JPH02196005A - Formation of superconducting thin film - Google Patents

Formation of superconducting thin film

Info

Publication number
JPH02196005A
JPH02196005A JP1014732A JP1473289A JPH02196005A JP H02196005 A JPH02196005 A JP H02196005A JP 1014732 A JP1014732 A JP 1014732A JP 1473289 A JP1473289 A JP 1473289A JP H02196005 A JPH02196005 A JP H02196005A
Authority
JP
Japan
Prior art keywords
thin film
film
annealing
superconducting
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1014732A
Other languages
Japanese (ja)
Inventor
Keikou Boku
朴 慶浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1014732A priority Critical patent/JPH02196005A/en
Publication of JPH02196005A publication Critical patent/JPH02196005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form the thin film having superconductivity in its film-plane direction in good yield by forming the thin film of a ceramic-based oxide, at least a part of which is amorphous, and then applying mechanical plastic deformation to the thin film, and subsequently annealing the thin film. CONSTITUTION:The thin film of a ceramic-based oxide superconducting material (e.g. a Y-Ba-Cu-O-based superconducting material) is formed on a single-crystal substrate (e.g. an MgO substrate). In this case, the thin film of the ceramic-based oxide, at least a part of which is amorphous, is formed. Mechanical plastic deformation is then applied to the thin film, and the thin film is subsequently annealed. By this method, the thin film having superconductivity in its film-plane direction is formed. Although the condition that the entire thin film is male amorphous in so far as is possible has to be fulfilled, other conditions need not be considered, and the thin film is formed in high yield.

Description

【発明の詳細な説明】 [IR要コ セラミックス系酸化物超伝導材料を基板上に成膜して集
積回路素子として使用する際の成膜方法の改良に関し、 超伝導組成を有する結晶に所望の配向を与えることがで
きる超伝導薄膜作成法を提供することを目的とし、 第一の発明は、少なくとも部分的にアモルファスの薄膜
を成膜した後、該薄膜に機械的塑性変形を施し、次にア
ニールを行ない、第二の発明は、単結晶基板上にセラミ
ックス系酸化物を少なくとも部分的にアモルファスな薄
膜として堆積した後、該薄膜とは熱膨張係数が異なる物
質の薄膜をセラミックス系酸化薄膜上に堆積し、その後
、温度係数が付けられた炉に対して基板を移動させなが
らあるいは基板に対して炉を移動させながらアニールを
行なうように構成する。
[Detailed Description of the Invention] [Regarding the improvement of the film-forming method for forming an IR-required coceramics-based oxide superconducting material on a substrate and using it as an integrated circuit element, The first invention aims to provide a method for producing a superconducting thin film that can provide orientation, and the first invention involves forming an at least partially amorphous thin film, then subjecting the thin film to mechanical plastic deformation, and then The second invention involves depositing a ceramic oxide on a single crystal substrate as an at least partially amorphous thin film, and then depositing a thin film of a substance having a coefficient of thermal expansion different from that of the thin film on the ceramic oxide thin film. The structure is such that the substrate is deposited on the substrate, and then annealing is performed while the substrate is moved relative to a furnace having a temperature coefficient or while the furnace is moved relative to the substrate.

[産業上の利用分野コ 本発明は、超伝導薄膜の作成方法に関し、より詳しく述
べるならばセラミックス系酸化物超伝導材料を基板上に
成膜して集積回路素子として使用する際の成膜方法の改
良に関するものである。
[Industrial Field of Application] The present invention relates to a method for producing a superconducting thin film, and more specifically, a method for forming a ceramic-based oxide superconducting material on a substrate for use as an integrated circuit element. This is related to the improvement of.

[従来の技術] 超伝導材料はある臨界温度以下で電気抵抗がゼロになる
などの巨視的量子現象が現われる。
[Prior Art] Superconducting materials exhibit macroscopic quantum phenomena such as electrical resistance becoming zero below a certain critical temperature.

La−5r−Cu−0,Lu−Ba−Cu −0(Lu
=Y及び希土類(Ce、Pr、Tbを除<))等の元素
からなるセラミックス系酸化物超伝導材料は40〜30
0にという高い臨界温度をもつため、これらの薄膜を配
線として使用することにより、従来の配線材料における
信号電送時間短縮の限界を突破する期待がもたれ、これ
らの薄膜はマイクロエレクトロニクスへの応用のうえで
きわめて重要である。
La-5r-Cu-0, Lu-Ba-Cu-0 (Lu
= 40 to 30 for ceramic-based oxide superconducting materials consisting of elements such as Y and rare earths (excluding Ce, Pr, and Tb)
Because these thin films have a high critical temperature of 0,000 yen, it is expected that the use of these thin films as wiring will break through the limits of shortening signal transmission time with conventional wiring materials. This is extremely important.

これらの酸化物系超伝導材料では各々の構成元素が規則
的の配置された結晶をもち、限られた組成比でのみ高い
臨界温度を示す、さらに、酸化物系超伝導材料では正方
晶結晶のC軸と直交する面内方向がC軸方向より臨界温
度が高いという異方性が認められている。したがって、
このような異方性をもつ酸化物系超伝導材料を配線など
の集積回路素子として使用する場合所望の超伝導特性が
所望される方向と結晶のC軸方向を直交させるように薄
膜を作成することが望まれる0例えば配線膜はC軸が膜
面に直立していることが望まれる。したがって、完全な
単結晶からなる超伝導薄膜をC軸が膜面に直交するよう
に作成することが望ましい。また、完全な単結晶薄膜で
なくとも膜垂直方向に強く一軸配向していればセラミッ
クス系酸化物超伝導薄膜は実用性があると言える。
These oxide-based superconducting materials have crystals in which each constituent element is regularly arranged, and exhibit a high critical temperature only at a limited composition ratio. Anisotropy is recognized in which the critical temperature is higher in the in-plane direction perpendicular to the C-axis than in the C-axis direction. therefore,
When using an oxide-based superconducting material with such anisotropy as an integrated circuit element such as wiring, a thin film is created so that the direction in which the desired superconducting properties are desired is perpendicular to the C-axis direction of the crystal. For example, it is desirable that the C-axis of a wiring film be perpendicular to the film surface. Therefore, it is desirable to create a superconducting thin film made of a perfect single crystal so that the C-axis is perpendicular to the film surface. Furthermore, even if the film is not a perfect single crystal thin film, it can be said that a ceramic-based oxide superconducting thin film is practical as long as it is strongly uniaxially oriented in the direction perpendicular to the film.

従来提案されているセラミックス系酸化物超伝導薄膜の
作成法としてはスパッター法および電子ビーム蒸着法が
ある。スパッター法および電子ビーム蒸着法で制御可能
な条件としては、基板温度、ガス圧、パワーなどがあり
、またスパッター法では制御可能な条件としてはA r
 / 02の比率などがある。これらの条件の中で配向
に最も有効なものは基板温度であるので、従来、膜垂直
方向に強く配向したセラミックス系酸化物超伝導薄膜を
形成する時には、成膜時に400〜800’Cの高温に
基板を加熱することが主として行なわれていた。
Conventionally proposed methods for producing ceramic-based oxide superconducting thin films include sputtering and electron beam evaporation. Conditions that can be controlled in sputtering and electron beam evaporation include substrate temperature, gas pressure, power, etc. In sputtering, conditions that can be controlled include Ar
/02 ratio etc. Among these conditions, the most effective one for orientation is the substrate temperature, so conventionally, when forming a ceramic-based oxide superconducting thin film that is strongly oriented in the vertical direction of the film, a high temperature of 400 to 800'C was used during film formation. The main method used was to heat the substrate.

又、基板の温度制御に加えて、補助的にガス圧またはガ
ス比の制御なども行なわれていた。
In addition to substrate temperature control, gas pressure or gas ratio control was also performed auxiliary.

[発明が解決しようとする課題] 上述のように、基板を高温に加熱して成膜を行なうと、
結晶の配向性は良好になるが、その−方で組成が超伝導
組成よりずれる組成変動が生じ易く、この結果、高い臨
界温度を示さない結晶が多くなり、また薄膜全体として
所望の超伝導特性を示さないことが起こった。具体的に
は、Lu:Ba :Cu=1 : 2 二3の原子比の
組成を有する酸化物セラミックスは超伝導特性をしめす
が、高温での拡散によって組成変動が起こる結果Lu:
Ba:Cu=1:2:2の原子比を有し、Cuが欠乏し
た絶縁性酸化物の結晶が局部的に形成される。これに付
随して、余分になったCuはCu過剰の絶縁性酸化物を
生成する。このような場合でも、ターゲットの組成コン
トロールによりrIi膜全体の平均組成は超伝導組成に
なっているが、薄膜は超伝導特性を示さない。
[Problems to be Solved by the Invention] As mentioned above, when a film is formed by heating a substrate to a high temperature,
Although the orientation of the crystals becomes good, composition fluctuations tend to occur in which the composition deviates from the superconducting composition, and as a result, many crystals do not exhibit a high critical temperature, and the desired superconducting properties of the thin film as a whole are not achieved. Something happened that didn't show. Specifically, oxide ceramics with an atomic ratio of Lu:Ba:Cu=1:223 exhibit superconducting properties, but as a result of composition fluctuations caused by diffusion at high temperatures, Lu:
Crystals of an insulating oxide having an atomic ratio of Ba:Cu=1:2:2 and lacking Cu are locally formed. Concomitantly, the excess Cu produces an insulating oxide containing excess Cu. Even in such a case, although the average composition of the entire rIi film is a superconducting composition by controlling the composition of the target, the thin film does not exhibit superconducting properties.

一方、Lu:Ba:Cu=1:2:3原子比の組成の化
合物を作るように成膜を行なうと、薄膜の結晶性や配向
性が不良になる。すなわち、薄膜は微結晶より構成され
かっ/あるいは結晶方位がランダムになる。そこで、組
成および結晶性・配向性の両者が満足されるように薄膜
の成膜条件を調節することが望まれるが、これを充たす
ようにスパッターあるいは電子ビーム蒸着条件を整える
ことは量産を念頭に置くと事実上不可能である。
On the other hand, if a film is formed to form a compound having an atomic ratio of Lu:Ba:Cu=1:2:3, the crystallinity and orientation of the thin film will be poor. That is, the thin film is composed of microcrystals and/or the crystal orientation is random. Therefore, it is desirable to adjust the thin film deposition conditions so that both the composition and crystallinity/orientation are satisfied, but it is important to adjust the sputtering or electron beam evaporation conditions to satisfy these requirements with mass production in mind. It is virtually impossible to do so.

又、単結晶化の方法として融液から単結晶化させるブリ
ッジマン法があるが、セラミックス系酸化物超伝導材料
は高温(約700℃以上)での安定相である正方晶系か
ら室温での安定相である斜方晶系)への相変態が起こる
ために、ブリッジマン法等の手法での単結晶作成は難し
いことが分かった。
In addition, as a method for single crystallization, there is the Bridgman method in which a melt is made into a single crystal, but ceramic-based oxide superconducting materials change from the tetragonal phase, which is a stable phase at high temperatures (about 700 degrees Celsius or higher), to the stable phase at room temperature. It has been found that it is difficult to create single crystals using techniques such as the Bridgman method because of the phase transformation to the stable (orthorhombic) phase.

したがって、本発明は超伝導組成を有する結品番二所望
の配向を与えることができる超伝導薄膜作成法を提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a method for producing a superconducting thin film that can give a desired orientation to a superconducting material having a superconducting composition.

[課題を解決するための手段] 本発明者は、上記問題を解決するために、まず超伝導組
成を有する薄膜を形成後、その結晶性あるいは配向性を
改良する方法によれば二律背反的問題点を解決できると
の着想のもとに、研究を行なった。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have proposed a method in which a thin film having a superconducting composition is first formed and then its crystallinity or orientation is improved, which causes a trade-off problem. We conducted our research with the idea that we could solve the problem.

本発明者は基礎実験として第1表に示すErBaCuO
系酸化物のスパッタ蒸着後のアニールによる超伝導特性
への影響を調査した。基板としてはMgOの(100)
基板を用い、これを成膜中に800℃に加熱した。
As a basic experiment, the present inventor conducted an experiment using ErBaCuO shown in Table 1.
We investigated the effect of annealing after sputter deposition of oxides on superconducting properties. The substrate is MgO (100)
A substrate was used and heated to 800° C. during film formation.

(以下余白) 第1表 化学組成 なお、第1表の数値は備考ICP(プラズマ発光分光分
析2、および螢光・X線による測定値であり、yiMの
構成原子比にほぼ対応する。
(Leaving space below) Table 1 Chemical composition Note: The values in Table 1 are values measured by ICP (plasma emission spectrometry 2) and fluorescence/X-rays, and approximately correspond to the constituent atomic ratio of yiM.

よって、スパッタ法により成膜されたriI膜中の構成
原子比はEr:Ba:Cu#1:2:3であり、超伝導
組成に対応する。
Therefore, the constituent atomic ratio in the riI film formed by the sputtering method is Er:Ba:Cu#1:2:3, which corresponds to a superconducting composition.

蒸着後のrIiWAの構造はアモルファス構造であった
The structure of rIiWA after vapor deposition was an amorphous structure.

又、薄膜面をEPMAで走査したところ、全面において
各々原子の測定値は測定精度の範囲内で変動していた。
Furthermore, when the thin film surface was scanned by EPMA, the measured values of each atom varied within the range of measurement accuracy over the entire surface.

第2図に電子ビーム蒸着後の加熱(900℃×1時間、
4時間)による比抵抗の温度変化を示す。比抵抗は膜面
平行方向に電流を流して測定した。この図より、加熱効
果が大きい4時間アニルの方が1時間アニールよりも超
伝導特性が良好になることが分かる。
Figure 2 shows heating after electron beam evaporation (900°C x 1 hour,
4 hours) shows the temperature change in specific resistance. The specific resistance was measured by passing a current in a direction parallel to the membrane surface. This figure shows that 4-hour annealing, which has a greater heating effect, provides better superconducting properties than 1-hour annealing.

アニール後の薄膜のX、ff1(CuKα線)回折結果
を第3図に示す、この図より、アニール時間が長くなる
と(003)、(005)、(006)などの超伝導相
正方晶結晶の格子面の回折強度が大きくなっていること
が分かる。第3図の比抵抗のデータより、アニールによ
り結晶化が起こり、生成した結晶は正方晶のC軸、(1
00)、が膜面に垂直に配向する優先方位を有するため
に、長時間アニールの方が臨界温度が高くなっていると
言える0以上のような基礎実験から、スパッタ成膜直後
、所望組成を有する薄膜は結晶性が悪いが、後処理とし
てアニールすることにより原子が再配列して超伝導相結
晶を作り、かつ/あるいはスパッタ成膜直後の微結晶が
優先方位に成長して粗大結晶となるなどの過程が活発に
起こり、その結果がX線回折ピークの増大となって表わ
れることが分かった。したがって、以上のような過程を
さらに活発にする手段を成膜後、超伝導組成を有する薄
膜に適用し、その後アニールを行なうか、あるいはアニ
ールの条件を上記過程が活発に起こるように設定すれば
、組成および結晶性・配向性の両者が良好な超伝導膜を
得ることができる。
Figure 3 shows the X, ff1 (CuKα line) diffraction results of the thin film after annealing. From this figure, it can be seen that as the annealing time increases, superconducting phase tetragonal crystals such as (003), (005), and (006) It can be seen that the diffraction intensity of the lattice plane is increased. From the resistivity data shown in Figure 3, crystallization occurs due to annealing, and the resulting crystals have a tetragonal C axis, (1
00), has a preferential orientation perpendicular to the film surface, so it can be said that the critical temperature is higher when annealing for a long time.From basic experiments such as 0 or more, it can be said that the critical temperature is higher when the film is annealed for a long time. The thin film has poor crystallinity, but by annealing as a post-treatment, the atoms rearrange and form a superconducting phase crystal, and/or the microcrystals immediately after sputtering grow in preferential orientations to become coarse crystals. It was found that the following processes occur actively, and the result is an increase in the X-ray diffraction peak. Therefore, if a method to further activate the above process is applied to a thin film having a superconducting composition after film formation, and then annealing is performed, or the annealing conditions are set so that the above process occurs actively. , a superconducting film with good composition, crystallinity, and orientation can be obtained.

その結果完成した本発明は、単結晶基板上にセラミック
ス系酸化物超伝導材料の薄膜を堆積する方法において、
第一の発明は、少なくとも部分的にアモルファスの薄膜
を成膜した後、該薄膜に機械的塑性変形を施し、次にア
ニールすることを特徴とし、第二の発明は、単結晶基板
上にセラミックス系酸化物超伝導材料の少なくとも部分
的にアモルファスなrliWAを堆積した後、該薄膜と
は熱膨張係数が異なる物質の薄膜を前記セラミックス系
酸化薄膜上に堆積し、その後、温度係数が付けられた炉
に対して前記基板を移動させながらあるいは基板に対し
て前記炉を移動させながらアニールを行なうことを特徴
とするものである。
As a result, the present invention has been completed in a method for depositing a thin film of a ceramic-based oxide superconducting material on a single crystal substrate.
The first invention is characterized in that after forming an at least partially amorphous thin film, the thin film is subjected to mechanical plastic deformation and then annealed. After depositing the at least partially amorphous rliWA of the oxide superconducting material, a thin film of a material having a coefficient of thermal expansion different from that of the thin film is deposited on the ceramic oxide thin film, and then a temperature coefficient is attached. The method is characterized in that annealing is performed while moving the substrate relative to a furnace or while moving the furnace relative to the substrate.

本発明の第一はアニール前処理として、薄膜に加工によ
り塑性歪を与えることを骨子とするもであり、必要によ
り、アニール中に、薄膜が形成された基板を、温度勾配
が形成された加熱炉内を温度勾配高温側に移動させるか
もしくは温度勾配が形成された加熱炉内に、薄膜が形成
された基板を配置し、基板を温度勾配の高温側に移動さ
せるかもしくは加熱炉を低温側に移動させることを骨子
とし、またその第二はアニールの前処理として下地膜の
上に、下地膜とは熱膨張率が異なる物質の膜を被着させ
ることを骨子とする。
The first aspect of the present invention is to apply plastic strain to the thin film by processing as an annealing pretreatment. If necessary, during annealing, the substrate on which the thin film is formed is heated with a temperature gradient. Either move the inside of the furnace to the high temperature side of the temperature gradient, or place the substrate on which the thin film is formed in a heating furnace with a temperature gradient, and move the substrate to the high temperature side of the temperature gradient, or move the heating furnace to the low temperature side. The second principle is to deposit a film of a material having a coefficient of thermal expansion different from that of the base film on the base film as a pretreatment for annealing.

本発明において超伝導薄膜は電子ビーム蒸着またはスパ
ッターにより基板上に形成され、膜厚は通常1〜5μm
である。成膜は膜の少なくとも一部がアモルファスにな
るように条件を設定して行なう、アモルファス相は組成
的に均一であり、またその組成は超伝導組成になってい
るが、結晶構造を有しないために超伝導性を示していな
い。
In the present invention, the superconducting thin film is formed on the substrate by electron beam evaporation or sputtering, and the film thickness is usually 1 to 5 μm.
It is. The film is formed under conditions such that at least a portion of the film is amorphous.The amorphous phase is uniform in composition and has a superconducting composition, but does not have a crystalline structure. does not show superconductivity.

成膜時には一部に結晶相があってもよいが、電子ビーム
蒸着により成膜された薄膜の結晶相は超伝導相の単一相
にはなり難く複数の絶縁相に分離しているから、後処理
のアニールによっても均一組成とすることは困難である
から、結晶相はできるだけ少なく、皆無であるとが好ま
しい、アモルファス相より構成させる薄膜を作るための
具体的条件に関しては、基板温度の影響が最も大きいの
で、基板加熱を行なわずに、あるいは基板加熱を行なっ
ても400℃以下として行なう、この結果、得られる薄
膜は一部に結晶が含まれることはあっても、はとんどが
アモルファス相となる。
Although there may be a crystalline phase in part during film formation, the crystalline phase of a thin film formed by electron beam evaporation is difficult to form a single superconducting phase and is separated into multiple insulating phases. Since it is difficult to achieve a uniform composition even through post-treatment annealing, it is preferable to have as little or no crystalline phase as possible. Regarding the specific conditions for making a thin film composed of an amorphous phase, the effect of substrate temperature is important. is the largest, so it is done without heating the substrate, or even if it is heated, the temperature is below 400°C.As a result, the resulting thin film may contain some crystals, but most of it is It becomes an amorphous phase.

成膜を行なう基板としては、サファイア、MgO1Sr
Ti03等を使用することができる。
The substrate on which the film is formed is sapphire, MgO1Sr.
Ti03 etc. can be used.

成膜された薄膜に所望の超伝導特性を付与するために、
第一の発明及び第二の発明では機械的に塑性歪を薄膜に
与える。塑性歪は、8Mや基板が破壊されない範囲で適
切に定める必要がある。
In order to impart desired superconducting properties to the formed thin film,
In the first invention and the second invention, plastic strain is mechanically applied to the thin film. The plastic strain needs to be appropriately set to 8M or within a range that does not destroy the substrate.

−aには、塑性歪は、膜厚減少率5〜15%になるよう
な塑性加工を行なうことにより与える。塑性加工はロー
ル、スタンバ−、スクライバ−、プレス等任意の工具を
用いて行なう。
-a, plastic strain is given by performing plastic working such that the film thickness reduction rate is 5 to 15%. Plastic working is performed using any tool such as a roll, stub bar, scriber, press, etc.

第1の発明では塑性歪を付与した状態で、いわゆるスト
レインアニールを行なう、アニールの温度は好ましくは
800〜980℃である。
In the first invention, so-called strain annealing is performed in a state where plastic strain is applied, and the annealing temperature is preferably 800 to 980°C.

第2の発明は第1図に示すように、ストレインアニール
を温度勾配を有する炉の中で行なう。
In the second invention, as shown in FIG. 1, strain annealing is performed in a furnace having a temperature gradient.

図中、1は加熱炉、1aは炉芯管、2はヒーター、3は
基板、4はセラミックス系酸化物超伝導材料よりなる薄
膜である。ヒーター2は昇温部2a、2a’均熱部2b
、2b’及び冷却部2c、2c’より構成される。昇温
部2a、2 alは600℃と均熱温度(Th)の温度
区間において5〜b に構成することが好ましい、この600℃〜Thの温度
区間は活発な結晶粒成長が開始しほぼ終了する温度区間
とほぼ一致するからこの温度区間で温度勾配の効果が大
である。又温度勾配の値が20℃/ c mを越えると
処理温度条件が不安定になり再現性が得られなくなる。
In the figure, 1 is a heating furnace, 1a is a furnace core tube, 2 is a heater, 3 is a substrate, and 4 is a thin film made of a ceramic-based oxide superconducting material. The heater 2 has a heating section 2a, 2a' and a soaking section 2b.
, 2b' and cooling parts 2c, 2c'. It is preferable that the temperature rising parts 2a and 2al be configured to 5~b in the temperature range of 600°C and the soaking temperature (Th).In this temperature range of 600°C~Th, active crystal grain growth starts and almost ends. The temperature gradient has a large effect in this temperature range because it almost coincides with the temperature range in which it occurs. Furthermore, if the value of the temperature gradient exceeds 20° C./cm, the processing temperature conditions become unstable and reproducibility cannot be obtained.

均熱湯度Thは結晶の配向性1最も好ましい温度に定め
られ、通常、800〜980”Cの範囲内にある。基板
3は矢印の方向に約10〜50cm/時間のゆっくりと
した速度で移動される。
The soaking water temperature Th is set to the most preferable temperature for crystal orientation 1, and is usually in the range of 800 to 980"C. The substrate 3 moves in the direction of the arrow at a slow speed of about 10 to 50 cm/hour. be done.

移動中に薄膜4は、詳しくは後述する温度勾配アニール
の作用を受け、均熱部Thを通り過ぎた薄M4はほぼ全
体で正方晶の単結晶となっている。
During the movement, the thin film 4 is subjected to temperature gradient annealing, which will be described in detail later, and the thin film M4 that has passed through the soaking section Th becomes almost entirely a tetragonal single crystal.

基板3がさらに矢印方向に進行すると、冷却中に約70
0℃付近で正方晶から斜方晶への変態が起こる。この変
態で生成する新しい(斜方晶の)結晶粒は変態前の(正
方晶の)方位を受は継ぐので、温度勾配アニールにより
達成された良好な方位、結晶粒粗大化、単結晶化などの
結晶特性を本質的に保たれ、変態によって壊されない。
As the substrate 3 further advances in the direction of the arrow, approximately 70
A transformation from tetragonal to orthorhombic occurs at around 0°C. The new (orthorhombic) crystal grains produced by this transformation inherit the (tetragonal) orientation before the transformation, resulting in good orientation, grain coarsening, single crystallization, etc. achieved by temperature gradient annealing. It essentially retains its crystalline properties and is not destroyed by metamorphosis.

第2の発明においては、第4図に示すように、薄wA4
のカバー膜5としてSin、、AJ2203、AρN等
のセラミックスを被着し、第1図に示すように、温度勾
配下でストレインアニールする。
In the second invention, as shown in FIG.
A ceramic material such as Sin, AJ2203, AρN, etc. is deposited as the cover film 5, and strain annealed under a temperature gradient as shown in FIG.

したがって、カバーll115の引張歪(実線矢印)ま
たは圧縮歪(点線矢印)の作用を薄膜4が受けつつアニ
ールされる。カバーM5は下地の薄膜4と化学的に反応
してはならないので、セラミックスがカバー膜として好
ましい、ストレインアニール後にカバー[5をエツチン
グにより除去する。
Therefore, the thin film 4 is annealed while being subjected to the tensile strain (solid line arrow) or compressive strain (dotted line arrow) of the cover 115. Since the cover M5 must not chemically react with the underlying thin film 4, ceramic is preferred as the cover film. After strain annealing, the cover [5 is removed by etching.

ストレインアニールの結果、例えば膜厚2μmの薄膜の
結晶粒径は約20μmとなる。なお、ストレインアニー
ル前の薄膜が微結晶の場合はその結晶粒径1μmを越え
ることがないから、粒径が10倍以上に増大する成長が
起こることになる。
As a result of strain annealing, for example, a thin film with a thickness of 2 μm has a crystal grain size of about 20 μm. Note that if the thin film before strain annealing is microcrystalline, the crystal grain size will not exceed 1 μm, so growth will occur to increase the grain size by a factor of 10 or more.

[作用コ 第一〜第二の発明においては、微視的組成が均一な超伝
導組成になる条件で先ず酸化物系セラミックス材料の(
一部または全体がアモルファスとなる)薄膜の成膜を行
なう点で共通している。
[Operations] In the first and second inventions, the oxide-based ceramic material (
They have in common that they form thin films (partly or entirely amorphous).

これらの発明がそれぞれ特長とするところを以下説明す
る。
The features of each of these inventions will be explained below.

第一の発明においては、加工により上記薄膜に与えられ
る塑性歪がアニール中の結晶粒の粗大化(粒成長)と粒
成長時の優先配向を促進する、いわゆるストレインアニ
ーリングを行なう。
In the first invention, so-called strain annealing is performed in which plastic strain imparted to the thin film by processing promotes coarsening (grain growth) of crystal grains during annealing and preferential orientation during grain growth.

本発明においてストレインアニール前の薄膜は微視的に
均一な組成を有するから、アニール中に拡散は起こらな
いので、粒成長後の各結晶は均一な超伝導組成を保って
いる。
In the present invention, since the thin film before strain annealing has a microscopically uniform composition, no diffusion occurs during annealing, so each crystal after grain growth maintains a uniform superconducting composition.

第二の発明の作用のうち温度勾配の作用について説明す
る。粒成長は温度勾配の方向に起こる。すなわち、温度
勾配の下では基板先端に位置するriIWA端で粒成長
が開始し、残りの部分では1膜は微結晶又はアモルファ
スの成長時の状態に保たれている。掻く短い時間では温
度勾配は膜面上で静止しているとみなされるが、このよ
うな短時間中に起こる現象を考えると:高温側で粒成長
して粗大化する結晶粒の粒界は低温側にも向かって移動
しようとし、また粒成長する結晶は低温側の結晶粒を食
って成長する。このような過程は基板などの移動に件っ
て薄膜全面で起こる。なお、温度勾配の低温側でも、温
度勾配がなだらかな場合は、結晶成長が開始するが、温
度勾配アニールを行なうと低温では結晶成長を抑制し高
温側では結晶成長を促進する傾向が表われるので、成長
の方向性が作られ易い。
Among the effects of the second invention, the effect of temperature gradient will be explained. Grain growth occurs in the direction of the temperature gradient. That is, under a temperature gradient, grain growth starts at the edge of the riIWA located at the tip of the substrate, and in the rest of the film one film is maintained in a microcrystalline or amorphous growth state. During a short period of time, the temperature gradient is considered to be stationary on the film surface, but if we consider the phenomenon that occurs during such a short period of time: the grain boundaries of crystal grains that grow and become coarser on the high temperature side are The crystals try to move toward the side, and the growing crystals eat the crystal grains on the low temperature side and grow. This process occurs over the entire surface of the thin film as the substrate moves. Note that even on the low temperature side of the temperature gradient, if the temperature gradient is gentle, crystal growth will start, but when temperature gradient annealing is performed, there is a tendency to suppress crystal growth at low temperatures and promote crystal growth at high temperatures. , it is easy to create a direction for growth.

アニールの温度及び基板の温度が高温はど薄膜の超伝導
特性がすぐれているとの経験的事実があるから、結晶成
長開始温度以上の温度であってもより高い温度の方が方
位および結晶性が良好な結晶が成長し易いと考えられる
。したがって、温度勾配下でアニールを行なうと、高温
側では方位および結晶性が良好な結晶が作られる条件が
与えられ、一方低温側ではこれらの特性が不良な結晶の
発生・成長が起こり易い、ここで、できるだけ急な温度
勾配をつけかつ/または移動速度を速くすることにより
不良結晶の発生・成長が抑制することができる。加えて
、高温側で作られた方位が良好な結晶が低温側の微結晶
を食ってまた粒界が高温側から低温側移動することによ
って成長が起こるので、粗大化した結晶は前者の方位を
継承し、方位が良好になると考えられる。
There is an empirical fact that the higher the annealing temperature and the higher the substrate temperature, the better the superconducting properties of the thin film. It is thought that crystals with good properties are likely to grow easily. Therefore, when annealing is performed under a temperature gradient, conditions are provided for forming crystals with good orientation and crystallinity at high temperatures, whereas at low temperatures, crystals with poor these properties are likely to occur and grow. By making the temperature gradient as steep as possible and/or increasing the moving speed, generation and growth of defective crystals can be suppressed. In addition, growth occurs when crystals with good orientation formed on the high temperature side eat up microcrystals on the low temperature side and the grain boundaries move from the high temperature side to the low temperature side. It is thought that this will be inherited and the direction will be good.

塑性歪によるストレイアニーリングの作用と温度勾配下
の作用とを同時に実現すると、温度勾配の高温側で成長
した結晶粒が低温側の結晶を食うか、あるいは低温側に
粒界移動する。高温側に存在する歪はこのような現象を
活発化するので単結晶化が起こり易くなる。アモルファ
ス薄膜の組成は微視的に均一であるから、温度勾配と歪
が結晶成長の駆動力となって結晶成長を促進しても、拡
散は起こらないので、粒成長後の各結晶粒は超伝導組成
を保っている。
When the effect of stray annealing due to plastic strain and the effect under a temperature gradient are simultaneously realized, grains grown on the high temperature side of the temperature gradient eat crystals on the low temperature side, or grain boundaries move to the low temperature side. Strain existing on the high temperature side activates this phenomenon, making single crystallization more likely to occur. Since the composition of an amorphous thin film is microscopically uniform, even if temperature gradients and strains act as driving forces for crystal growth and promote crystal growth, diffusion does not occur, so each crystal grain after grain growth is Maintains conductive composition.

第二の発明では、第一の発明のように薄膜に直接機械加
工を施して歪を与えるのではなくカバー膜と下地膜間の
熱歪により下地膜に歪を与える。カバー膜と下地膜間の
熱歪は熱膨張係数の差と温度の積に比例するから、温度
勾配の高温側では低温側より大きな熱歪が発生する。
In the second invention, instead of applying strain by directly machining the thin film as in the first invention, the strain is applied to the base film by thermal strain between the cover film and the base film. Since the thermal strain between the cover film and the base film is proportional to the product of the difference in thermal expansion coefficient and temperature, larger thermal strain occurs on the high temperature side of the temperature gradient than on the low temperature side.

後述の実施例では成膜した基板は室温で平坦であったが
、400℃加熱後曲率半径が106cm程度の反りを示
した。この状態で〜1013dyn/cm2程度の内 
部応力が生じていると考えられる。高温での内部応力の
値の計算はできないが、高温で下地膜に歪が加えられて
は明らかである。
In the examples described below, the substrate on which the film was formed was flat at room temperature, but after heating at 400° C., it exhibited warpage with a radius of curvature of about 106 cm. In this state, within about 1013 dyn/cm2
It is thought that part stress is occurring. Although it is not possible to calculate the value of internal stress at high temperatures, it is clear that strain is added to the underlying film at high temperatures.

熱歪は前述のように高温側でより大きいから、高温側で
は結晶成長が促進され、第一の発明に関して既述した現
象が活発に起こる。
As described above, thermal strain is greater on the high temperature side, so crystal growth is promoted on the high temperature side, and the phenomenon described above regarding the first invention actively occurs.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

実施例 l MgO基板上に、Y−Ba−Cu−0超伝導膜をスパッ
タ法により約1μmの膜圧に堆積した。条件は次のとお
りであった。
Example 1 A Y-Ba-Cu-0 superconducting film was deposited on a MgO substrate to a thickness of about 1 μm by sputtering. The conditions were as follows.

ガスA r / 02= 1 / 1 :基板加熱 6
00℃:RFパワー 100W 上記rII膜をX線回折したところ、格子面からの回折
ピークはほとんど認められなかった0次に、上記NFI
Aにダイアモンドヘッドをもつスクライバ−を用いて約
10〜12%の膜厚減少率で塑性変形を加えた。その後
920℃でアニールを行なった薄膜では全体に平均粒径
が1.5μmの結晶粒から構成されていた。M面方向の
電気抵抗を測定したところ、比抵抗は82にでゼロにな
り、C軸が膜面に垂直に配向している超伝導性結晶でr
IIJII!が構成されていることがわかった。
Gas A r / 02 = 1 / 1: Substrate heating 6
00°C: RF power 100W When the above rII film was subjected to X-ray diffraction, almost no diffraction peak from the lattice plane was observed.
Plastic deformation was applied to A using a scriber with a diamond head at a film thickness reduction rate of about 10 to 12%. The thin film that was then annealed at 920° C. was entirely composed of crystal grains with an average grain size of 1.5 μm. When we measured the electrical resistance in the M-plane direction, the resistivity became zero at 82, indicating that the resistivity is r
IIJII! was found to be configured.

実施例 2 実施例1のアニールを、600〜980℃の温度区間に
10°C/cmの温度勾配をつけた炉中を約20 c 
m/時間のゆっくりした速度で基板を移動させながら行
なった。
Example 2 The annealing in Example 1 was performed at approximately 20 °C in a furnace with a temperature gradient of 10 °C/cm in the temperature range of 600 to 980 °C.
This was done while moving the substrate at a slow speed of m/hr.

アニール後の薄膜では全体に平均粒径が20μmの結晶
粒から構成されていた。膜面方向の電気抵抗を測定した
ところ、比抵抗は85にでゼロになり、C軸が膜面に垂
直に配向している超伝導性結晶で薄膜が構成されている
ことがわかった。
The thin film after annealing was entirely composed of crystal grains with an average grain size of 20 μm. When the electrical resistance in the direction of the film surface was measured, the specific resistance became zero at 85%, indicating that the thin film was composed of superconducting crystals with the C-axis oriented perpendicular to the film surface.

実施例 3 実施例1で成膜した1μm厚のY−BaCu−0超伝導
膜上に窒化シリコンを5000人に堆積し、その後実施
例2の方法でアニールしな。
Example 3 Silicon nitride was deposited on the 1 μm thick Y-BaCu-0 superconducting film formed in Example 1 to a depth of 5000 nm, and then annealed using the method of Example 2.

アニール後の薄膜では全体に平均粒径が15μmの結晶
粒から構成されていた。JII面方向の電気抵抗を測定
したところ、比抵抗は83にでゼロになり、C軸が膜面
に垂直に配向している超伝導性結晶でff1lKが構成
されていることがわかった。
The thin film after annealing was entirely composed of crystal grains with an average grain size of 15 μm. When the electrical resistance in the JII plane direction was measured, the specific resistance became zero at 83, indicating that ff11K was composed of a superconducting crystal in which the C axis was oriented perpendicular to the film surface.

[発明の効果コ 本発明の方法によると、膜面方向に超伝導特性をもつ薄
膜を歩留まりよく形成することができる。すなわち、従
来法のように成膜条件の厳密なコントロールを行なう場
合は、設定条件から僅かなずれが起こっても所望の超伝
導特性は得られなくなり、歩留低下が著しい、これに対
して本発明によると成膜条件はできるだけ薄膜全体がア
モルファスになるようにする点を除いて制約はないがら
、高歩留まりが得られる。
[Effects of the Invention] According to the method of the present invention, a thin film having superconducting properties in the direction of the film surface can be formed with a high yield. In other words, when the film forming conditions are strictly controlled as in the conventional method, the desired superconducting properties cannot be obtained even if there is a slight deviation from the set conditions, resulting in a significant decrease in yield. According to the invention, although there are no restrictions on the film forming conditions except that the entire thin film should be made as amorphous as possible, a high yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度勾配下のストレインアニールを行なう第1
発明の詳細な説明図で、加熱炉とアニール度パターンを
示す図、 第2図及び第3図は基礎実験を示す図で、それぞれアニ
ールによる超伝導特性への影響を示すグラフ、及びアニ
ールによる結晶特性への影響を示すX線回折図、 第4図は本発明(第2発明の詳細な説明図である。 1−炉、2−ヒーター、3一基板、4−薄膜、5−カバ
ー膜 温度 (K) 7二−ルによる超イ云′4持・汀への影響第2図 !!1m(”) ◇ 7゜ 口′lr閂度 2θ(度) アニールによる紹晶特・1王への影qIKホす×糊口抑
図第 図
Figure 1 shows the first stage of strain annealing under a temperature gradient.
This is a detailed explanatory diagram of the invention, showing the heating furnace and annealing degree pattern. Figures 2 and 3 are diagrams showing basic experiments, and are graphs showing the influence of annealing on superconducting properties, and crystals due to annealing, respectively. An X-ray diffraction diagram showing the influence on the characteristics. FIG. 4 is a detailed explanatory diagram of the present invention (second invention). 1-Furnace, 2-Heater, 3-Substrate, 4-Thin film, 5-Cover film temperature (K) Effect of 7 Neil on super high power level 4 retention Figure 2!! 1m ('') ◇ 7゜口'lr 2θ (degrees) Effect of 7 degree annealing on Shaojingtoku 1 King Shadow qIK Hosu

Claims (1)

【特許請求の範囲】 1、セラミックス系酸化物超伝導材料の薄膜を単結晶基
板上に作成する方法において、 前記セラミックス系酸化物を少なくとも部分的にアモル
ファスの薄膜として成膜した後、該薄膜に機械的塑性変
形を施し、次にアニールすることを特徴とする超伝導薄
膜の作成方法。 2、セラミックス系酸化物超伝導材料の薄膜を単結晶基
板上に作成する方法において、 単結晶基板上にセラミックス系酸化物を少なくとも部分
的にアモルファスな薄膜として堆積した後、該薄膜とは
熱膨張係数が異なる物質の薄膜を前記セラミックス系酸
化物薄膜上に堆積し、その後、温度係数が付けられた炉
に対して前記基板を移動させながらあるいは基板に対し
て前記炉を移動させながらアニールを行なうことを特徴
とする超伝導薄膜の作成方法。
[Claims] 1. In a method for forming a thin film of a ceramic oxide superconducting material on a single crystal substrate, the ceramic oxide is formed as an at least partially amorphous thin film, and then the thin film is A method for creating a superconducting thin film characterized by applying mechanical plastic deformation and then annealing. 2. In a method for creating a thin film of a ceramic-based oxide superconducting material on a single-crystal substrate, the ceramic-based oxide is deposited as an at least partially amorphous thin film on the single-crystal substrate, and then the thin film undergoes thermal expansion. Thin films of substances having different coefficients are deposited on the ceramic-based oxide thin film, and then annealing is performed while the substrate is moved relative to or relative to a temperature-coefficientd furnace. A method for producing a superconducting thin film characterized by the following.
JP1014732A 1989-01-24 1989-01-24 Formation of superconducting thin film Pending JPH02196005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014732A JPH02196005A (en) 1989-01-24 1989-01-24 Formation of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014732A JPH02196005A (en) 1989-01-24 1989-01-24 Formation of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH02196005A true JPH02196005A (en) 1990-08-02

Family

ID=11869302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014732A Pending JPH02196005A (en) 1989-01-24 1989-01-24 Formation of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH02196005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310597A (en) * 1991-02-15 1992-11-02 American Teleph & Telegr Co <Att> Method of manufacturing article made of metallic body having superconductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310597A (en) * 1991-02-15 1992-11-02 American Teleph & Telegr Co <Att> Method of manufacturing article made of metallic body having superconductor layer
JP2695561B2 (en) * 1991-02-15 1997-12-24 エイ・ティ・アンド・ティ・コーポレーション Method for manufacturing article made of metal body having superconductor layer

Similar Documents

Publication Publication Date Title
KR100422333B1 (en) Method for manufacturing a metal film having giant single crystals and the metal film
Kim et al. The effects of substrates on the thin-film structures of BaTiO 3
JPH02196005A (en) Formation of superconducting thin film
Jardine et al. Investigation into the thin-film fabrication of intermetallic NiTi
JPH0451407A (en) Manufacture of ferroelectric thin film
JPH02258700A (en) Ferroelectric thin film and production thereof
JPH0218974A (en) Supeconducting device and its manufacture
Lee et al. Self-limiting behavior of the grain growth in lead zirconate titanate thin films
CN1328166C (en) Method for magnesia nanometer line epitaxial growth from strontium titanate monocrystal chip
JPH02311398A (en) Production of oxide superconducting film
Vasant Kumar et al. Ferroelectric lead niobate films by pulsed thermal processing
DeVries On the Preparation of Thin Single‐Crystal Films of BaTiO3
JPS61135172A (en) Manufacture of ferroelectric compound thin-film
KR102170111B1 (en) Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof
CN115505880B (en) Bismuth calcium niobate thin film material with periodic nanoscale microcrack structure and preparation method thereof
Lu et al. The growth and phase transitions of epitaxial Pb (Zr0. 95Ti0. 05) O3 thin films prepared by sputter deposition combined with post-annealing on SrTiO3 (1 0 0)
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
Li et al. Preparation and charaterization of high (100) oriented PSTT5 thin flims by RF sputtering technology
CN117552095A (en) Uranium triruthenate superconducting single crystal film and preparation method and application thereof
Lu et al. Preparation and crystallization of Pb (Zr0. 95Ti0. 05) O3 thin films deposited by radio-frequency magnetron sputtering with a stoichiometric ceramic target
JP2679276B2 (en) Superconducting ceramic thin film forming single crystal wafer material for semiconductor device manufacturing
JPS61274342A (en) Ferroelectric element and manufacture thereof
JPS63178408A (en) Manufacture of ferro dielectric thin film
JPH02196006A (en) Formation of superconducting thin film
JPH06305887A (en) Mgo single crystal substrate