JPH02196111A - Cooling method for turbine - Google Patents

Cooling method for turbine

Info

Publication number
JPH02196111A
JPH02196111A JP1451189A JP1451189A JPH02196111A JP H02196111 A JPH02196111 A JP H02196111A JP 1451189 A JP1451189 A JP 1451189A JP 1451189 A JP1451189 A JP 1451189A JP H02196111 A JPH02196111 A JP H02196111A
Authority
JP
Japan
Prior art keywords
turbine
steam
cooling
casing
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1451189A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kubo
善弘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1451189A priority Critical patent/JPH02196111A/en
Publication of JPH02196111A publication Critical patent/JPH02196111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To perform the cooling of a turbine so efficiently without deriving any thermal shock or the like by rotating a turbine rotor into reverse with a turning device after stoppage of the turbine, and making a cooling medium flow from the outlet side to the inlet side of the turbine. CONSTITUTION:A steam turbine 1 is provided with a steam inlet system 3 and a steam exhaust system 4. In this steam inlet system 3, there is provided with an inlet pipe 8 equipped with a blind flange 7 at the downstream side of a steam step valve 2. In addition, in the steam exhaust system 4, there is provided with an atmospheric escape pipe 10. In the above constitution, a turbine rotor 12 is rotated into reverse with a turning device 13 after stoppage of the steam turbine 1. After air is led out of this atmospheric escape pipe 10 and made to flow from a cold part to a hot part of the steam turbine 1, it is discharged to the atmosphere from the inlet pipe 8. With this constitution, the steam turbine is efficiently solled without deriving any thermal shock and temporary heating in the cold part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タービン車軸を回転させる作動流体のタービ
ン入口温度が150℃以上の高温である蒸気タービンま
たはガスタービンの駆動停止後、タービンを冷却するタ
ービンの冷却方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for cooling a steam turbine or a gas turbine after the drive of a steam turbine or a gas turbine in which the turbine inlet temperature of the working fluid that rotates the turbine axle is at a high temperature of 150° C. or higher. The present invention relates to a method for cooling a turbine.

〔従来の技術〕[Conventional technology]

蒸気タービンやガスタービンの駆動停止後、タービンは
高温であるためタービン車軸が熱変形するのを避けるた
めターニング装置で低速回転を行ないながらタービンを
冷却し、タービンが所定温度まで低下したらターニング
装置を停止してタービンの回転を停止している。この場
合、タービンのメンテナンス等のため作業が出来る状態
にまで冷却するには数日を要するので、この期間を短縮
するため番こタービンを強制冷却することが行なわれる
。以下この強制冷却方法について第3図に基づいて説明
する。
After the drive of a steam or gas turbine is stopped, the turbine is cooled down while rotating at a low speed with a turning device to avoid thermal deformation of the turbine axle due to the high temperature of the turbine, and the turning device is stopped when the turbine cools to a predetermined temperature. The rotation of the turbine is stopped. In this case, it takes several days to cool down the turbine to a state where it can be used for maintenance or the like, so to shorten this period, forced cooling of the turbine is performed. This forced cooling method will be explained below based on FIG. 3.

第3図において1はタービンとしての蒸気タービンであ
り、蒸気がタービンのケーシングに流入する。蒸気止め
弁2を備えた蒸気入口系3と、タービン内で膨張してケ
ーシングから排出する蒸気排出系4(!:がそれぞれケ
ーシングの蒸気入口と排出口に接続されている。蒸気入
口糸3には蒸気止め弁2の上流に盲フランジ5を備える
冷却媒体が流入する入口管6%また蒸気止め弁2の下流
の入口弁室Iこ盲フランジ7を備える入口管8が設けら
れている。またタービンのケーシングの排気側に大気放
出板9を備えた大気放出管10が設けられている。11
は蒸気タービン1のタービン車軸12に直結される被駆
動機、例えば発電機、13はタービン車軸12を低速回
転するターニング装置である。
In FIG. 3, reference numeral 1 denotes a steam turbine, and steam flows into the casing of the turbine. A steam inlet system 3 with a steam stop valve 2 and a steam exhaust system 4 (!:) for expanding in the turbine and discharging it from the casing are connected to the steam inlet and outlet of the casing, respectively. Upstream of the steam stop valve 2 there is provided an inlet pipe 6 into which the cooling medium flows, and in the inlet valve chamber I downstream of the steam stop valve 2 there is provided an inlet pipe 8 with a blind flange 7. An atmosphere discharge pipe 10 equipped with an atmosphere discharge plate 9 is provided on the exhaust side of the turbine casing.11
13 is a driven machine directly connected to the turbine axle 12 of the steam turbine 1, such as a generator, and 13 is a turning device that rotates the turbine axle 12 at a low speed.

このような構成により蒸気タービンが停止され、作業可
能な温度まで急速に冷却する方法は次のようにして行な
われる。タービン停止後ターニング7を取外し、また排
気側の大気開放板9を取外し、この状態で入口管3また
はrから冷却媒体、例えば空気をケーシング内に送入し
てタービンを冷却し、冷却により高温になった空気は大
気放出管10から大気に放出する。この場合、タービン
車軸がケーシングを貫通する部分に設けられるグランド
パツキンの隙間からも空気は大気に放出される。
With this configuration, the steam turbine is stopped and rapidly cooled down to a working temperature as follows. After the turbine is stopped, the turning 7 is removed, and the atmosphere release plate 9 on the exhaust side is removed. In this state, a cooling medium, such as air, is introduced into the casing from the inlet pipe 3 or r to cool the turbine, and the cooling causes the temperature to rise. The resulting air is discharged into the atmosphere from the atmosphere discharge pipe 10. In this case, air is also released to the atmosphere from a gap in a gland packing provided at a portion where the turbine axle passes through the casing.

このようにして冷却媒体をタービンの蒸気入口側から送
入して排気側から排出することによりタービンを急速に
冷却している。
In this way, the turbine is rapidly cooled by introducing the cooling medium from the steam inlet side of the turbine and discharging it from the exhaust side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

タービンの停止後、冷却媒体をケーシングの高温の蒸気
入口側から送入してタービンを冷却した後高温になりた
冷却媒体をケーシングの排気側から排出してタービンを
冷却する方法は、冷却媒体によってタービンを冷却する
ために冷却媒体に接するタービン構成材料に温度差の大
きいサーマルショックを与えるので、材料の寿命が縮ま
るという問題がある。この問題を解決するために冷却媒
体の流量を減らして温度差を低減する方法をとっている
が、この方法は冷却媒体の流量が少ないため冷却効果が
低下するという欠点がある。
After the turbine has stopped, a cooling medium is introduced from the high-temperature steam inlet side of the casing to cool the turbine, and then the high-temperature cooling medium is discharged from the exhaust side of the casing to cool the turbine. In order to cool the turbine, a thermal shock with a large temperature difference is applied to the turbine constituent materials that are in contact with the cooling medium, resulting in a problem that the life of the materials is shortened. In order to solve this problem, a method is used to reduce the temperature difference by reducing the flow rate of the cooling medium, but this method has the disadvantage that the cooling effect is reduced because the flow rate of the cooling medium is small.

また、タービン停止後タービン車軸の熱不釣合による熱
変形を避けるためにターニング装置によりタービン車軸
を低速回転して冷却しているが、この回転によるタービ
ン車軸の翼によるファン効果によりケーシング内の流体
はゲージングの蒸気入口側から排気側に同って流れるの
で、冷却媒体はケーシングの蒸気入口側から送入して蒸
気入口側から排気側に流れるようにしている。しかし、
この場合蒸気入口側の高温部を通過することにより昇温
しで高温になった冷却媒体は排気側の低温部を通って排
出されるので、−時的に低温部を加熱し、このため冷却
効果が落ちるという問題もある。
In addition, in order to avoid thermal deformation due to thermal imbalance of the turbine axle after the turbine has stopped, the turbine axle is cooled by rotating it at low speed using a turning device. The cooling medium is introduced from the steam inlet side of the casing and flows from the steam inlet side to the exhaust side. but,
In this case, the coolant that has become hot by passing through the high-temperature section on the steam inlet side is discharged through the low-temperature section on the exhaust side, which temporarily heats the low-temperature section and thus cools the There is also the problem of reduced effectiveness.

本発明の目的は、タービン停止後のタービンを冷却する
際、冷却効果を向上することのできるタービンの冷却方
法を提供することである。
An object of the present invention is to provide a method for cooling a turbine that can improve the cooling effect when cooling the turbine after the turbine is stopped.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために1本発明によればケーシング
の蒸気入口側に高温の作動流体が流入し、この流体によ
りタービン車軸を回転させてケーシングの排気側から但
温になった作動流体を排出し、タービン停止後、ターニ
ング装置によりタービン室軸を低速回転するタービンに
おいて、タービンの停止後ターニング装置によりタービ
ン車軸を逆回転し、冷却媒体をケーシングの排気側から
送入してケーシング内を通流させた後ケーシングの蒸気
入口側から排出してタービンを冷却するものとする。
To solve the above problems, according to the present invention, a high-temperature working fluid flows into the steam inlet side of the casing, rotates the turbine axle with this fluid, and discharges the still-temperature working fluid from the exhaust side of the casing. In a turbine where the turbine chamber shaft is rotated at low speed by a turning device after the turbine is stopped, the turning device reversely rotates the turbine axle after the turbine is stopped, and the cooling medium is introduced from the exhaust side of the casing and flows through the casing. After that, the steam is discharged from the steam inlet side of the casing to cool the turbine.

〔作用〕[Effect]

タービン停止後の冷却において、ターニング装置により
タービン車軸を逆回転させてケーシングの排気側から冷
却媒体を送入することにより、タービンの興のファン効
果により、冷却媒体はケーシングの排気側から蒸気入口
側へ、すなわちタービンの低温部から高温部に流れてタ
ービンを冷却するのでサーマルショックをなくシ、また
低温部の一時的な加熱もなく、良好な冷却効果を得る。
During cooling after the turbine has stopped, the turning device rotates the turbine axle in the opposite direction and introduces the cooling medium from the exhaust side of the casing. Due to the fan effect of the turbine, the cooling medium is transferred from the exhaust side of the casing to the steam inlet side. In other words, the flow from the low-temperature part of the turbine to the high-temperature part cools the turbine, eliminating thermal shock and also eliminating temporary heating of the low-temperature part, resulting in a good cooling effect.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例1こよるタービンの冷却方法を
適用する蒸気タービンの冷却系統図である。なお、第1
図および後述する@2図において第3図の従来例と同一
部品には同じ符号を付し、その説明を省略する。第1図
においてタービン停止後ターニング装置13を逆回転さ
せ、ケーシングの排気側、例えば大気放出管】0がら空
気を送入すると、空気はタービンの翼のファン効果によ
りタービンlの低温部から高温部に流れて高温部を冷却
して低温領域を広げるから蒸気入口糸3の入口管8から
大気、に放出される。この際、ゲージング内を流れる空
気はタービンを冷却する。なお、冷却のために送入した
空気の出口は入口1f8の代りに入口W6(第3図8照
)でもよい。
FIG. 1 is a cooling system diagram of a steam turbine to which the turbine cooling method according to the first embodiment of the present invention is applied. In addition, the first
In the drawings and FIG. 2, which will be described later, parts that are the same as those in the conventional example shown in FIG. In FIG. 1, after the turbine is stopped, the turning device 13 is rotated in the opposite direction, and air is introduced from the exhaust side of the casing, for example, from the atmosphere discharge pipe. The steam flows through the inlet tube 8 of the inlet line 3 to cool the high-temperature part and expand the low-temperature area, and is then discharged to the atmosphere from the inlet pipe 8 of the steam inlet line 3. At this time, the air flowing through the gauging cools the turbine. Note that the outlet of the air introduced for cooling may be the inlet W6 (see FIG. 3, 8) instead of the inlet 1f8.

本実施例では蒸気タービンについて説明したが、ガスタ
ービンに上記の方法を適用しても同じ効果が得られる。
In this embodiment, a steam turbine has been described, but the same effect can be obtained even if the above method is applied to a gas turbine.

第2図は本発明の異なる実施例によるタービンの冷却方
法を適用する再熱タービンの系統図である。なお%第2
図において第1図と同一部品には同じ符号を付している
。図において21は高圧タービン、nは中圧タービン%
羽は低圧タービンであり、発電機11と共軸となって結
合されている。2!3は高圧タービン2Iの排気を図示
しない再熱器に導く、逆上弁かを備えた中圧蒸気排出糸
、27は再熱器から送出された中圧蒸気を中圧タービン
乙に導く、蒸気止め9P?i3を備えた再熱蒸気入口糸
%四は中圧タービンの排気を低圧タービンβに導く低圧
蒸気入口糸である。なお、中圧蒸気排出糸5には盲フラ
ンジ(9)を備えた入口管31、また中圧蒸気入口系2
74こは盲フランジ32を備えた出口管間が設けられて
いる。
FIG. 2 is a system diagram of a reheat turbine to which a turbine cooling method according to a different embodiment of the present invention is applied. In addition, %2nd
In the figure, the same parts as in FIG. 1 are given the same reference numerals. In the figure, 21 is a high-pressure turbine, and n is an intermediate-pressure turbine%.
The blades are low pressure turbines and are coaxially connected to the generator 11. 2!3 is an intermediate pressure steam exhaust line equipped with a reverse valve that guides the exhaust gas of the high pressure turbine 2I to a reheater (not shown); 27 is an intermediate pressure steam discharge line that guides the intermediate pressure steam sent out from the reheater to the intermediate pressure turbine B , Steam stop 9P? The reheat steam inlet thread %4 with i3 is a low pressure steam inlet thread that leads the exhaust of the intermediate pressure turbine to the low pressure turbine β. Note that the medium pressure steam discharge line 5 includes an inlet pipe 31 equipped with a blind flange (9), and a medium pressure steam inlet system 2.
74 is provided with an outlet tube with a blind flange 32.

このような構成によりターニング装置13を逆回転し、
盲フランジ加、32を取外し、空気を入口管31から送
入すると、高圧タービン21では入口管:つ1を経て高
圧タービン21の低温部から高温部に流れて出口管8か
ら大気に放出され、この間ケーシング内を流れる空気は
高圧タービン2Jを冷却する。
With such a configuration, the turning device 13 is rotated in the reverse direction,
When the blind flange 32 is removed and air is introduced from the inlet pipe 31, it flows from the low-temperature part of the high-pressure turbine 21 to the high-temperature part of the high-pressure turbine 21 through the inlet pipe 1, and is discharged to the atmosphere from the outlet pipe 8. During this time, the air flowing inside the casing cools the high pressure turbine 2J.

また、低圧タービンZの大気放出管10がら空気を送入
すると、空気は低圧タービン乙の低温部から高温部に流
れ、低圧蒸気入口糸四を経て中圧ター管おから大気lこ
放出され、この間空間は低圧、中圧タービンを冷却する
Furthermore, when air is introduced through the atmospheric discharge pipe 10 of the low pressure turbine Z, the air flows from the low temperature section to the high temperature section of the low pressure turbine B, passes through the low pressure steam inlet line 4, and is discharged into the atmosphere from the medium pressure turbine tube. During this time, the space cools the low-pressure and intermediate-pressure turbines.

上記のような冷却方法lこより^1J述と同じ冷却効果
が得られる。
By using the cooling method described above, the same cooling effect as described in 1J can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようζこ、本発明によれば、タ
ービン停止後ターニング装置を逆回転して冷却媒体をタ
ービンの排気側から蒸気入口側に流してタービンを冷却
すること1こより、冷却媒体はタービンの低温部から高
温部#C流れてタービンを冷却するので、ザーマルショ
ックおよび低温部の一時的加熱がなくなり、冷却効果を
向上することができ、冷却期間を大巾に短縮できる。例
えば冷却媒体で冷却をしない場合冷却期間が5〜6日間
かかつていたものは、従来の冷却媒体lこよる冷却方法
では前記期間の号となるが、本発明による冷却方法では
1日という短期間で冷却できる。
As is clear from the above description, according to the present invention, after the turbine is stopped, the turning device is reversely rotated to flow the cooling medium from the exhaust side of the turbine to the steam inlet side to cool the turbine. flows from the low-temperature part of the turbine to the high-temperature part #C to cool the turbine, so thermal shock and temporary heating of the low-temperature part are eliminated, the cooling effect can be improved, and the cooling period can be greatly shortened. For example, if cooling is not performed with a cooling medium, the cooling period would be 5 to 6 days, but with the conventional cooling method that relies on a cooling medium, the cooling period would be as short as 1 day. It can be cooled by

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によるタービン冷却方法を適用
するタービンの系統図、第2図は本発明の異なる実施例
によるタービンの冷却方法を適用するタービンの系統図
、第3図は従来のタービンの冷却方法を適用するタービ
ンの系統図である。 1:タービン、3:蒸気入口糸% 4:蒸気排出第1図 第2図
FIG. 1 is a system diagram of a turbine to which a turbine cooling method according to an embodiment of the present invention is applied, FIG. 2 is a system diagram of a turbine to which a turbine cooling method according to a different embodiment of the present invention is applied, and FIG. FIG. 2 is a system diagram of a turbine to which the turbine cooling method is applied. 1: Turbine, 3: Steam inlet thread% 4: Steam exhaust Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)ケーシングの蒸気入口側に高温の作動流体が流入し
、この流体がタービン車を回転させてケーシングの排気
側から排出され、タービン停止後タービン車を低速回転
させるターニング装置を備えたタービンにおいて、ター
ビン停止後前記ターニング装置によりタービン車を逆回
転させ、冷却媒体をケーシングの排気側から送入してケ
ーシング内を通流させた後ケーシングの蒸気入口側から
排出してタービンを冷却することを特徴とするタービン
の冷却方法。
1) A turbine equipped with a turning device in which high-temperature working fluid flows into the steam inlet side of the casing, this fluid rotates the turbine wheel and is discharged from the exhaust side of the casing, and rotates the turbine wheel at a low speed after the turbine is stopped. After the turbine is stopped, the turbine wheel is reversely rotated by the turning device, and the cooling medium is introduced from the exhaust side of the casing to flow through the casing, and then discharged from the steam inlet side of the casing to cool the turbine. A cooling method for turbines.
JP1451189A 1989-01-24 1989-01-24 Cooling method for turbine Pending JPH02196111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1451189A JPH02196111A (en) 1989-01-24 1989-01-24 Cooling method for turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1451189A JPH02196111A (en) 1989-01-24 1989-01-24 Cooling method for turbine

Publications (1)

Publication Number Publication Date
JPH02196111A true JPH02196111A (en) 1990-08-02

Family

ID=11863102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1451189A Pending JPH02196111A (en) 1989-01-24 1989-01-24 Cooling method for turbine

Country Status (1)

Country Link
JP (1) JPH02196111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208634A (en) * 2010-03-02 2011-10-20 Alstom Technology Ltd Acceleration of cooling of gas turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208634A (en) * 2010-03-02 2011-10-20 Alstom Technology Ltd Acceleration of cooling of gas turbine

Similar Documents

Publication Publication Date Title
JP2954797B2 (en) Forced cooling system for steam turbine
US4820116A (en) Turbine cooling for gas turbine engine
JP2559297B2 (en) Turbine engine
US7003956B2 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
US4320903A (en) Labyrinth seals
JP3170686B2 (en) Gas turbine cycle
US6145317A (en) Steam turbine, steam turbine plant and method for cooling a steam turbine
JP2000511257A (en) Turbine shaft and cooling method for turbine shaft
JPWO2019220786A1 (en) Steam turbine plant and its cooling method
WO2003074854A1 (en) Turbine equipment, compound power generating equipment, and turbine operating method
JPH02196111A (en) Cooling method for turbine
US4431371A (en) Gas turbine with blade temperature control
JP2004340129A (en) Fluid machine, and method for cooling the same
JPH06193407A (en) Turbine casing forced cooling device
JPS58220907A (en) Cooling of steam turbine and apparatus therefor
JPH1018809A (en) Starting/stopping method for combined power plant
JPS63159626A (en) Temperature control method for gas turbine casing and temperature control device
JPH02153232A (en) Heating device for gas turbine casing
JPH0281905A (en) Forced cooling method for steam turbine and cooling device for the same
JPH06193406A (en) Forced cooling device for turbine
JPS61201802A (en) Turbine forced cooling method and its device
US3256689A (en) Turbine cooling
JP2657411B2 (en) Combined cycle power plant and operating method thereof
JPH0988514A (en) Cleaning method of steam cooling system of steam cooling type composite power generating plant
JP2003020911A (en) Operating method of combined plant