JPH02194134A - Metal matrix composite excellent in characteristic of low friction and wear resistance - Google Patents

Metal matrix composite excellent in characteristic of low friction and wear resistance

Info

Publication number
JPH02194134A
JPH02194134A JP1000289A JP1000289A JPH02194134A JP H02194134 A JPH02194134 A JP H02194134A JP 1000289 A JP1000289 A JP 1000289A JP 1000289 A JP1000289 A JP 1000289A JP H02194134 A JPH02194134 A JP H02194134A
Authority
JP
Japan
Prior art keywords
metal
wear resistance
ceramic
matrix composite
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1000289A
Other languages
Japanese (ja)
Inventor
Toron Ron Tan
トロン ロン タン
Takanobu Nishimura
隆宣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1000289A priority Critical patent/JPH02194134A/en
Publication of JPH02194134A publication Critical patent/JPH02194134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a metal matrix composite excellent in characteristics of low friction and wear resistance by adding specific amounts of ceramic whiskers, etc., to a matrix metal, such as metals of Al, Mg, and Cu, containing specific amounts of Sn, Pb, Bi, In, etc. CONSTITUTION:A reinforcement consisting of >= at least one kind among ceramic whiskers, ceramic fibers, and ceramic grains is added by 5-40vol.% to a matrix metal consisting of 3-30wt.% of >= at least one metal element among Sn, Pb, Bi, and In and the balance >= at least one metal among Al, Mg, and Cu, Al alloy Mg alloy, or Cu alloy. By the addition of the above metal elements Sn, Pb, Bi, and In, coefficient of friction is reduced and also frictional peeling action on mating material is reduced. Further, by the incorporation of the ceramic reinforcement, wear resistance is remarkably improved. By this method, the metal matrix composite excellent in characteristics of low friction and wear resistance can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は低摩擦耐摩耗特性に帰れた金属基複合材料に係
り、特に軟質でra滑性を有する低融点金属元素を含有
した合金をマトリックスとして使用し、セラミックウィ
スカ等の強化材を均一に分散せしめた低摩擦耐摩耗特性
に優れた全1ffi基複合材料に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to a metal matrix composite material that has low friction and wear resistance properties, and in particular contains a low melting point metal element that is soft and has RA lubricity. The present invention relates to an all-1ffi-based composite material that uses the contained alloy as a matrix and uniformly disperses reinforcing materials such as ceramic whiskers, and has excellent low friction and wear resistance properties.

(従来の技術) 近年、炭化ケイ素、アルミナ等のセラミックウィスカ、
セラミックス繊維またはセラミックス粒子で強化された
金属基複合材料が新素材の1つとして注目されている。
(Prior art) In recent years, ceramic whiskers such as silicon carbide and alumina,
Metal matrix composites reinforced with ceramic fibers or ceramic particles are attracting attention as one of the new materials.

例えば耐摩耗性おJ:び高温強度に優れた硬いセラミッ
クスIIMを、マトリックス金属としてのアルミニウム
合金中に分散させたアルミニウム複合材料が、宇宙機器
、ロボット、自動車、航空機等の幅広い産業分野で普及
している。
For example, aluminum composite materials, in which IIM, a hard ceramic with excellent wear resistance and high-temperature strength, is dispersed in an aluminum alloy as a matrix metal, have become popular in a wide range of industrial fields such as space equipment, robots, automobiles, and aircraft. ing.

この他にもセラミックウィスカ、セラミックスmMもし
くはセラミックス粒子を、マグネシウム、銅やそれらの
合金で形成したマトリックス金属中に均一に分散させた
金属基複合材料も開発されている。
In addition, metal matrix composite materials have also been developed in which ceramic whiskers, ceramic mM, or ceramic particles are uniformly dispersed in a matrix metal made of magnesium, copper, or an alloy thereof.

これらの複合材料は硬度が高いセラミックス強化材を含
有しているため、耐摩耗特性が極めて優れている。
These composite materials contain ceramic reinforcements with high hardness and therefore have extremely good wear resistance properties.

一方、低摩擦係数を有する金属合金として、へオ、MO
,C1やこれらの合金で形成した母材中にSn、pb、
Bi、lnなど低融点を有し潤滑性に優れた金属元素を
添加したものも開発されている。
On the other hand, as a metal alloy with a low coefficient of friction, HEO, MO
, C1 or their alloys contain Sn, pb,
Products to which metal elements such as Bi and ln, which have low melting points and excellent lubricity are added, have also been developed.

(発明が解決しようとする課題) しかしながら硬いセラミックス強化材を含有した従来の
金属基複合材料でffi動部動部形成した場合、硬いセ
ラミックス強化材が摺動時に相手材を澹しく削り取る、
いわゆるアブレシブ摩耗が多発し、相手材の寿命を縮め
てしまう問題点がある。
(Problems to be Solved by the Invention) However, when an FFI moving part is formed using a conventional metal matrix composite material containing a hard ceramic reinforcement, the hard ceramic reinforcement scrapes away the mating material during sliding.
There is a problem that so-called abrasive wear occurs frequently and shortens the life of the mating material.

また同時に摩擦抵抗も著しく増大するため、摺動部を駆
動づる機器の負荷が増大してしまう。
At the same time, frictional resistance also increases significantly, which increases the load on the equipment that drives the sliding parts.

一方、Aオ、Ma、Cuまたはその合金中にSn、pb
、3i、lnなどの低融点金属を添加した合金材料は、
3n、pbなどの潤滑作用によって、その摩擦係数を著
しく低減することができるが、合金材料全体が軟質化す
るため、摩耗が著しく増大する欠点がある。いずれにし
ても上記合金材料を摺動部品として使用した場合には、
頻繁に部品交換を行なう必要があり、機器の保守管理が
煩雑になる欠点があった。
On the other hand, Sn, pb in A, Ma, Cu or their alloys
, 3i, ln, etc. are alloy materials added with low melting point metals.
Although the coefficient of friction can be significantly reduced by the lubricating action of 3N, PB, etc., the overall alloy material becomes soft, which has the disadvantage of significantly increasing wear. In any case, when the above alloy material is used as a sliding part,
This has the disadvantage that parts need to be replaced frequently, making maintenance management of the equipment complicated.

本発明は上記の問題点を解決するためになされたもので
あり、低F!!擦係数を有するとともに耐摩耗特性をも
併有する低摩擦耐摩耗特性に優れた金属基複合材料を提
供することを目的とする。
The present invention has been made to solve the above problems, and has a low F! ! The object of the present invention is to provide a metal matrix composite material having excellent low friction and wear resistance properties, which has a friction coefficient and wear resistance properties.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明者等は、以上の観点からマ]・リツクスとなる金
属の組成と、補強材となるセラミックスウィスカ、セラ
ミックス繊維、セラミックス粒子の種類および添加量と
、rIJ滑材となる低融点金属の種類および添加量とを
種々変えて実験を行なった結果、3n、pb、Bi、I
nから選択された少なくとも1種以上の金属元素を重量
%で3%以上30%以下含有し、残部がΔ1.Mg、C
Uから選択された少なくともIF!以上の金属もしくは
A1合金、MO合金、Cu合金から成るマトリックス金
属に、セラミックスウィスカ、セラミックス繊維および
セラミックス粒子から選択された少なくとも1種以上の
強化材が体積率で5%以上40%以下添加された金属基
複合材料が低摩擦係数と耐摩耗特性とを同時に満足する
との知見に基づいて本願発明を完成しlζbのである。
(Means and effects for solving the problem) From the above points of view, the present inventors have determined the composition of the metal that serves as the matrix, and the types and amounts of ceramic whiskers, ceramic fibers, and ceramic particles that serve as reinforcing materials. , rIJ, as a result of experiments with various types and amounts of low-melting metals used as lubricants, 3n, pb, Bi, I
Contains at least one metal element selected from n in an amount of 3% to 30% by weight, and the remainder is Δ1. Mg,C
At least IF selected from U! At least one reinforcing material selected from ceramic whiskers, ceramic fibers, and ceramic particles is added to the matrix metal consisting of the above metals, A1 alloy, MO alloy, and Cu alloy in a volume percentage of 5% to 40%. The present invention was completed based on the knowledge that a metal matrix composite material satisfies both a low coefficient of friction and wear resistance.

以下本発明の限定理由を述べる。The reasons for the limitations of the present invention will be described below.

上記金属基複合材料の成分となるSn、pb。Sn and pb are components of the metal matrix composite material.

Bi、Inはいずれも潤滑作用を有する低融点金属であ
り、金属基複合材料の摩擦係数を低下さけるために添加
される金属元素である。ただしその含有量が3%未満で
あればその効果を充分に発揮することができず、一方3
0%を超えるとマトリックス金属が軟化し摩耗損が急増
する。したがって上記低融点台風の含有量は3%以上3
0%以下に設定される。
Both Bi and In are low melting point metals that have a lubricating effect, and are metal elements added to reduce the coefficient of friction of the metal matrix composite material. However, if the content is less than 3%, the effect cannot be fully demonstrated;
When it exceeds 0%, the matrix metal becomes soft and wear loss increases rapidly. Therefore, the content of the above-mentioned low melting point typhoon is 3% or more3
Set to 0% or less.

またセラミックスウィスカ、セラミックスII、セラミ
ックス粒子番よいずれも硬度が高く、マトリックス金属
の耐摩耗性を向上させるとともに高温強度を飛躍的に向
上させるために強化材として添加される。但し71−リ
ックス金属に対り゛る強化材の添加割合が体積率で5%
未満の場合には、耐摩耗性および高温強度を向上させる
効果が充分ではない。一方、体積率が40%を超える場
合は、複合材料全体に占めるマ]・リックス金属隋が相
対的に低下し、強化材とマトリックス金属との結合強度
が逆に低下するため、その添加mは5〜40%に設定さ
れる。
Ceramic whiskers, ceramic II, and ceramic particles all have high hardness and are added as reinforcing agents to improve the wear resistance of the matrix metal and to dramatically improve high-temperature strength. However, the addition ratio of reinforcing material to 71-Rix metal is 5% by volume.
If it is less than 1, the effect of improving wear resistance and high-temperature strength will not be sufficient. On the other hand, when the volume fraction exceeds 40%, the amount of matrix metal in the entire composite material decreases, and the bonding strength between the reinforcing material and the matrix metal decreases. It is set at 5-40%.

さらにマトリックス金属として使用される八l。In addition, 8L is used as a matrix metal.

MQ、Cuはいずれも相互に固溶し熱処理によって強固
なマトリックスを形成することが可能である上に、Al
2O3繊維やSiC繊維などの強化材とのぬれ性が比較
的に良好であり、より高強度の複合材料を形成すること
ができる。
Both MQ and Cu can form a solid solution with each other and form a strong matrix by heat treatment.
It has relatively good wettability with reinforcing materials such as 2O3 fibers and SiC fibers, and can form a composite material with higher strength.

そして本発明に係る低J′!!!擦耐摩耗特性に優れた
金属基複合材料は、マトリックス原料となるAIMO,
Cu粉末またはそれらの合金粉末と、セラミックスウィ
スカ、セラミックス繊維、セラミックス粒子から選択さ
れた少なくとも1種の強化材と、潤滑成分となるSn、
pb、Bi、in粉末と、バインダーとして適毒のアル
ミナゾルとを均一に混合し、得られた混合体をホットプ
レスなどによる熱間成形加工することによって製造され
る。
And low J' according to the present invention! ! ! The metal matrix composite material with excellent abrasion resistance properties is made of AIMO, which is the matrix raw material.
Cu powder or alloy powder thereof, at least one reinforcing material selected from ceramic whiskers, ceramic fibers, and ceramic particles, Sn as a lubricating component,
It is manufactured by uniformly mixing PB, Bi, and IN powders with a suitable toxic alumina sol as a binder, and hot-forming the resulting mixture using a hot press or the like.

このように本発明に係る低摩擦耐摩耗特性に優れた金属
基複合材料によれば、r8酒作用を有するSn、Pb、
Bi、lnの金属元素が添加されているため、rI!擦
係数が大幅に低下するとともに、硬いセラミックス強化
材による相手材に対する摩剥作用が減少し、相手材の摩
耗1(!iを緩和することができる。またトラミックス
強化材を含有することにより金属基複合材料自体の耐摩
耗性も大幅に改善される。
As described above, according to the metal matrix composite material having excellent low friction and wear resistance properties according to the present invention, Sn, Pb, and
Since the metal elements Bi and ln are added, rI! The coefficient of friction is significantly reduced, and the abrasion effect of the hard ceramic reinforcement material on the mating material is reduced, making it possible to alleviate wear 1 (!i) of the mating material. Also, by containing the Tramix reinforcement The wear resistance of the base composite material itself is also significantly improved.

)なわら、低摩擦係数と耐摩耗特性とを同時に満足する
金属基複合材料を提供することができる。
), it is possible to provide a metal matrix composite material that simultaneously satisfies a low coefficient of friction and wear resistance.

(実施例) 次に本発明を以下の実施例によって説明する。(Example) Next, the present invention will be explained by the following examples.

実施例1および比較例1 まず実施例1として平均粒径が44μmの6061アル
ミニウム合金粉末と、平均径が3μmであり平均長さが
500μmのA第203繊維と平均粒(Yが5μmのS
n粉末と、バインダとしてのアルミナゾル(アルミニウ
ム水和物含有量が40重量%のもの)とを下記第1表に
示す組成割合で調合し、30分間にわたり撹拌して均一
な混合体を調製した。次に得られた混合体を黒鉛型に充
填し、111525℃で400KjIf/Diの加圧力
でホットプレス処理を行ない、金属基複合材料を製造し
た。
Example 1 and Comparative Example 1 First, as Example 1, 6061 aluminum alloy powder with an average particle size of 44 μm, A No. 203 fiber with an average diameter of 3 μm and an average length of 500 μm, and an average grain (S with Y of 5 μm) were used.
N powder and alumina sol (having an aluminum hydrate content of 40% by weight) as a binder were mixed in the composition ratio shown in Table 1 below, and stirred for 30 minutes to prepare a uniform mixture. Next, the obtained mixture was filled into a graphite mold and hot-pressed at 111525° C. and a pressure of 400 KjIf/Di to produce a metal matrix composite material.

一方、比較例として実施例1においてSn粉末を添加し
ない混合体を調製し、実施例1と同一条件でホットプレ
ス処理を行ない金属基複合材料を製造した。
On the other hand, as a comparative example, a mixture in Example 1 without the addition of Sn powder was prepared, and hot pressing was performed under the same conditions as in Example 1 to produce a metal matrix composite material.

〔以下余白〕[Margin below]

そして得られた実施例1および比較例1の金属基複合材
料の摩擦係数および摩耗減開を測定し、それぞれ第1図
および第2図に示す結果を骨だ。
The friction coefficient and wear reduction of the obtained metal matrix composite materials of Example 1 and Comparative Example 1 were measured, and the results are shown in FIGS. 1 and 2, respectively.

第1図および第2図から明らかなように実施例1に係る
金属基複合材料のS*係数は、潤滑成分であるSnを添
加していない比較例1のものと比較して半分程度に低減
され、複合材料は優れた低摩擦特性を備える。
As is clear from Figures 1 and 2, the S* coefficient of the metal matrix composite material according to Example 1 was reduced to about half that of Comparative Example 1, which did not contain Sn, which is a lubricating component. The composite material has excellent low friction properties.

しかも第2図に示すように耐摩耗特性に関しても比較例
1の複合材料と比較して摩耗域4が1/6程度に減少す
る。すむわら低摩擦係数と耐摩耗特性とを併有する優れ
た金属基複合材料が得られる。
Moreover, as shown in FIG. 2, regarding wear resistance properties, the wear area 4 is reduced to about 1/6 compared to the composite material of Comparative Example 1. An excellent metal matrix composite material having both a low coefficient of friction and wear resistance properties can be obtained.

実施例2および比較例2 また実施例2として、平均粒径44μmのMq粉末と、
強化材となる直径0.05〜1.5μm、長さ20〜2
00μmのSiCウィスカと、平均粒a!5μmのAl
2O3粒子と、平均粒径が5μmの3n粉末、pb粉末
と、バインダーとしてのアルミナゾルとを下記第2表に
示す組成割合で添加し、30分間にわたり撹拌し、均一
な混合体を調製した。次に得られた混合体を黒鉛型に充
填し、ifl!525℃で400KIf/aiの加圧力
でホットプレス処理を行ない、金属基複合材料を製造し
た。
Example 2 and Comparative Example 2 In addition, as Example 2, Mq powder with an average particle size of 44 μm,
Reinforcing material with a diameter of 0.05 to 1.5 μm and a length of 20 to 2
00μm SiC whisker and average grain a! 5 μm Al
2O3 particles, 3N powder with an average particle size of 5 μm, PB powder, and alumina sol as a binder were added in the composition ratios shown in Table 2 below, and stirred for 30 minutes to prepare a uniform mixture. Next, the obtained mixture was filled into a graphite mold, and ifl! A metal matrix composite material was produced by hot pressing at 525° C. and a pressure of 400 KIf/ai.

一方比較例2として実施例2において添加したrRM成
分sn、pb、を全(含まない混合体を調製し、実施例
2と同一条件1ホツトプレス処理を行なった。
On the other hand, as Comparative Example 2, a mixture was prepared that did not contain all of the rRM components sn and pb added in Example 2, and was subjected to hot press treatment under the same conditions as Example 2.

〔以下余白〕[Margin below]

そして得られた金属基複合材料のJ!!擦係数および摩
耗減量を実施例1および比較例1と同様に測定し、第3
図および第4図の結果を得た。
And J! of the obtained metal matrix composite material! ! The friction coefficient and abrasion loss were measured in the same manner as in Example 1 and Comparative Example 1.
The results shown in Figures and Figure 4 were obtained.

第3図〜第4図から明らかなように実施例2に係る複合
材料のr!l擦係数は、潤滑成分を全く含んでいない比
較例2のものと比較して、半分程瓜に低減され、優れた
低S擦特性が発揮されることがわかる。
As is clear from FIGS. 3 and 4, the r! It can be seen that the friction coefficient was reduced by about half that of Comparative Example 2, which did not contain any lubricating components, and excellent low S friction properties were exhibited.

同様に摩耗減量についても第4図に示すように比較例2
と比べて175程度に減少することが実証された。
Similarly, regarding the wear loss, as shown in Fig. 4, Comparative Example 2
It was demonstrated that the number decreased to about 175 compared to the previous year.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明に係る低摩擦耐摩耗特性に優れた
金属基複合材料によれば、rII滑作滑合用するSn、
pb、 Bi、lnの金属元素が添加されているため、
摩擦係数が大幅に低下するとともに、硬いセラミックス
強化材による相手材に対する摩剥作用が減少し、相手材
の摩耗損1算を緩和することができる。またセラミック
ス強化材を含有することにより金属基複合材料自体の耐
摩耗性も大幅に改善される。
As explained above, according to the metal matrix composite material having excellent low friction and wear resistance properties according to the present invention, Sn for rII sliding,
Because the metal elements of pb, Bi, and ln are added,
The coefficient of friction is significantly reduced, and the abrasion effect of the hard ceramic reinforcement material on the mating material is reduced, making it possible to reduce the wear loss of the mating material. Furthermore, by containing the ceramic reinforcing material, the wear resistance of the metal matrix composite material itself is also significantly improved.

すなわち、低摩擦係数と耐摩耗特性とを同時に満足する
金属基複合材料を提供することができる。
That is, it is possible to provide a metal matrix composite material that simultaneously satisfies a low coefficient of friction and wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のrtl擦係擦合数較し
て示すグラフ、第2図は本発明の第1の実施例の摩耗減
量を比較して示すグラフ、第3図は第2の実施例の91
M係数を比較して示すグラフ、第4図は本発明の第2の
実施例の摩耗減量を比較して示ずグラフである。
Fig. 1 is a graph comparing the number of RTL friction engagements of the first embodiment of the present invention, Fig. 2 is a graph showing a comparison of the wear loss of the first embodiment of the present invention, Fig. 3 is 91 of the second embodiment
FIG. 4 is a graph showing a comparison of the M coefficients, and FIG. 4 is a graph showing a comparison of the wear loss of the second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  Sn、Pb、Bi、Inから選択された少なくとも1
種以上の金属元素を重量%で3%以上30%以下含有し
、残部がAl、Mg、Cuから選択された少なくとも1
種以上の金属もしくはAl合金、Mg合金、Cu合金か
ら成るマトリックス金属に、セラミックスウィスカ、セ
ラミックス繊維およびセラミックス粒子から選択された
少なくとも1種以上の強化材が体積率で5%以上40%
以下添加されたことを特徴とする低摩擦耐摩耗特性に優
れた金属基複合材料。
At least one selected from Sn, Pb, Bi, and In
At least one metal element containing at least 3% by weight and 30% or less by weight, with the balance being selected from Al, Mg, and Cu.
At least one reinforcing material selected from ceramic whiskers, ceramic fibers, and ceramic particles is added to a matrix metal consisting of at least one metal or an Al alloy, a Mg alloy, or a Cu alloy in a volume percentage of 5% or more and 40%.
A metal matrix composite material with excellent low friction and wear resistance characteristics, characterized by the addition of the following:
JP1000289A 1989-01-20 1989-01-20 Metal matrix composite excellent in characteristic of low friction and wear resistance Pending JPH02194134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1000289A JPH02194134A (en) 1989-01-20 1989-01-20 Metal matrix composite excellent in characteristic of low friction and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1000289A JPH02194134A (en) 1989-01-20 1989-01-20 Metal matrix composite excellent in characteristic of low friction and wear resistance

Publications (1)

Publication Number Publication Date
JPH02194134A true JPH02194134A (en) 1990-07-31

Family

ID=11738211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1000289A Pending JPH02194134A (en) 1989-01-20 1989-01-20 Metal matrix composite excellent in characteristic of low friction and wear resistance

Country Status (1)

Country Link
JP (1) JPH02194134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355016A (en) * 1999-09-13 2001-04-11 Daido Metal Co Copper sliding bearing alloy
KR20010091694A (en) * 2000-03-17 2001-10-23 박성범 Aluminum powder and alloy powder break lining and manufacturing method thereof
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
CN108754358A (en) * 2018-05-29 2018-11-06 江苏理工学院 A kind of low temperature resistant Al alloy composite and preparation method thereof
JP2019131857A (en) * 2018-01-31 2019-08-08 国立研究開発法人物質・材料研究機構 Mg-BASED COMPOSITE MATERIAL, MANUFACTURING METHOD THEREFOR, AND SLIDE MEMBER

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355016A (en) * 1999-09-13 2001-04-11 Daido Metal Co Copper sliding bearing alloy
GB2355016B (en) * 1999-09-13 2002-08-07 Daido Metal Co Sliding material of copper alloy
KR20010091694A (en) * 2000-03-17 2001-10-23 박성범 Aluminum powder and alloy powder break lining and manufacturing method thereof
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
US9657777B2 (en) 2007-01-05 2017-05-23 Federal-Mogul Llc Wear resistant lead free alloy bushing and method of making
JP2019131857A (en) * 2018-01-31 2019-08-08 国立研究開発法人物質・材料研究機構 Mg-BASED COMPOSITE MATERIAL, MANUFACTURING METHOD THEREFOR, AND SLIDE MEMBER
CN108754358A (en) * 2018-05-29 2018-11-06 江苏理工学院 A kind of low temperature resistant Al alloy composite and preparation method thereof

Similar Documents

Publication Publication Date Title
US4834810A (en) High modulus A1 alloys
US20070218320A1 (en) Metal matrix composites of aluminium, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
JPH02194134A (en) Metal matrix composite excellent in characteristic of low friction and wear resistance
EP0366134B1 (en) Aluminum alloy useful in powder metallurgy process
US7160503B2 (en) Metal matrix composites of aluminum, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
JPS6341968B2 (en)
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH08291834A (en) Friction material
US3306715A (en) Friction material composition
JP2000345141A (en) Sintered metallic friction material
JPH08284990A (en) Metallic friction material
JP2000345140A (en) Metallic friction material
JPH0421735A (en) Aluminum series bearing alloy
JPH09222143A (en) Manufacture of flake graphite added sintered friction material
USRE34262E (en) High modulus Al alloys
JP2661149B2 (en) Deep drawing die for Al and Al alloy material
JPH04332A (en) Spiral parts material for scroll compressor
JPH05132734A (en) Composite material having wear resistance and corrosion resistance
JP2000355685A (en) Friction material
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JPH08319530A (en) Composite material with high wear resistance and corrosion resistance
JPH07247488A (en) Self-lubricating composite material
JPS6220148B2 (en)