JPH02194159A - Formation of wear resistant coating film - Google Patents

Formation of wear resistant coating film

Info

Publication number
JPH02194159A
JPH02194159A JP63278324A JP27832488A JPH02194159A JP H02194159 A JPH02194159 A JP H02194159A JP 63278324 A JP63278324 A JP 63278324A JP 27832488 A JP27832488 A JP 27832488A JP H02194159 A JPH02194159 A JP H02194159A
Authority
JP
Japan
Prior art keywords
film
composition
cathode
cutting tool
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63278324A
Other languages
Japanese (ja)
Other versions
JPH0567705B2 (en
Inventor
Tsutomu Ikeda
池田 孜
Hiroyuki Ono
小野 廣之
Hideo Miura
三浦 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26412070&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02194159(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63278324A priority Critical patent/JPH02194159A/en
Publication of JPH02194159A publication Critical patent/JPH02194159A/en
Publication of JPH0567705B2 publication Critical patent/JPH0567705B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To remarkably improve the wear resistance of a cutting tool made of a hard alloy by coating the surface of the cutting tool with a thin film of the carbonitride of an Al-Ti alloy having superior hardness with superior adhesion by arc discharge with the cathode as an evaporating source. CONSTITUTION:A cutting tool made of a WC-Co sintered hard alloy is fixed in a cathode arc type ion plating device and high electric current is supplied with an Al-Ti alloy as the cathode in a gaseous N2-CH4 atmosphere. Bias voltage is impressed on the cutting tool and a film of the carbonitride of the Al-Ti alloy represented by a formula (AlxTi1-x) (NyC1-y) (where 0.56<=x<=0.75 and 0.6<=y<=1) is formed on the surface of the tool in 0.8-10mum thickness. Since the carbonitride has very high hardness and superior adhesive strength to the material of the cutting tool, the wear resistance of the tool is remarkably improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フライス加工工具等の表面に、密着性の優れ
た耐摩耗性皮膜を効率良く形成する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently forming a wear-resistant film with excellent adhesion on the surface of a milling tool or the like.

[従来の技術] 高速度工具鋼や超硬合金工具鋼等を製作する場合は、耐
摩耗性等の性能をより優れたものとすることを目的とし
て、工具基材の表面にTi等の窒化物や炭化物よりなる
耐摩耗性皮膜を形成することが行なわれている。
[Prior art] When manufacturing high-speed tool steel, cemented carbide tool steel, etc., nitriding such as Ti is applied to the surface of the tool base material in order to improve performance such as wear resistance. Formation of a wear-resistant film made of carbide or carbide has been carried out.

基材表面に耐摩耗性皮膜を形成する方法としては、従来
よりCVD法(化学的蒸着法)及びPVD法(物理的蒸
着法)が知られている。しかし前者の方法では母材が高
温処理に曝される為母材特性が劣化するおそれがあり、
母材特性も重要視される工具の場合は後者の方法が好ま
れ、例えばPVD法によるTiN皮膜等が汎用されてい
た。TiN皮膜は耐熱性が良好であって、切削時の加工
熱や摩擦熱による工具すくい面のクレータ摩耗を抑制す
る機能を発揮する。
CVD (chemical vapor deposition) and PVD (physical vapor deposition) are conventionally known methods for forming a wear-resistant film on the surface of a base material. However, in the former method, the base material is exposed to high temperature treatment, which may cause the base material properties to deteriorate.
The latter method is preferred in the case of tools in which base material properties are also important, and for example, TiN coating by PVD method has been widely used. The TiN film has good heat resistance and exhibits the function of suppressing crater wear on the tool rake face due to machining heat and frictional heat during cutting.

しかしながら近年、切削速度の一層の高速化が要望され
ており、切削条件がより過酷化する傾向にある為、上記
した様な従来のTiN皮膜程度ではこの要請に応えきれ
なくなっている。
However, in recent years, there has been a demand for higher cutting speeds, and cutting conditions have tended to become more severe, so the conventional TiN coatings described above are no longer able to meet this demand.

そこで耐熱性や硬度が更に優れた皮膜として、イオンブ
レーティング法やスパッタリング法によるT i A 
I N、 T i A I C,或はTiAlCN等の
皮膜が提案された[特開昭62−56565゜ジャーナ
ル・バキューム・ソサエティ・テクノロジー(J、 V
ac、 Sci、 Technoly)A第4(6)巻
、In2年、第2717頁、 J、 of 5olid
 StateChemistry、70.1987年、
第318〜322頁]。
Therefore, as a film with even better heat resistance and hardness, T i A using ion blating method or sputtering method was developed.
Films such as IN, TiAIC, or TiAlCN have been proposed [Japanese Patent Application Laid-Open No. 62-56565゜Journal Vacuum Society Technology (J, V
ac, Sci, Technology) Volume 4(6), In2, Page 2717, J, of 5olid
StateChemistry, 70.1987,
pp. 318-322].

[発明が解決しようとする課題] しかしながらこの様な従来方法による皮膜の形成には、
次の様な問題があった。
[Problems to be solved by the invention] However, in forming a film by such a conventional method,
There were the following problems.

(イ) イオンブレーティングの場合 従来のイオンブレーティング法は、蒸着金属をるつぼ内
で溶融・蒸発させる方式である為、蒸発源の設置位置が
制約される。この為複雑な形状の基材を被覆する場合は
生産性が低い、また複数の金属を蒸発させて基材表面上
で合金化させたい場合が多いにもかかわらず、個々の蒸
発金属には蒸気圧差があり、皮膜の合金組成を安定的に
コントロールすることが困難であった。
(B) In the case of ion blating In the conventional ion blating method, the deposited metal is melted and evaporated in a crucible, so the installation position of the evaporation source is restricted. For this reason, productivity is low when coating a base material with a complex shape, and although it is often desired to evaporate multiple metals and alloy them on the surface of the base material, individual evaporated metals cannot be coated with steam. Because of the pressure difference, it was difficult to stably control the alloy composition of the film.

(0)スパッタリング法の場合 皮膜の密着性が必らずしも良好でなく、また複雑な形状
の基材を被覆する場合の生産性も低い。
(0) In the case of the sputtering method, the adhesion of the film is not necessarily good, and the productivity is also low when coating a substrate with a complicated shape.

更にターゲットとしてA1.Ti、、や(AlxT i
 r −x ) N等を使用する場合は、スパッタ率が
経時的に変化し易いためこの変化を見込んだ組成のター
ゲットを要する。またスパッタ粒子のイオン化率が低い
ため、基板に突入するイオン量が少なく、従って十分な
膜密着性が得られないという欠点があった。しかも成膜
速度が遅く量産化が困難である。
Furthermore, A1 as a target. Ti,,ya(AlxT i
When using N, etc., the sputtering rate tends to change over time, so a target with a composition that takes into account this change is required. Furthermore, since the ionization rate of the sputtered particles is low, the amount of ions that enter the substrate is small, resulting in a disadvantage that sufficient film adhesion cannot be obtained. Moreover, the film formation rate is slow and mass production is difficult.

次に組成に関する問題点について述べる。Next, problems related to composition will be discussed.

(A)特開昭62−56565には(Ti、AI)C。(A) (Ti, AI)C in JP-A No. 62-56565.

(Ti、AI)Nおよび(Ti、Al)cNと記述され
ているに止まり、TiとAIの比率またCとNの比率に
ついて明確な記述がなく、すべての組成が適用できるも
のでない。
It is only described as (Ti, AI)N and (Ti, Al)cN, but there is no clear description of the ratio of Ti to AI or the ratio of C to N, and not all compositions can be applied.

(ニ)さらにJ、 Vac、 Sc1. Techno
l、、A 4  ([i)。
(d) Furthermore, J, Vac, Sc1. Techno
l,, A 4 ([i).

1986年の論文には(Ti、AI)HにおいてTi 
:A1=75:25.Ti :A1冨50:50の組成
が記述されているにすぎない。これらの組成を固溶体成
分で記述すれば、TiN−AIN固溶体と表現でき、T
iNを基本組成としてAINが最高50モル%固溶した
ものと言える。
In the 1986 paper, Ti in (Ti, AI)H
:A1=75:25. Only a composition of Ti:A1 concentration of 50:50 is described. If these compositions are described in terms of solid solution components, they can be expressed as TiN-AIN solid solutions, and T
It can be said that the basic composition is iN with a maximum of 50 mol% of AIN in solid solution.

(ネ)  J、  of  5olid  5tate
  Chemistry、70  (19a7年)の論
文には(Ti、AI)Hにおいて、全組成中AIが30
at%固溶できると記述されている。
(ne) J, of 5olid 5tate
In the paper Chemistry, 70 (19a7), in (Ti, AI)H, AI is 30% in the total composition.
It is described that it can be dissolved in solid solution at %.

しかし上記(八)〜 (ネ)の組成では、AINの高熱
伝導性、耐酸化性が十分発揮できるものとはいえないも
のである。
However, the compositions (8) to (4) above cannot be said to fully exhibit the high thermal conductivity and oxidation resistance of AIN.

本発明は、AlN−TiN系全組成域について詳細に調
べ、AINを基本組成としてAIN単組成の弱点をTi
Nの固溶により改善し、その組成域を特定したものであ
って、耐摩耗性及び密着性に優れた皮膜を効率よく形成
することのできる様な皮膜形成方法を提供しようとする
ものである。
In the present invention, the entire composition range of the AlN-TiN system was investigated in detail, and the weak points of the AIN single composition were investigated using AIN as the basic composition.
The objective is to provide a film forming method that can be improved by solid solution of N, and its composition range has been specified, and that can efficiently form a film with excellent wear resistance and adhesion. .

[課題を解決する為の手段] 本発明は基材表面に耐摩耗性皮膜を形成するに当たり、
化学組成が (A lx T i l−11)(Ny Ct−y )
但し 0.56≦x≦0.75 0.6 ≦y≦1 膜厚:0.8〜10μm で示される耐摩耗性皮膜を、蒸発源としてカソードを用
いるアーク放電方式によって形成することを要旨とする
ものである。
[Means for Solving the Problems] The present invention provides the following steps in forming a wear-resistant film on the surface of a base material:
The chemical composition is (A lx T i l-11) (Ny Ct-y)
However, 0.56≦x≦0.75 0.6≦y≦1 Film thickness: 0.8 to 10 μm The gist is to form a wear-resistant film using an arc discharge method using a cathode as an evaporation source. It is something to do.

[作用] 本発明においては、カソードを蒸発源とするアーク放電
によりて金属成分をイオン化するものであって、イオン
ブレーティング法やスパッタリング法等に代表されるP
VD法によって行なうことができるものである。これら
のうち例えばイオンブレーティング法で行なう場合を代
表的に取り上げて説明すると、前記の様にイオン化した
金属成分をN2雰囲気又はN2/CH4雰囲気中で反応
させる。カソードとしてはTi及びAIをそれぞれ個別
に使用することもできるが、目的組成そのものからなる
AlxTit−+gをターゲットとすれば、皮膜組成の
コントロールが容易である。この場合の各合金成分の蒸
発は、数十アンペア以上の大電流域で行なわれるため、
カソード物質の組成ずれは殆んど生じない、しかもイオ
ン化効率が高く反応性に富み、基板にバイアス電圧を印
加することによって密着性の優れた皮膜が得られる。
[Function] In the present invention, metal components are ionized by arc discharge using a cathode as an evaporation source, and the P
This can be done by the VD method. Among these methods, for example, the case where the ion blating method is used will be described as a representative example.The ionized metal components as described above are reacted in an N2 atmosphere or an N2/CH4 atmosphere. Although Ti and AI can be used individually as the cathode, the film composition can be easily controlled if AlxTit-+g, which has the desired composition itself, is targeted. In this case, each alloy component is evaporated in a large current range of several tens of amperes or more, so
The cathode material has almost no compositional deviation, has high ionization efficiency and high reactivity, and can obtain a film with excellent adhesion by applying a bias voltage to the substrate.

この様にして得られる皮膜の組成は (A I X ”r i 1−X)(NyCl−y )
但し 0.56≦x≦0.75 0.8≦y≦1 であることが必要であり、好ましくは0.6≦x≦0.
7である。
The composition of the film obtained in this way is (A I X "r i 1-X) (NyCl-y)
However, it is necessary that 0.56≦x≦0.75, 0.8≦y≦1, and preferably 0.6≦x≦0.
It is 7.

上記皮膜組成からなる本発明の固溶体は、これを窒化物
系で代表して説明すると、AlN−TiNを端組成とす
る固溶体であり、種々の成分範囲について調べた結果、
第1図(^)及び(B)に示すような結晶構造を有する
ことが明らかとなった。第1図(A)において(P)は
NaC1型(Bl構造)領域、(Q)はZnS型(ウル
ツァイト型)領域である。即ち本発明の成分範囲は、第
1図(A) 、 (B)から明らかなように、B1構造
を有する組成範囲内で、AINにTiNが25〜44モ
ル%固溶した固溶体である。この範囲に限定した理由を
以下に述べる。
The solid solution of the present invention having the above-mentioned film composition is a solid solution having an end composition of AlN-TiN, as a representative example of a nitride system.As a result of investigating various component ranges,
It was revealed that it had a crystal structure as shown in FIGS. 1(^) and (B). In FIG. 1(A), (P) is a NaCl type (Bl structure) region, and (Q) is a ZnS type (wurtzite type) region. That is, as is clear from FIGS. 1(A) and 1(B), the component range of the present invention is a solid solution in which 25 to 44 mol % of TiN is dissolved in AIN within the composition range having the B1 structure. The reason for limiting to this range will be described below.

第1図(B)から明らかな様にAI量(X)が0.75
を超える場合は、皮膜組成がAINに近似してくる結果
、皮膜の軟質化を招き、十分な硬度が得られなくなり、
フランク摩耗を容易に引き起す、一方Xが0.75以下
になると、皮膜は高硬度化し、フランク摩耗量は減少す
る。しかしAINの高耐酸化特性を有効に発揮する下限
として以下のように決めた。
As is clear from Figure 1 (B), the AI amount (X) is 0.75
If it exceeds this, the film composition will approach AIN, resulting in softening of the film and insufficient hardness.
Flank wear is easily caused. On the other hand, when X is less than 0.75, the coating becomes highly hard and the amount of flank wear decreases. However, the lower limit for effectively exhibiting the high oxidation resistance properties of AIN was determined as follows.

即ち(AIIlTit−x)N[但しx = 0 、0
.25゜Q、5 、0.6 ]を大気中、昇温速度5℃
/分で昇温酸化した場合の温度変化に対する酸化量の変
化を測定したところ、第2図に示す結果が得られた。
That is, (AIIlTit-x)N [where x = 0, 0
.. 25゜Q,5,0.6] in the atmosphere, heating rate 5℃
When the change in the amount of oxidation with respect to the temperature change was measured when the temperature was increased to oxidize at a rate of 1/min, the results shown in FIG. 2 were obtained.

第2図よりAI量が増加するにつれて酸化開始温度が上
昇することがわかる。一方工具切削中の刃先温度の上昇
による皮膜の酸化を十分に抑制する為には、切削熱によ
るクレータ摩耗量を低下させる必要がある。この様な観
点から第2図を見ると、できる限りAIN成分に富んだ
組成範囲とすることが有効であることがわかる。したが
って、工具刃先温度が切削中にaOO℃以上になること
を考慮して、酸化開始温度がaOO℃以上の組成をx 
= 0.56と決めた。
It can be seen from FIG. 2 that as the amount of AI increases, the oxidation initiation temperature increases. On the other hand, in order to sufficiently suppress the oxidation of the film due to the rise in the temperature of the cutting edge during tool cutting, it is necessary to reduce the amount of crater wear caused by cutting heat. Looking at FIG. 2 from this perspective, it can be seen that it is effective to have a composition range as rich in AIN components as possible. Therefore, taking into account that the tool edge temperature will become more than aOO℃ during cutting, the composition with an oxidation start temperature of aOO℃ or more will be x
= 0.56.

又本発明では炭窒化物を形成することによってTicの
高硬度性(常温硬度Hv:約3100kg/mm’)を
発揮させるものである。即ち本発明の組成式においてy
の値が減少するにつれて硬度が大となり耐摩耗性は向上
する。第3図は、超硬チップ(WC−10%Coを主成
分とする)に(A 1 o、asT t o、3s) 
 (Ny Cr−y )  [但しy=0.4 、0.
6 、0.8 、0.9 、 1 ]を3μm被覆し、
被剛材350Cを切削速度170 m/min 、送り
速度0.25mm/rev 、切り込み0.1mmで切
削した時の15分後のクレータ摩耗量を測定した結果を
示す、この結果にみられるようにyが0.6未満になる
と耐酸化性が低下してクレータ摩耗を起こし易くなる。
Further, in the present invention, the high hardness of Tic (room temperature hardness Hv: about 3100 kg/mm') is exhibited by forming carbonitride. That is, in the composition formula of the present invention, y
As the value of decreases, the hardness increases and the wear resistance improves. Figure 3 shows a cemented carbide tip (WC-based on 10% Co) (A 1 o, asT to 3s).
(NyCr-y) [However, y=0.4, 0.
6, 0.8, 0.9, 1] to a thickness of 3 μm,
This shows the results of measuring the amount of crater wear after 15 minutes when cutting a 350C rigid material at a cutting speed of 170 m/min, a feed rate of 0.25 mm/rev, and a depth of cut of 0.1 mm. When y is less than 0.6, oxidation resistance decreases and crater wear tends to occur.

y≧0.6の範囲では耐酸化性の顕著な低下はみられな
い。
In the range of y≧0.6, no significant decrease in oxidation resistance is observed.

尚後述する実施例及び比較例から明らかな様に、膜厚が
0.8μm未満の場合は耐摩耗性が不十分となり、一方
10μmを超えると膜自体にクラックが入り易く、強度
が不十分となる。
As is clear from the Examples and Comparative Examples described below, if the film thickness is less than 0.8 μm, the wear resistance will be insufficient, while if it exceeds 10 μm, the film itself will easily crack and the strength will be insufficient. Become.

以下実施例について説明するが15本発明は下記の実施
例に限定されるものではなく、前・後記の趣旨に徴して
適宜設計変更することは本発明の技術的範囲に含まれる
Examples will be described below, but the present invention is not limited to the following examples, and it is within the technical scope of the present invention to make appropriate design changes in accordance with the spirit described above and below.

[実施例] 実施例I A1゜6 T 1 o、4をカソード電極とするカソー
ドアーク方式イオンブレーティング装置の基板ホルダー
に超硬合金製チップ(wc−to%Coを主成分とする
)を取付けた。尚本装置には、耐摩耗性皮膜形成状態の
均一性を確保する為の基材回転機構等及びヒータを設置
した。
[Example] Example I A cemented carbide chip (mainly composed of wc-to%Co) was attached to the substrate holder of a cathode arc type ion blating device using A1゜6 T 1 o, 4 as the cathode electrode. Ta. This device was equipped with a base material rotation mechanism and a heater to ensure uniformity in the formation of the wear-resistant film.

成膜に当たっては、ヒータによって基材温度を400℃
に加熱保持したまま、基材に一70Vのバイアス電圧を
印加すると共に、装置内に高純度N2ガスをフX 1O
−3Torrまで導入し、アーク放電を開始して基材表
面に膜厚4μmの皮膜を形成した。膜厚の測定は、基板
ホルダーに同時に取り付けた基材の内の1個を破断し、
膜断面を走査型電子顕微鏡で観察して測定したものであ
る。さらに膜組成の定量は、同じく同時に取り付けた基
材につきオージェ分光分析法により膜深さ方向の分析を
行なった。その結果AI、Ti、Nの膜厚さ方向には濃
度変化がなく一定で、各成分元素のピーク高さから、膜
組成は(A I 0.ll2T i o3a)Nであっ
た。−膜中の金属成分比Ti/Alはカソード成分比と
ずれがなく殆んど同一といえる。
During film formation, the substrate temperature was kept at 400°C using a heater.
A bias voltage of -70V was applied to the substrate while heating and holding the substrate, and high purity N2 gas was blown into the apparatus at
-3 Torr was introduced, arc discharge was started, and a film with a thickness of 4 μm was formed on the surface of the base material. To measure the film thickness, break one of the substrates attached to the substrate holder at the same time,
The cross-section of the membrane was observed and measured using a scanning electron microscope. Furthermore, to quantify the film composition, the film depth direction was analyzed using Auger spectroscopy on the base material attached at the same time. As a result, the concentrations of AI, Ti, and N were constant with no change in the film thickness direction, and the film composition was (A I 0.ll2T io3a)N based on the peak height of each component element. - The metal component ratio Ti/Al in the film has no deviation from the cathode component ratio and can be said to be almost the same.

実施例2 A1oyTiosカソードを用いた以外は、実施例1と
同一条件で成膜を行なった。成膜した膜厚は3.8μm
であり、膜組成は(A10.77 i o、 ss) 
Nであった。
Example 2 Film formation was carried out under the same conditions as in Example 1, except that an A1oyTios cathode was used. The thickness of the film formed was 3.8μm
and the film composition is (A10.77 io, ss)
It was N.

実施例3 反応性ガスとしてN x / CHa混合ガスを用いた
以外は実施例1と同一条件で成膜を行なった。成膜した
膜厚は4.3μmであり、膜組成は(A I 0.61
T i O,39)  (No)C83)でありた。
Example 3 Film formation was carried out under the same conditions as in Example 1 except that N x /CHa mixed gas was used as the reactive gas. The thickness of the formed film was 4.3 μm, and the film composition was (A I 0.61
T i O, 39) (No) C83).

(比較例) 比較の為次の試料を用意した。(Comparative example) The following samples were prepared for comparison.

比較例1 実施例1の基材に皮膜を形成しない試料比較例2 Tiカソードを用いてN2ガスを7 X 10−’To
rrまで導入し実施例1と同一条件でTiNの成膜を行
なった。成膜した膜厚は4.3 μmであった。
Comparative Example 1 Sample in which a film is not formed on the base material of Example 1 Comparative Example 2 N2 gas was applied to the substrate using a Ti cathode at 7 x 10-'To
A TiN film was formed under the same conditions as in Example 1 by introducing up to rr. The thickness of the deposited film was 4.3 μm.

比較例3 蒸発器の加熱源として電子ビーム(E、By)を使用し
たイオンブレーティング装置を用いて、るつぼに実施例
1で使用したカソード物質と同一のA I (1,a 
T i O,4固溶体を装入し、基板ホルダーには超硬
合金製チップを取り付けた。膜の均−性及び膜の密着性
を確保するため、基板回転機構等を設置すると共にヒー
ターを設置した。成膜にあたってはヒーターにより基材
温度を400℃に加熱保持したまま、基材に−aoov
のバイアス電圧を印加し、装置内に高純度N2を7×1
0−’ Torrまで導入しイオンブレーティング法に
より基材に成膜を行なった。膜厚は4μmとした。さら
に実施例1と同様の分析方法により皮膜を分析した結果
、AIとTiの濃度比が膜厚方向に不均一で膜の成分比
は規定できなかった。
Comparative Example 3 Using an ion brating device using an electron beam (E, By) as a heating source for the evaporator, a crucible was charged with A I (1, a
A T i O,4 solid solution was charged, and a cemented carbide chip was attached to the substrate holder. In order to ensure the uniformity of the film and the adhesion of the film, a heater was installed as well as a substrate rotation mechanism. During film formation, the substrate temperature was maintained at 400°C using a heater, and -aoov was applied to the substrate.
Apply a bias voltage of 7×1 high purity N2 into the device.
A film was formed on the substrate by the ion blating method with the introduction down to 0-' Torr. The film thickness was 4 μm. Furthermore, as a result of analyzing the film using the same analytical method as in Example 1, the concentration ratio of AI and Ti was non-uniform in the film thickness direction, and the component ratio of the film could not be defined.

特に基材と膜の界面にはAIの濃縮が観察され、E、B
、溶解の初期にA1が優先的に蒸発付着したものと考え
られる。
In particular, concentration of AI was observed at the interface between the substrate and the membrane, and E, B
It is considered that A1 was preferentially evaporated and deposited at the early stage of dissolution.

比較例4 実施例1と同一のカソード物質であるAlo、5Ti(
、,4ターゲツトを製作し、スパッタリング装置を用い
てA r / N 2混合ガスによる反応性スパッタリ
ング法にて超硬チップに成膜を行な〕た。得られた膜厚
は3μmであった。膜を分析した結果、平均として(A
 1 o、yaT i O,22) Nと判定された。
Comparative Example 4 The same cathode materials as in Example 1, Alo, 5Ti (
, 4 targets were prepared, and a film was formed on a carbide tip by a reactive sputtering method using an Ar/N 2 mixed gas using a sputtering device. The obtained film thickness was 3 μm. As a result of analyzing the membrane, as an average (A
1 o, yaT i O, 22) It was determined to be N.

AI酸成分優先的にスパッタされたものと考えられる。It is thought that the AI acid component was preferentially sputtered.

比較例5 カソード物質としてA1゜45T i o、 ssツタ
−ットを製作し、実施例1と同一条件で成膜を行なった
。成膜した膜厚は4μmであり、膜組成は(A I 0
.42T i o、sa) Nであった。
Comparative Example 5 As a cathode material, A1°45Tio, ss starter was manufactured, and film formation was performed under the same conditions as in Example 1. The thickness of the formed film was 4 μm, and the film composition was (A I 0
.. 42T io, sa) N.

比較例6 実施例1と同一のカソード、同一の条件で成膜を行なっ
た。膜厚は0.7μmとし、膜組成は(A 1 o、 
eaT i o3a) Nであった。
Comparative Example 6 Film formation was performed using the same cathode and under the same conditions as in Example 1. The film thickness was 0.7 μm, and the film composition was (A 1 o,
eaTio3a) N.

比較例7 実施例1と同一カソード、同一条件で成膜を行なった。Comparative example 7 Film formation was performed using the same cathode and under the same conditions as in Example 1.

膜厚は12μmとし、膜組成は(AI。64T i 0
.36) Nであった。
The film thickness is 12 μm, and the film composition is (AI.64T i 0
.. 36) It was N.

実施例1〜3及び比較例1〜7によって得られた試料を
、下記切削条件により10分間の切削試験に供したフラ
ンク摩耗幅及びクレータ摩耗深さを第1表に示す。
The samples obtained in Examples 1 to 3 and Comparative Examples 1 to 7 were subjected to a cutting test for 10 minutes under the following cutting conditions, and the flank wear width and crater wear depth are shown in Table 1.

切削条件: 被削材    550C 切削速度   170 m /win 送り速度   0.25 mm/rev切り込み   
0.1 ff1m 矛 表 第1表より明らかな様に、比較例に比べて本発明例はい
ずれも耐摩耗性に優れていた。
Cutting conditions: Work material 550C Cutting speed 170 m/win Feed speed 0.25 mm/rev depth of cut
0.1 ff1m As is clear from Table 1, the examples of the present invention were all superior in wear resistance compared to the comparative examples.

次に超硬ドリルへの適用例を以下に示す。An example of application to a carbide drill is shown below.

実施例4 6ma+φの(WC−8%COを主成分とする)超硬ド
リルに実施例1.と同一条件にて成膜を形成した。この
ときの膜組成は(A 1 o、 asT i 0.31
1) Nであり、膜厚は4.5μmであった。
Example 4 Example 1 was applied to a 6ma+φ (mainly composed of WC-8% CO) carbide drill. A film was formed under the same conditions. The film composition at this time is (A 1 o, asT i 0.31
1) N was used, and the film thickness was 4.5 μm.

比較例として次の試料を用意した。The following sample was prepared as a comparative example.

比較例8 6ma+φの超硬ドリルに比較例5と同一条件にて成膜
を形成した。このときの膜組成は(AIo、46710
、54) Nであり、膜厚は4μmであった。
Comparative Example 8 A film was formed on a 6ma+φ carbide drill under the same conditions as Comparative Example 5. The film composition at this time was (AIo, 46710
, 54) N, and the film thickness was 4 μm.

比較例9 6mmφの超硬ドリルに比較例2と同一条件でTiNを
成膜した。膜厚は5μmであった。
Comparative Example 9 A TiN film was formed on a 6 mm diameter carbide drill under the same conditions as Comparative Example 2. The film thickness was 5 μm.

比較例11 06II1φの超硬ドリルに実施例4と同一条件で成膜
を形成した。膜組成は(A I G、 64T i Q
、 38) Nであり、膜厚を0.7 μmとした。
Comparative Example 11 A film was formed on a 06II 1φ carbide drill under the same conditions as in Example 4. The film composition is (A I G, 64T i Q
, 38) N, and the film thickness was 0.7 μm.

比較例11 6mmφの超硬ドリルに比較例10と同一条件にて成膜
し、膜組成は(A I 0.64T i o、*s) 
Nで膜厚は12μmとした。
Comparative Example 11 A film was formed on a 6mmφ carbide drill under the same conditions as Comparative Example 10, and the film composition was (A I 0.64T io, *s)
The film thickness was 12 μm using N.

下記の切削条件で行なった穴明は個数の結果を第2表に
示す。
Table 2 shows the results of the number of holes drilled under the following cutting conditions.

切削条件: 被削材    550C,13mmt 切削速度   50m/min 送り速度   0.2 mm/rev 潤滑     エマルジョンによる 第  2  表 第2表より明らかな様に本発明方法で得られた工具は、
比較例に比べて加工個数の大幅な増加が認められ、耐摩
耗性が良好であった。
Cutting conditions: Work material 550C, 13mmt Cutting speed 50m/min Feed rate 0.2mm/rev Lubrication Emulsion Table 2 As is clear from Table 2, the tool obtained by the method of the present invention was
A significant increase in the number of processed pieces was observed compared to the comparative example, and the wear resistance was good.

次にハイスドリルへの適用例を以下に示す。An example of application to a high speed steel drill is shown below.

実施例5 6IIIlIlφハイスドリルに実施例1と同一条件に
て成膜を形成した。膜組成は(A 1 o、 asT 
i o3y)Nであり、膜厚を5.5μmとした。
Example 5 A film was formed on a 6IIIlIlφ high-speed steel drill under the same conditions as in Example 1. The film composition is (A 1 o, asT
i o3y)N, and the film thickness was 5.5 μm.

比較例として次の試料を用意した。The following sample was prepared as a comparative example.

比較例12 6mmφハイスドリルに比較例2と同一条件でTiNを
成膜した。膜厚は5μmであった。
Comparative Example 12 A TiN film was formed on a 6 mm diameter high speed steel drill under the same conditions as Comparative Example 2. The film thickness was 5 μm.

比較例13 6■φハイスドリルに比較例5と同一条件にて成膜を形
成した。膜組成は(A 1 o、 asT i o、 
sy)Nであり、膜厚を4.5 μmとした。
Comparative Example 13 A film was formed on a 6-inch diameter high-speed steel drill under the same conditions as Comparative Example 5. The film composition is (A 1 o, asT io,
sy)N, and the film thickness was 4.5 μm.

比較例14 6■φハイスドリルに実施例4と同一条件で成膜を形成
した。膜組成は(A 10.113T i 0.37)
 Nであり、膜厚を13μmとした。
Comparative Example 14 A film was formed on a 6-inch diameter high-speed steel drill under the same conditions as in Example 4. The film composition is (A 10.113T i 0.37)
N, and the film thickness was 13 μm.

下記の切削条件で行なった穴明は個数の結果を第3表に
示す。
Table 3 shows the results of the number of holes drilled under the following cutting conditions.

切削条件: 被削材    550C,10mmt 切削速度   30m/win 送り速度   0.15mm/rev 潤 滑    エマルジョンによる 第  3  表 第3表より明らかな様に本発明方法で得られた工具は、
比較例に比べて加工個数の大幅な増加がみられ、耐摩耗
性が良好であった。
Cutting conditions: Work material 550C, 10mmt Cutting speed 30m/win Feed rate 0.15mm/rev Lubrication Emulsion Table 3 As is clear from Table 3, the tool obtained by the method of the present invention was
There was a significant increase in the number of processed pieces compared to the comparative example, and the wear resistance was good.

[発明の効果] 本発明は以上の様に構成されているので、TiNを基本
とした従来の(Ti、、AI)Nと異なり、III b
族の窒化物であるAINにTiが固溶した皮膜である為
、耐熱性、熱伝導性等に関し、AINに近似した優れた
特性が発揮されるばかりか、従来のイオンブレーティン
グ法やスパッタリング法によって製造する場合よりも密
着性、膜組成の均−性及び生産効率の各面において優れ
た皮膜形成方法を提供することができる。
[Effect of the invention] Since the present invention is configured as described above, unlike the conventional (Ti,, AI)N based on TiN, III b
Since the film is a solid solution of Ti in AIN, which is a nitride of the group, not only does it exhibit excellent properties similar to AIN in terms of heat resistance and thermal conductivity, but it also has excellent properties similar to AIN, and is also compatible with conventional ion blating and sputtering methods. It is possible to provide a method for forming a film that is superior in terms of adhesion, uniformity of film composition, and production efficiency compared to the case where the film is manufactured by the method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)は本発明における(A18T 
i I−X) N組成(窒化物で代表)と結晶構造の関
係を示す図であり、又第2図は(A 1 y T i 
I−X)NにおいてXを変化させた場合の温度変化に対
する酸化量の程度を示すグラフ、第3図は(A 1 o
、asT i o、ss)  (Ny Cl−y )に
おいてyを変化させた時の超硬チップの切削時のクレー
タ摩耗量を示す図である。 第1図(A) 第1閃(B)
FIGS. 1(A) and (B) show (A18T) in the present invention.
i I-X) A diagram showing the relationship between N composition (represented by nitride) and crystal structure, and FIG.
Figure 3 is a graph showing the degree of oxidation amount with respect to temperature change when X is changed in I-X)N.
, asTio,ss) (NyCl-y) is a diagram showing the amount of crater wear during cutting of a carbide tip when y is changed. Figure 1 (A) 1st flash (B)

Claims (1)

【特許請求の範囲】 基材表面に耐摩耗性皮膜を形成するに当たり、(Al_
xTi_1_−_x)(N_yC_1_−_y)但し0
.56≦x≦0.75 0.6≦y≦1 で示される化学組成からなり、膜厚が0.8〜10μm
の耐摩耗性皮膜を、蒸発源としてカソードを用いるアー
ク放電方式によって形成することを特徴とする耐摩耗性
皮膜形成方法。
[Claims] In forming a wear-resistant film on the surface of a base material, (Al_
xTi_1_-_x) (N_yC_1_-_y) However, 0
.. The film has a chemical composition of 56≦x≦0.75 0.6≦y≦1, and has a film thickness of 0.8 to 10 μm.
A method for forming a wear-resistant film, characterized in that the wear-resistant film is formed by an arc discharge method using a cathode as an evaporation source.
JP63278324A 1988-03-24 1988-11-02 Formation of wear resistant coating film Granted JPH02194159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278324A JPH02194159A (en) 1988-03-24 1988-11-02 Formation of wear resistant coating film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7095688 1988-03-24
JP25398088 1988-10-07
JP63-253980 1988-10-07
JP63-70956 1988-10-07
JP63278324A JPH02194159A (en) 1988-03-24 1988-11-02 Formation of wear resistant coating film

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP18613794A Division JPH07197235A (en) 1994-08-08 1994-08-08 Member coated with wear resistant film
JP30621295A Division JPH08209332A (en) 1988-03-24 1995-11-24 Production of tool excellent in wear resistance
JP7306213A Division JP2644710B2 (en) 1988-03-24 1995-11-24 Abrasion resistant coating

Publications (2)

Publication Number Publication Date
JPH02194159A true JPH02194159A (en) 1990-07-31
JPH0567705B2 JPH0567705B2 (en) 1993-09-27

Family

ID=26412070

Family Applications (3)

Application Number Title Priority Date Filing Date
JP63278324A Granted JPH02194159A (en) 1988-03-24 1988-11-02 Formation of wear resistant coating film
JP7306213A Expired - Lifetime JP2644710B2 (en) 1988-03-24 1995-11-24 Abrasion resistant coating
JP30621295A Pending JPH08209332A (en) 1988-03-24 1995-11-24 Production of tool excellent in wear resistance

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP7306213A Expired - Lifetime JP2644710B2 (en) 1988-03-24 1995-11-24 Abrasion resistant coating
JP30621295A Pending JPH08209332A (en) 1988-03-24 1995-11-24 Production of tool excellent in wear resistance

Country Status (1)

Country Link
JP (3) JPH02194159A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103755A (en) * 1990-08-23 1992-04-06 Sumitomo Metal Mining Co Ltd Surface coated steel product and its production
JPH05285215A (en) * 1992-04-09 1993-11-02 Masaru Yamaoka Equipment coated with film of ti-al-n composition
DE19517120A1 (en) * 1994-05-13 1995-11-16 Kobe Steel Ltd Coated part used as e.g. cutting tool
JPH08209332A (en) * 1988-03-24 1996-08-13 Kobe Steel Ltd Production of tool excellent in wear resistance
US5679448A (en) * 1993-07-12 1997-10-21 Oriental Engineering Co., Ltd. Method of coating the surface of a substrate and a coating material
US6855405B2 (en) * 2001-06-11 2005-02-15 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
JP2007015106A (en) * 2006-10-11 2007-01-25 Hitachi Tool Engineering Ltd Multilayered film coated tool and its coating method
EP2031090A2 (en) 2007-08-31 2009-03-04 Union Tool Co. Hard covering film for cutting tool
EP2100985A1 (en) 2008-01-31 2009-09-16 Union Tool Co. Hard film for cutting tool
JP2011504808A (en) 2007-11-16 2011-02-17 ベーレリト ゲーエムベーハー ウント コー. カーゲー. Friction stir welding tool
WO2013015004A1 (en) * 2011-07-22 2013-01-31 Kabushiki Kaisha Toshiba Magnetoresistive element
JPWO2011074530A1 (en) * 2009-12-17 2013-04-25 住友電気工業株式会社 Coating rotation tool
US8557405B2 (en) 2009-08-04 2013-10-15 Tungaloy Corporation Coated member
WO2014208068A1 (en) * 2013-06-24 2014-12-31 兼房株式会社 Method for manufacturing circular saw with hard tip
JP2015053357A (en) * 2013-09-06 2015-03-19 三菱マテリアル株式会社 Metal nitride material for thermistors, manufacturing method thereof, and thermistor sensor
US9165585B2 (en) 2010-09-16 2015-10-20 Kabushiki Kaisha Toshiba Magnetoresistive element including a nitrogen-containing buffer layer
RU2613837C1 (en) * 2015-12-03 2017-03-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет" "МИСиС" METHOD OF PRODUCING ION-PLASMA VACUUM-ARC CERAMETALLIC Ti-Ni COATING FOR CARBIDE CUTTING TOOL OF EXPANDED USE
KR20190043461A (en) 2017-10-18 2019-04-26 유니온쓰루 가부시키가이샤 Hard film for cutting tools and drill

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3165658B2 (en) * 1997-04-10 2001-05-14 三菱重工業株式会社 Gear machining method
TW582317U (en) * 1997-07-07 2004-04-01 Mitsubishi Heavy Ind Ltd Gear shaper cutting apparatus
CA2285460A1 (en) 1998-02-04 1999-08-12 Osg Corporation Hard multilayer coated tool having increased toughness
JP3031907B2 (en) 1998-03-16 2000-04-10 日立ツール株式会社 Multilayer coating member
ATE441737T1 (en) 2000-12-28 2009-09-15 Kobe Steel Ltd TARGET FOR FORMING A HARD LAYER
JP3910373B2 (en) 2001-03-13 2007-04-25 オーエスジー株式会社 Hard multilayer coating for rotary cutting tool and hard multilayer coating coated rotary cutting tool
JP2003019605A (en) * 2001-07-09 2003-01-21 Mmc Kobelco Tool Kk Surface coated cemented carbide cutting tool having hard coating layer with excellent heat radiation
JP4216518B2 (en) 2002-03-29 2009-01-28 株式会社神戸製鋼所 Cathode discharge type arc ion plating target and method of manufacturing the same
JP4609631B2 (en) * 2004-01-05 2011-01-12 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
WO2005123312A1 (en) 2004-06-18 2005-12-29 Mitsubishi Materials Corporation Surface-coated cutware and process for producing the same
JP2006116831A (en) 2004-10-22 2006-05-11 Sony Corp Printer and method of controlling it
SE0402180D0 (en) 2004-09-10 2004-09-10 Sandvik Ab Deposition of Ti1-xAlxN using Bipolar Pulsed Dual Microwave Sputtering
DE102006004394B4 (en) 2005-02-16 2011-01-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Hard film, multilayer hard film and manufacturing method therefor
JP4824989B2 (en) 2005-11-02 2011-11-30 株式会社神戸製鋼所 Hard coating
JP4950499B2 (en) 2006-02-03 2012-06-13 株式会社神戸製鋼所 Hard coating and method for forming the same
JP4713413B2 (en) 2006-06-30 2011-06-29 株式会社神戸製鋼所 Hard coating and method for producing the same
JP5096715B2 (en) 2006-09-21 2012-12-12 株式会社神戸製鋼所 Hard coating and hard coating tool
US8455116B2 (en) 2007-06-01 2013-06-04 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
AT9999U1 (en) * 2007-06-29 2008-07-15 Ceratizit Austria Gmbh AL-TI-RU-N-C HARD COAT LAYER
JP5383019B2 (en) * 2007-09-11 2014-01-08 京セラ株式会社 End mill
KR101157347B1 (en) * 2007-12-26 2012-06-15 수미도모 메탈 인더스트리즈, 리미티드 Covered carbide plug and cold drawing method using the covered carbide plug
JP5234925B2 (en) 2008-04-03 2013-07-10 株式会社神戸製鋼所 Hard film, method for forming the same, and hard film coated member
JP5234926B2 (en) 2008-04-24 2013-07-10 株式会社神戸製鋼所 Hard film and hard film forming target
US8277958B2 (en) * 2009-10-02 2012-10-02 Kennametal Inc. Aluminum titanium nitride coating and method of making same
DE102009046667B4 (en) * 2009-11-12 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coated bodies of metal, hardmetal, cermet or ceramic, and methods of coating such bodies
US8409702B2 (en) 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
DK2761058T3 (en) 2011-09-30 2019-11-04 Oerlikon Surface Solutions Ag Pfaeffikon ALUMINUM TITANIUM NITRID COATING WITH ADAPTED MORPHOLOGY FOR IMPROVED WEAR STRENGTH IN MACHINE WORKING AND PROCEDURE
JP5838769B2 (en) * 2011-12-01 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
JPWO2015052762A1 (en) * 2013-10-08 2017-03-09 Tpr株式会社 Piston ring and turbocharger seal ring
WO2015052761A1 (en) * 2013-10-08 2015-04-16 Tpr株式会社 Piston ring and seal ring for turbocharger
JP6385243B2 (en) * 2013-11-05 2018-09-05 日立金属株式会社 Coated cutting tool
JP6349581B2 (en) * 2015-01-14 2018-07-04 住友電工ハードメタル株式会社 Hard coating, cutting tool, and manufacturing method of hard coating
KR102167200B1 (en) 2017-08-15 2020-10-19 가부시키가이샤 몰디노 Cloth cutting tool
JP6844704B2 (en) 2017-08-15 2021-03-17 株式会社Moldino Cover cutting tool
US20220072622A1 (en) 2019-03-18 2022-03-10 Moldino Tool Engineering, Ltd. Coated cutting tool
US20230097468A1 (en) 2020-02-21 2023-03-30 Moldino Tool Engineering, Ltd. Coated tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151277A (en) * 1975-06-20 1976-12-25 Sumitomo Electric Ind Ltd A coated super hard alloy
JPS5240487A (en) * 1975-09-26 1977-03-29 Nobuo Nishida Exterior parts for watch and its process for production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411961A (en) * 1987-07-06 1989-01-17 Nippon Light Metal Co Formation of thin composite nitride film by ion plating
JPH02194159A (en) * 1988-03-24 1990-07-31 Kobe Steel Ltd Formation of wear resistant coating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151277A (en) * 1975-06-20 1976-12-25 Sumitomo Electric Ind Ltd A coated super hard alloy
JPS5240487A (en) * 1975-09-26 1977-03-29 Nobuo Nishida Exterior parts for watch and its process for production

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209332A (en) * 1988-03-24 1996-08-13 Kobe Steel Ltd Production of tool excellent in wear resistance
JPH04103755A (en) * 1990-08-23 1992-04-06 Sumitomo Metal Mining Co Ltd Surface coated steel product and its production
JPH05285215A (en) * 1992-04-09 1993-11-02 Masaru Yamaoka Equipment coated with film of ti-al-n composition
US5679448A (en) * 1993-07-12 1997-10-21 Oriental Engineering Co., Ltd. Method of coating the surface of a substrate and a coating material
DE19517120A1 (en) * 1994-05-13 1995-11-16 Kobe Steel Ltd Coated part used as e.g. cutting tool
DE19517120C2 (en) * 1994-05-13 1998-07-02 Kobe Steel Ltd Coated part with excellent hardness and adhesion, its use and manufacturing process
US6855405B2 (en) * 2001-06-11 2005-02-15 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
JP2007015106A (en) * 2006-10-11 2007-01-25 Hitachi Tool Engineering Ltd Multilayered film coated tool and its coating method
JP4540120B2 (en) * 2006-10-11 2010-09-08 日立ツール株式会社 Multilayer coating tool and method for coating the same
EP2031090A2 (en) 2007-08-31 2009-03-04 Union Tool Co. Hard covering film for cutting tool
JP2011504808A (en) 2007-11-16 2011-02-17 ベーレリト ゲーエムベーハー ウント コー. カーゲー. Friction stir welding tool
EP2100985A1 (en) 2008-01-31 2009-09-16 Union Tool Co. Hard film for cutting tool
US8557405B2 (en) 2009-08-04 2013-10-15 Tungaloy Corporation Coated member
JPWO2011074530A1 (en) * 2009-12-17 2013-04-25 住友電気工業株式会社 Coating rotation tool
US8978957B2 (en) 2009-12-17 2015-03-17 Sumitomo Electric Industries, Ltd. Coated rotary tool
US9780298B2 (en) 2010-09-16 2017-10-03 Kabushiki Kaisha Toshiba Magnetoresistive element
US9165585B2 (en) 2010-09-16 2015-10-20 Kabushiki Kaisha Toshiba Magnetoresistive element including a nitrogen-containing buffer layer
US9178133B2 (en) 2011-07-22 2015-11-03 Kabushiki Kaisha Toshiba Magnetoresistive element using specific underlayer material
JP2013048210A (en) * 2011-07-22 2013-03-07 Toshiba Corp Magnetic resistance element
US9640752B2 (en) 2011-07-22 2017-05-02 Kabushiki Kaisha Toshiba Magnetoresistive element
WO2013015004A1 (en) * 2011-07-22 2013-01-31 Kabushiki Kaisha Toshiba Magnetoresistive element
WO2014208068A1 (en) * 2013-06-24 2014-12-31 兼房株式会社 Method for manufacturing circular saw with hard tip
EP3015206A4 (en) * 2013-06-24 2017-01-25 Kanefusa Kabushiki Kaisha Method for manufacturing circular saw with hard tip
JPWO2014208068A1 (en) * 2013-06-24 2017-02-23 兼房株式会社 Manufacturing method of circular saw with tip
JP2015053357A (en) * 2013-09-06 2015-03-19 三菱マテリアル株式会社 Metal nitride material for thermistors, manufacturing method thereof, and thermistor sensor
RU2613837C1 (en) * 2015-12-03 2017-03-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет" "МИСиС" METHOD OF PRODUCING ION-PLASMA VACUUM-ARC CERAMETALLIC Ti-Ni COATING FOR CARBIDE CUTTING TOOL OF EXPANDED USE
KR20190043461A (en) 2017-10-18 2019-04-26 유니온쓰루 가부시키가이샤 Hard film for cutting tools and drill
CN109676179A (en) * 2017-10-18 2019-04-26 佑能工具株式会社 Cutting element hard coat and drill bit

Also Published As

Publication number Publication date
JPH0567705B2 (en) 1993-09-27
JPH08209333A (en) 1996-08-13
JPH08209332A (en) 1996-08-13
JP2644710B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPH02194159A (en) Formation of wear resistant coating film
JP2793696B2 (en) Wear resistant coating
Nakamura et al. Applications of wear-resistant thick films formed by physical vapor deposition processes
US8173278B2 (en) Coated body
US4402994A (en) Highly hard material coated articles
JP3323534B2 (en) Hard layer, workpiece coated with hard layer, and coating method
RU2456371C2 (en) Laminated system with layer of mixed crystals of multicomponent oxide
JP2638406B2 (en) Wear resistant multilayer hard film structure
JP5209960B2 (en) Hard wear-resistant coating based on aluminum nitride
JP5856148B2 (en) PVD hybrid method for depositing mixed crystal layers
JP2012505308A (en) Non-gamma phase cubic AlCrO
CN110945156A (en) Coated cutting tool and method of making same
JP3480086B2 (en) Hard layer coated cutting tool
JP4171099B2 (en) Hard film with excellent wear resistance
KR20100034013A (en) Tool with multilayered metal oxide coating and method for producing the coated tool
JP3572728B2 (en) Hard layer coated cutting tool
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP2021501701A (en) PVD method for vapor deposition of Al2O3 and coated cutting tools with at least one Al2O3 layer
JP2580330B2 (en) Wear resistant coating
JP3045184B2 (en) Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool
JP3572732B2 (en) Hard layer coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JPH07197235A (en) Member coated with wear resistant film
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP2926882B2 (en) Surface-coated hard member with excellent wear resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 16