JPH02195220A - Strain detector - Google Patents

Strain detector

Info

Publication number
JPH02195220A
JPH02195220A JP1594189A JP1594189A JPH02195220A JP H02195220 A JPH02195220 A JP H02195220A JP 1594189 A JP1594189 A JP 1594189A JP 1594189 A JP1594189 A JP 1594189A JP H02195220 A JPH02195220 A JP H02195220A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
permeability
passive shaft
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1594189A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博 佐藤
Yoshihiko Utsui
良彦 宇津井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1594189A priority Critical patent/JPH02195220A/en
Publication of JPH02195220A publication Critical patent/JPH02195220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To improve noise resistance by covering a gap between yokes and a receiving shaft with slip rings made of metal material whose thickness is thicker than the skin depth which is determined by conductivity, permeability and magnetic flux frequency. CONSTITUTION:When torque is applied on a receiving shaft, stress is generated. The permeabilities of magnetostriction element-piece groups 2 and 3 are changed by the strain. Detecting coils 4 and 5 detect the change in permeability as the change in magnetic impedance. Outputs corresponding to the applied torque are generated from detecting circuits (not shown) which are connected to the detecting coils 4 and 5. Yokes 6 and 7 becomes parts of the magnetic paths of the magnetic fluxes which are generated by the current conduction through the detecting coils 4 and 5. The yokes act to prevent the leakage of the magnetic flux to the outside. A shield 8 prevents the leakage of magnetism from the inside and shields the intrusion of noise magnetic field from the outside. Slip rings 9 and 10 are formed with, e.g. phosphor bronze, prevent the leakage of the magnetic flux from the inside and also prevent the intrusion of electromagnetic waves from the outside. Owing to th shielding effect, sensitivity is improved.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、例えば回転軸などの受動軸の軸トルク等に
よる歪を検出する歪検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a strain detector that detects distortion caused by shaft torque of a passive shaft such as a rotating shaft.

〔従来の技術〕[Conventional technology]

第2図は例えば特開昭57−211030号公報に示さ
れた従来の歪検出器であり、1は軸受(図示せず)に回
転自在に支持され、トルクを受ける受動軸、2.3は受
動軸1にシェブロン形状に固着され、受動軸1に印加さ
れたトルクによって発生する歪量に応じて透磁率が変化
する磁歪素片群であり、それぞれ+45°、−45°に
配置されている。4゜5は磁歪素片群2.3の周囲に巻
回され、それぞれの透磁率変化を検出する検出コイルで
ある。
FIG. 2 shows a conventional strain detector disclosed in, for example, Japanese Unexamined Patent Publication No. 57-211030, in which 1 is rotatably supported by a bearing (not shown) and receives a torque, and 2.3 is a passive shaft. A group of magnetostrictive elements fixed to the passive shaft 1 in a chevron shape, whose magnetic permeability changes according to the amount of strain generated by the torque applied to the passive shaft 1, and arranged at +45° and -45°, respectively. . 4.5 is a detection coil that is wound around the magnetostrictive element group 2.3 and detects changes in magnetic permeability of each group.

次に、動作について説明する。受動軸lに外部からトル
クが印加されると磁歪素片群2,3の長軸方向を主軸と
する主応力が発生し、この主応力は磁歪素片群2.3の
一方に引張力として作用し、他方に圧縮力として作用す
る。一般に、磁性材料に応力が加わるとその磁気的性質
が変化し、結果として透磁率の変化をもたらす、この現
象は機械エネルギを電気エネルギに変換する磁歪変換器
で使われ、磁性体を変形させると変形量に応じて透磁率
が変化するVillari効果に該当する。又、磁歪の
大きさを定量的に表す磁歪定数が正の場合、引張力によ
り透磁率が増大し、圧縮力により透磁率が減少すること
、及び磁歪定数が負の場合は逆の結果となることも知ら
れている。従って、外部から印加されたトルク量に応じ
た変形により磁歪素片群2.3の透磁率が変化し、検出
コイル4゜5はこの透磁率変化を磁気的インピーダンス
の変化として検出する。又、特開昭60−260821
号公報には、検出コイルの外側に磁束漏れを防止するた
めにCo−Ni系非晶質磁性合金からなるヨークを配設
したトルクセンサが示されている。
Next, the operation will be explained. When torque is applied from the outside to the passive shaft l, a principal stress is generated whose main axis is the long axis direction of the magnetostrictive element groups 2 and 3, and this principal stress is applied as a tensile force to one of the magnetostrictive element groups 2 and 3. and acts as a compressive force on the other. In general, when stress is applied to a magnetic material, its magnetic properties change, resulting in a change in magnetic permeability. This phenomenon is used in magnetostrictive transducers to convert mechanical energy into electrical energy, and when the magnetic material is deformed, This corresponds to the Villari effect in which magnetic permeability changes depending on the amount of deformation. Additionally, when the magnetostriction constant, which quantitatively represents the magnitude of magnetostriction, is positive, the magnetic permeability increases due to tensile force and decreases due to compressive force, and the opposite result occurs when the magnetostrictive constant is negative. It is also known that Therefore, the magnetic permeability of the magnetostrictive element group 2.3 changes due to deformation according to the amount of torque applied from the outside, and the detection coil 4.5 detects this change in magnetic permeability as a change in magnetic impedance. Also, JP-A No. 60-260821
The publication discloses a torque sensor in which a yoke made of a Co--Ni amorphous magnetic alloy is disposed outside a detection coil to prevent magnetic flux leakage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記したいずれの従来例においても受動
軸と電気部材とは非接触で検出コイルにより発生された
磁束に対してオープン磁路を形成していた。一般に同軸
状の孔にはカットオフ周波数が存在せず、従って電磁波
の浸入及び放射を抑えることが困難であり、特にノイズ
の浸入により感度が低下した。又、磁路の磁気的インピ
ーダンスも高く、検出コイルに大きな駆動電流を流さな
いと大きな磁束を得ることができず、効率も低下した。
However, in any of the conventional examples described above, the passive shaft and the electric member are not in contact with each other and form an open magnetic path for the magnetic flux generated by the detection coil. In general, coaxial holes do not have a cutoff frequency, and therefore it is difficult to suppress the penetration and radiation of electromagnetic waves, and in particular, the sensitivity is reduced due to the penetration of noise. Furthermore, the magnetic impedance of the magnetic path was high, and a large magnetic flux could not be obtained unless a large drive current was passed through the detection coil, resulting in a decrease in efficiency.

この発明は上記のような課題を解決するために成された
ものであり、ノイズの浸入を防止して感度を向上するこ
とができる歪検出器を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a distortion detector that can prevent noise from entering and improve sensitivity.

又、第2の発明は上記目的に加えて、磁気インピーダン
スを低下させて効率を向上することを目的とする。
In addition to the above object, the second invention aims to improve efficiency by lowering magnetic impedance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の第1の発明に係る歪検出器は、金属材料から
成り、その導電率と透磁率と磁束周波数とから決定され
るスキンデブスより肉厚が厚いスリップリングを受動軸
と接触しかつヨークと受動軸の間のギャップをおおうよ
うに配設したものである。
In the strain detector according to the first aspect of the present invention, a slip ring made of a metal material and having a thickness thicker than a skin thickness determined from its electrical conductivity, magnetic permeability, and magnetic flux frequency is in contact with a passive shaft and is connected to a yoke. It is arranged to cover the gap between the passive shafts.

又、第2の発明に係る歪検出器は、磁性材から成り、そ
の導電率と透磁率と磁束周波数とから決定されるスキン
デブスより肉厚が厚いスリップリングを受動軸と接触し
かつヨークと受動軸の間のギャップをおおうように配設
したものである。
Further, in the strain detector according to the second invention, a slip ring made of a magnetic material and having a thickness thicker than skin fat determined from its electrical conductivity, magnetic permeability, and magnetic flux frequency is in contact with the passive shaft, and the yoke and the passive It is arranged to cover the gap between the shafts.

〔作 用〕[For production]

この発明におけるスリップリングは、その磁束のスキン
デブスより肉厚が厚いので外部からの電磁波の浸入を阻
止する。
The slip ring in this invention is thicker than the skin thickness of the magnetic flux, so it prevents electromagnetic waves from entering from the outside.

又、第2の発明におけるスリップリングは、磁性材から
形成されており、このスリップリングは検出コイルによ
る磁束の磁路の一部を形成し、磁気インピーダンスが低
下する。
Further, the slip ring in the second aspect of the invention is made of a magnetic material, and this slip ring forms a part of the magnetic path of the magnetic flux caused by the detection coil, thereby reducing the magnetic impedance.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図CA)iB)はこの発明の第1の実施例による歪検出
器の断面図を示し、6,7は磁性材から成り、検出コイ
ル4.5の外周に配設されたヨーク、8は各ヨーク6.
7の外周に配設された磁性材からなるシールドである。
Embodiments of the present invention will be described below with reference to the drawings. 1st
Figures CA) iB) show cross-sectional views of the strain detector according to the first embodiment of the present invention, in which 6 and 7 are made of magnetic material and are arranged around the outer periphery of the detection coil 4.5; York 6.
This is a shield made of magnetic material disposed around the outer periphery of the 7.

又、9.10はリン青銅などのばね性を有する金属材料
から成るスリップリングで、スリップリング9.10は
シールド80両端に配設されたリング状の部材であり、
その内周には湾曲した突出部9a、10aが形成され、
この突出部9a、10aが受動軸1止接触する。11は
受動軸l及び磁歪素片群2.3以外の各部材を支持一体
化する支持部材であり、非磁性非導電性物質、例えばプ
ラスチックやセラミックから形成される。他の構成は第
2図と同様である。なお、受動軸l及び磁歪素片群2,
3以外は適宜固定されている。
Further, 9.10 is a slip ring made of a metal material having spring properties such as phosphor bronze, and the slip ring 9.10 is a ring-shaped member disposed at both ends of the shield 80.
Curved protrusions 9a and 10a are formed on the inner periphery,
These protrusions 9a and 10a come into contact with the driven shaft 1. A support member 11 supports and integrates each member other than the passive shaft l and the magnetostrictive element group 2.3, and is made of a non-magnetic non-conductive material, such as plastic or ceramic. The other configurations are the same as in FIG. 2. In addition, the passive axis l and the magnetostrictive element group 2,
The values other than 3 are fixed as appropriate.

上記構成において、受動軸lにトルクが印加されると応
力が生じ、磁歪素片群2.3は歪により透磁率が変化す
る。検出コイル4.5はこの透磁率変化を磁気的インピ
ーダンスの変化として検出し、各検出コイル4.5に接
続された図示しない検出回路は印加トルクに応じた出力
Vを発生する。
In the above configuration, when torque is applied to the passive shaft l, stress is generated, and the magnetic permeability of the magnetostrictive element group 2.3 changes due to the strain. The detection coils 4.5 detect this change in magnetic permeability as a change in magnetic impedance, and a detection circuit (not shown) connected to each detection coil 4.5 generates an output V in accordance with the applied torque.

又、ヨーク61.7は検出コイル4.5への通電により
発生した磁束の磁路の一部となり、磁束の外部への漏れ
を防止する作用をする。又、シールド8は内部からの磁
気漏れを防ぐとともに、外部からのノイズ磁界の浸入を
遮蔽する。さらに、スリンプリング9.10は例えばリ
ン青銅から形成され、その導電率ρはρ−4XlO””
(Ω・m〕であ第3図は磁束周波数ωと表皮深さ即ちス
キンデブスδとの関係を示し、スリップリング9.10
の板厚はスキンデブスδより大きくしである。従って、
スリップリング9.10によって内部からの磁束漏れを
防ぐとともに外部からの電磁波の浸入を防ぎ、シールド
効果が発揮されて感度が向上する。
Further, the yoke 61.7 becomes part of the magnetic path of the magnetic flux generated by energizing the detection coil 4.5, and functions to prevent leakage of the magnetic flux to the outside. Further, the shield 8 prevents magnetic leakage from inside and shields noise magnetic fields from entering from outside. Furthermore, the sling ring 9.10 is made of phosphor bronze, for example, and has a conductivity ρ of ρ−4XlO””
(Ω・m) Figure 3 shows the relationship between the magnetic flux frequency ω and the skin depth δ, and the slip ring 9.10
The thickness of the plate is greater than the skin thickness δ. Therefore,
The slip rings 9 and 10 prevent magnetic flux from leaking from inside and prevent electromagnetic waves from entering from outside, providing a shielding effect and improving sensitivity.

第4図はこの発明の第2の実施例を示し、12はばね性
を有し磁歪定数が低い高透磁率軟磁性材、例えば絞り性
珪素鋼板から成るスリップリングで、その板厚はその導
電率と透磁率と磁束周波数とから決定されるスキンデブ
スより大きく形成され、その内周側に突出湾曲して形成
された突出部12aが受動軸1と接触し、かつヨーク7
と受動軸1の間をおおうように形成される。なお、支持
部材11の他端側にも同様なスリップリングが設けられ
ている。他の構成は前記実施例と同様である。
FIG. 4 shows a second embodiment of the present invention, in which reference numeral 12 denotes a slip ring made of a high permeability soft magnetic material with spring properties and a low magnetostriction constant, such as a drawable silicon steel plate, and the plate thickness is equal to that of the conductive material. A protruding part 12a that is larger than the skin thickness determined from the magnetic flux rate, magnetic permeability, and magnetic flux frequency, and that is curved and protrudes toward the inner circumferential side contacts the passive shaft 1, and the yoke 7
and the passive shaft 1. Note that a similar slip ring is provided on the other end side of the support member 11 as well. The other configurations are the same as those in the previous embodiment.

この第2の実施例においては、スリップリング12は板
厚がそのスキンデブス(第3図参照)より大きいのでや
はりシールド効果を有し、外部からの電磁波の浸入を防
ぎ、耐ノイズ性が向上する。
In this second embodiment, since the slip ring 12 is thicker than its skin thickness (see FIG. 3), it also has a shielding effect, prevents electromagnetic waves from entering from the outside, and improves noise resistance.

又、スリップリング12は磁性材であるから磁気抵抗が
小さく、このスリップリング12が磁路の一部となるの
で閉磁路の磁気インピーダンスが小さくなり、検出コイ
ル4.5への駆動電流が小さくても大きな磁束が得られ
、検出コイル4.5の出力の歪による変化も大きくなり
、効率、感度が共に向上する。
In addition, since the slip ring 12 is made of a magnetic material, its magnetic resistance is small, and since the slip ring 12 becomes a part of the magnetic path, the magnetic impedance of the closed magnetic path is small, and the drive current to the detection coil 4.5 is small. Also, a large magnetic flux is obtained, and the change in the output of the detection coil 4.5 due to distortion is also increased, and both efficiency and sensitivity are improved.

第5図はこの発明の第3の実施例を示し、この実施例で
は支持部材11を2つの支持部材14゜15に分割した
ものであり、一方の支持部材14は検出コイル4,5の
内周側でプラスチックやセラミックスなどの非磁性非導
電性物質により円筒状に形成され、支持部材15はその
他の3つの部分から成り、磁性材により形成される。こ
の実施例では支持部材15が磁性材により形成され、支
持部材15も磁路の一部を形成するので磁気インピーダ
ンスは一層低下し、効率、感度を向上することができる
FIG. 5 shows a third embodiment of the present invention, in which the support member 11 is divided into two support members 14 and 15, one of the support members 14 being one of the detection coils 4 and 5. The supporting member 15 is formed into a cylindrical shape from a non-magnetic non-conductive material such as plastic or ceramics on the circumferential side, and the other three parts are formed from a magnetic material. In this embodiment, the support member 15 is made of a magnetic material, and since the support member 15 also forms part of the magnetic path, the magnetic impedance is further reduced, and efficiency and sensitivity can be improved.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明の第1の発明によれば、金属部材
からなり、受動軸と接触しかつヨークと受動軸間をおお
うスリップリングを設けており、このスリップリングの
板厚がその磁束のスキンデブスより大きいので外部から
の電磁波の浸入を防止することができ、耐ノイズ性が向
上して感度が良好となる。
As described above, according to the first aspect of the present invention, a slip ring is provided which is made of a metal member and contacts the driven shaft and covers between the yoke and the driven shaft, and the plate thickness of this slip ring is such that the magnetic flux is Since it is larger than skin fat, it can prevent electromagnetic waves from entering from the outside, improving noise resistance and improving sensitivity.

又、第2の発明によれば、上記同様のスリップリングを
磁性材により形成しており、スリップリングが閉磁路の
一部を形成して歪検出用磁束に対する磁気インピーダン
スが小さくなり、効率、感度が向上する。このスリップ
リングはもちろん外部からの電磁波の浸入を防ぐので、
これによっても信頼性を向上することができる。
Further, according to the second invention, the slip ring similar to the above is formed of a magnetic material, and the slip ring forms a part of the closed magnetic path, so that the magnetic impedance to the magnetic flux for strain detection is reduced, and the efficiency and sensitivity are improved. will improve. This slip ring naturally prevents electromagnetic waves from entering from outside, so
This also improves reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(At、telはこの発明の第1の実施例による
歪検出器の断面図及びスリップリングの正面図、第2図
は従来の歪検出器の断面図、第3図はスキンデブスの特
性図、第4図及び第5図はこの発明の第2及び第3の実
施例による歪検出器の断面図である。 1・・・受動軸、2,3・・・磁歪素片群、4.5・・
・検出コイル、6,7・・・ヨーク、9.10.12・
・・スリップリング。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 (At, tel is a cross-sectional view of a strain detector according to the first embodiment of the present invention and a front view of a slip ring, Fig. 2 is a cross-sectional view of a conventional strain detector, and Fig. 3 is a characteristic of skin fat. 4 and 5 are cross-sectional views of strain detectors according to second and third embodiments of the present invention. 1... Passive shaft, 2, 3... Magnetostrictive element group, 4 .5...
・Detection coil, 6, 7...Yoke, 9.10.12・
...Slip ring. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)応力を印加される受動軸と、受動軸上に固着され
、歪に応じた透磁率変化を生じる磁歪素片群と、磁歪素
片群の周囲に巻回され、磁歪素片群の透磁率変化を検出
する検出コイルと、検出コイルの外周に設けられた磁性
材から成るヨークを備えた歪検出器において、金属材料
から成り、その導電率と透磁率と磁束周波数とから決定
されるスキンデブスより肉厚が厚いスリップリングを受
動軸と接触しかつヨークと受動軸の間のギャップをおお
うように配設したことを特徴とする歪検出器。
(1) A passive shaft to which stress is applied, a group of magnetostrictive pieces fixed on the passive shaft and causing changes in permeability according to strain, and a group of magnetostrictive pieces wound around the group of magnetostrictive pieces. In a strain detector equipped with a detection coil that detects changes in magnetic permeability and a yoke made of a magnetic material provided around the outer periphery of the detection coil, the strain detector is made of a metal material and is determined from its electrical conductivity, magnetic permeability, and magnetic flux frequency. A strain detector characterized in that a slip ring, which is thicker than skin fat, is arranged in contact with a passive shaft and so as to cover the gap between the yoke and the passive shaft.
(2)応力を印加される受動軸と、受動軸上に固着され
、歪に応じた透磁率変化を生じる磁歪素片群と、磁歪素
片群の周囲に巻回され、磁歪素片群の透磁率変化を検出
する検出コイルと、検出コイルの外周に設けられた磁性
材からなるヨークを備えた歪検出器において、磁性材か
らなり、その導電率と透磁率と磁束周波数とから決定さ
れるスキンデブスより肉厚が厚いスリップリングを受動
軸と接触しかつヨークと受動軸の間のギャップをおおう
ように配設したことを特徴とする歪検出器。
(2) A passive shaft to which stress is applied, a group of magnetostrictive pieces fixed on the passive shaft and causing changes in permeability according to strain, and a group of magnetostrictive pieces wound around the group of magnetostrictive pieces. In a strain detector equipped with a detection coil that detects changes in magnetic permeability and a yoke made of a magnetic material provided around the outer periphery of the detection coil, the strain detector is made of a magnetic material and is determined from its conductivity, magnetic permeability, and magnetic flux frequency. A strain detector characterized in that a slip ring, which is thicker than skin fat, is arranged in contact with a passive shaft and so as to cover the gap between the yoke and the passive shaft.
JP1594189A 1989-01-25 1989-01-25 Strain detector Pending JPH02195220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1594189A JPH02195220A (en) 1989-01-25 1989-01-25 Strain detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1594189A JPH02195220A (en) 1989-01-25 1989-01-25 Strain detector

Publications (1)

Publication Number Publication Date
JPH02195220A true JPH02195220A (en) 1990-08-01

Family

ID=11902785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1594189A Pending JPH02195220A (en) 1989-01-25 1989-01-25 Strain detector

Country Status (1)

Country Link
JP (1) JPH02195220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464936A2 (en) * 2003-04-02 2004-10-06 HONDA MOTOR CO., Ltd. Torque sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464936A2 (en) * 2003-04-02 2004-10-06 HONDA MOTOR CO., Ltd. Torque sensor
EP1464936A3 (en) * 2003-04-02 2004-11-24 HONDA MOTOR CO., Ltd. Torque sensor
US7013741B2 (en) 2003-04-02 2006-03-21 Honda Motor Co., Ltd. Torque sensor

Similar Documents

Publication Publication Date Title
KR920010310B1 (en) Distortion detecting apparatus
US5165286A (en) Strain detector
KR920006499B1 (en) Torque sensor
US4446741A (en) Vibration transducer
US4186609A (en) Eddy-current device for measuring rotational speed
JPH02195220A (en) Strain detector
US5062307A (en) Strain detector
JP2005525573A (en) Eddy current sensor device for measuring shaft torque
JPH0735572A (en) Magnetic encoder
JP3065230B2 (en) Magnetostrictive torque sensor
JPH02154130A (en) Strain detector
JPH01318901A (en) Magnetic induction type sensor
JPH02154129A (en) Strain detector
JPH0674838A (en) Strain detecting device, and shield and passive shaft for same
JPS5947942B2 (en) Rotational speed signal detector
JPH0454322A (en) Magnetic particle type electormagnetic connection device
JPH0194230A (en) Strain detector
JPH0464733A (en) Magnetic particle type electromagnetic coupling device
JPH10309066A (en) Brushless resolver
JPH02281114A (en) Strain detector
JPH02302637A (en) Strain detecting apparatus
JPS5947945B2 (en) Rotational speed signal detector
JP2560781B2 (en) Strain detector
JPH02281115A (en) Strain detector
JPH02302636A (en) Strain detecting apparatus