal assembly
JP2010164090A (en) * 2009-01-13 2010-07-29 Jtekt Corp Sealing device and sealing method for rotating shaft
JP2021092259A (en) * 2019-12-09 2021-06-17 イーグル工業株式会社 mechanical seal

Also Published As

Publication number Publication date
JPH0444145B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
US2747611A (en) Control valve device
US4625942A (en) Valve assembly, seat and seal
US4174728A (en) Sliding-gate valve
US4449738A (en) Rotary fluid coupling
US4471943A (en) Valve assembly and seat
US7309058B2 (en) Flexible backseat seal for gate valve
US4396199A (en) Fluid pressure sealing member for a valve
EP0947747A3 (en) Shaft seal apparatus
US5322261A (en) Arrangement in closing valves
US2693373A (en) Swivel connection for fluids
KR930003274Y1 (en) Flow passage coupling unit
JPH0469308B2 (en)
JPH02199375A (en) Composite type noncontact seal device
US4928921A (en) Ball valves for pipelines
KR950002529Y1 (en) Fluid coupling device
US4066101A (en) Multiple way valve
US4256283A (en) Pivotal ball check valve
JPS6149538B2 (en)
JPH03277874A (en) Composite type noncontact sealing device
JPH03500805A (en) A sealing device provided between the shaft and the housing of a fluid flow machine having at least one rotating wheel
US3685842A (en) Hydrostatic shaft seal
US4462619A (en) Mechanical sealing means for rotary fluid coupling
JPH0237331Y2 (en)
JPS5939256Y2 (en) Valve seal structure
US5332233A (en) Face seal means