JPH02193054A - Enzyme electrode with flow cell - Google Patents

Enzyme electrode with flow cell

Info

Publication number
JPH02193054A
JPH02193054A JP1012273A JP1227389A JPH02193054A JP H02193054 A JPH02193054 A JP H02193054A JP 1012273 A JP1012273 A JP 1012273A JP 1227389 A JP1227389 A JP 1227389A JP H02193054 A JPH02193054 A JP H02193054A
Authority
JP
Japan
Prior art keywords
electrode
enzyme
contact
flow cell
enzyme electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012273A
Other languages
Japanese (ja)
Inventor
Koichi Takizawa
滝澤 耕一
Satoshi Nakajima
聡 中嶋
Masato Arai
真人 荒井
Hideki Endo
英樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP1012273A priority Critical patent/JPH02193054A/en
Publication of JPH02193054A publication Critical patent/JPH02193054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To achieve a reduction in cost and a stabilization of an electrode output by arranging a sample passing in contact with an immobilized enzyme membrane of an enzyme electrode and a contact terminal in contact with a contact section of the enzyme electrode in such a manner as to be tight on the enzyme electrode supported on a support member. CONSTITUTION:An enzyme electrode 10 is mounted to the underside 11a of a lid 11 through a silicone sheet 12. A sample passage 14 is formed on a flow cell 13 and tube lines 17a and 17b are connected to both ends thereof respective ly. The passage 14 is exposed to the top surface 13a of the cell 13 while a contact terminal 15 is provided. Then, the flow cell 13 is put together with an acrylic plate 11 and a contact device 18 is mounted on side rims of the both. The acrylic plate 11 and the cell 13 are put tight by a force of a plate spring 19 of the contact device 18. Here, the enzyme electrode 10 gets tight on the top surface 13a of the cell so that an exposed part of the passage 14 comes in contact with an immobilized enzyme membrane 6. The terminal 15 is pressed on contact parts 3b and 4b of the electrode 10 to let a lead 16 conduct to a working electrode 3a and a reference electrode 4a.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、フローセルを備えた酵素電極に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to an enzyme electrode equipped with a flow cell.

(ロ)従来の技術 従来のフローセル付き酵素電極を、第10図に示す。こ
の酵素電極は、外ケース41、フローセル44、キャッ
プ4日とにより構成される。外ケース41は、作用電極
42及び対照電極43とを備えており、作用電極42に
は丸棒状(例えば直径0.7mm)の白金、対照電極4
3には、円筒状(例えば内径2IIlI11、外径6m
m)の銀がそれぞれ使用され、これらが同軸状に配され
ている。これら作用電極42及び対照電極43は、それ
ぞれの端面が外ケース41の凸面41aに露出している
(b) Prior Art A conventional enzyme electrode with a flow cell is shown in FIG. This enzyme electrode is composed of an outer case 41, a flow cell 44, and a cap. The outer case 41 is equipped with a working electrode 42 and a reference electrode 43.
3 has a cylindrical shape (for example, inner diameter 2IIlI11, outer diameter 6m)
m) are used, and these are arranged coaxially. The end surfaces of the working electrode 42 and the control electrode 43 are exposed on the convex surface 41a of the outer case 41.

一方、フローセル44には、試料が流れる試料流路45
が形成されている。この試料流路45は、フローセル4
4の凹面44aに露出している。フローセル44には、
凹面44aを覆うように固定化酵素膜46が装着され、
0リング47により固定されている。
On the other hand, the flow cell 44 includes a sample channel 45 through which the sample flows.
is formed. This sample channel 45 is connected to the flow cell 4
It is exposed on the concave surface 44a of No. 4. In the flow cell 44,
An immobilized enzyme membrane 46 is attached to cover the concave surface 44a,
It is fixed by an O ring 47.

フローセル44は、キャップ48により外ケース41に
取付けられる。この時、外ケース凸面41aがフローセ
ル凹面44aに嵌まり、固定化酵素膜46が作用電極4
2及び対照電極43に密着する。この状態で試料を試料
流路45内に流すと共に、作用電極42、対照電極43
間に所定の電圧を印加すれば、試料中の基質濃度に比例
した電流(電極出力)が得られる。
Flow cell 44 is attached to outer case 41 by cap 48 . At this time, the outer case convex surface 41a fits into the flow cell concave surface 44a, and the immobilized enzyme membrane 46 is attached to the working electrode 4.
2 and the reference electrode 43. In this state, the sample is allowed to flow into the sample channel 45, and the working electrode 42 and the reference electrode 43
By applying a predetermined voltage between them, a current (electrode output) proportional to the substrate concentration in the sample can be obtained.

(ハ)発明が解決しようとする課題 上記従来のフローセル付き酵素電極では、以下に列挙す
る問題点を有している。
(c) Problems to be Solved by the Invention The above-mentioned conventional enzyme electrode with a flow cell has the following problems.

■固定化酵素膜46をOリング47で固定するため、固
定化酵素膜46の脱着が煩雑で、交換時に固定化酵素膜
46が破損してしまう。この問題点を解決するために、
固定化酵素膜46が予め装着されたフロ−セル44全体
を交換することも考えられるが、フローセル44はFJ
、雑な構造の部材であるから、ツーセルの使い捨ては大
幅なコスト上昇を生じさせる。
(2) Since the immobilized enzyme membrane 46 is fixed with an O-ring 47, it is complicated to attach and detach the immobilized enzyme membrane 46, and the immobilized enzyme membrane 46 will be damaged during replacement. In order to solve this problem,
It is also conceivable to replace the entire flow cell 44 on which the immobilized enzyme membrane 46 is attached in advance, but the flow cell 44 is
Since it is a member with a crude structure, disposable two cells will cause a significant increase in cost.

■外ケース41とフローセル44の脱着を繰返すと、や
はり固定化酵素1f16の破損を生じる。
(2) If the outer case 41 and the flow cell 44 are repeatedly attached and detached, the immobilized enzyme 1f16 will be damaged.

■フローセル凹面44aよりもさらに大きな固定化酵素
膜46(例えば直径15+M以上)を必要とするが、実
際に酵素反応に必要な部分は試料流路45に対応する部
分だけであり、効率が悪く固定化酵素膜46が高価なも
のとなる。
■Although it requires an immobilized enzyme membrane 46 that is larger than the flow cell concave surface 44a (for example, diameter 15+M or more), the only part actually required for the enzyme reaction is the part corresponding to the sample flow path 45, and the immobilization is inefficient. The converting enzyme membrane 46 becomes expensive.

■固定化酵素膜46と電極42・43との密着性が悪く
両者の間に間隙が生じやすい。このため電極出力にノイ
ズが見られ、測定精度が低下してしまう。また、この密
着性は装着のたびごとに異なるから、電極出力が変動し
再現性が低下してしまう。
(2) The adhesion between the immobilized enzyme membrane 46 and the electrodes 42 and 43 is poor, and gaps are likely to form between them. For this reason, noise is seen in the electrode output, reducing measurement accuracy. Furthermore, since this adhesion differs each time it is worn, the electrode output fluctuates and reproducibility decreases.

■固定化酵素膜46とフローセル44との間で試料流路
45より試料が流出することがあり、測定精度が低下す
る。
(2) The sample may flow out from the sample channel 45 between the immobilized enzyme membrane 46 and the flow cell 44, resulting in a decrease in measurement accuracy.

■外ケース凸面4taとフローセル凹面44aが一部す
るように製造するためには、高度な技?、テををし、加
工費が増大する。
■In order to manufacture the outer case convex surface 4ta and the flow cell concave surface 44a partially, it is necessary to use advanced techniques. , and the processing cost increases.

■複数項目の同時測定が困難である。■It is difficult to measure multiple items simultaneously.

この発明は上記に鑑みなされたもので、■〜■の問題点
を解決できるフローセル付き酵素電極の提供を目的とし
ている。
This invention was made in view of the above, and aims to provide an enzyme electrode with a flow cell that can solve the problems (1) to (3).

(ニ)課題を解決するための手段及び作用上記課題を解
決するため、この発明のフローセル付き酵素電極は、絶
縁基板上に電極と、この電極を被覆する固定化酵素膜と
を形成し、電極の一部を露出させて接点部としてなる酵
素電極と、この酵素電極を支持する支持部材と この支持部材上に支持された酵素電極に密着し、この酵
素電極の固定化酵素膜に接する試料流路と、酵素電極の
接点部に接触する接点端子とを備えてなるフローセル部
材と、 このフローセル部材と前記支持部材の密着状態を保持す
る密着手段とよりなるものである。
(d) Means and action for solving the problems In order to solve the above problems, the enzyme electrode with a flow cell of the present invention has an electrode formed on an insulating substrate and an immobilized enzyme membrane covering the electrode. An enzyme electrode with a part exposed to serve as a contact part, a support member that supports this enzyme electrode, and a sample flow that is in close contact with the enzyme electrode supported on this support member and in contact with the immobilized enzyme membrane of this enzyme electrode. and a flow cell member comprising a contact terminal that contacts a contact portion of an enzyme electrode; and a contact means for maintaining the flow cell member and the support member in close contact.

この発明では、酵素電極が平板状で固定化酵素膜が一体
的に形成されている。このため固定化酵素膜の装着の手
間が不要となり、固定化酵素膜を破損する危険性が少な
い。また、酵素電極自体が小型で、固定化酵素膜も電極
を被覆する大きさだけがあればよく、酵素の効率がよく
安価であり、使い捨ても可能となる。さらに、固定化酵
素膜と電極との密着が安定しており、電極出力の安定及
び低ノイズ化を図ることができる。
In this invention, the enzyme electrode is flat and the immobilized enzyme membrane is integrally formed. This eliminates the need to attach the immobilized enzyme membrane and reduces the risk of damaging the immobilized enzyme membrane. In addition, the enzyme electrode itself is small, and the immobilized enzyme membrane only needs to be large enough to cover the electrode, making the enzyme efficient, inexpensive, and disposable. Furthermore, the adhesion between the immobilized enzyme membrane and the electrode is stable, making it possible to stabilize the electrode output and reduce noise.

酵素電極は上にも述べたように平板状であり、フローセ
ル部材と支持部材の密着面は共に平面とすることができ
るから、酵素電極のフローセル部材への密着を完全にし
試料流路よりの試料の漏れが防止できると共に、フロー
セル部材、支持部材の加工が容易となる。また、上記密
着面に複数の酵素電極が配置できるから、複数項目の測
定も容易となる。
As mentioned above, the enzyme electrode has a flat plate shape, and the contact surfaces of the flow cell member and the support member can both be flat, so that the enzyme electrode can be completely contacted with the flow cell member and the sample from the sample flow path can be made flat. In addition to preventing leakage, processing of the flow cell member and support member becomes easy. Furthermore, since a plurality of enzyme electrodes can be arranged on the contact surface, measurement of a plurality of items becomes easy.

(ホ)実施例 〈実施例1〉 この発明の第1の実施例を第1図乃至第5図に基づいて
以下に説明する。
(e) Example (Example 1) A first example of the present invention will be described below based on FIGS. 1 to 5.

まず、第5図を参照しながら酵素電極10を説明する。First, the enzyme electrode 10 will be explained with reference to FIG.

2は、絶縁基板であり、例えば厚さ0.125mmのプ
ラスチックフィルムが使用される。絶縁基板2表面には
、電極材3.4がスパッタリングや真空蒸着等により薄
膜形成されており、この実施例では電極材3.4として
白金(Pt)を使用している。
2 is an insulating substrate, for example, a plastic film with a thickness of 0.125 mm is used. A thin film of electrode material 3.4 is formed on the surface of the insulating substrate 2 by sputtering, vacuum deposition, etc., and in this embodiment, platinum (Pt) is used as the electrode material 3.4.

絶縁基板2表面には、電極材3.4を被覆するように絶
縁性保31rfi、5が形成される。この絶縁性保護膜
5には、感光性樹脂が使用されホトリソグラフィを適用
してバターニングし、電極材3.4の2つの部分をそれ
ぞれ露出させて作用電極3a、対照電極4a、接点部3
b、4bとする。
An insulating layer 31rfi, 5 is formed on the surface of the insulating substrate 2 so as to cover the electrode material 3.4. This insulating protective film 5 is made of a photosensitive resin, which is patterned using photolithography to expose the two parts of the electrode material 3.4, the working electrode 3a, the reference electrode 4a, and the contact part 3.
b, 4b.

絶縁基板2表面には、さらに固定化酵素膜6が形成され
、作用電極3a、対照電極4aが被覆される。固定化酵
素膜6は、まずアセチルセルロース膜6aをスピン法で
形成し、作用電極3a上・に酵素溶液6bを滴下して風
乾させ、さらにアセチルセルロース膜6cをスピン法で
形成してなるものである。酵素溶液は、例えばグルコー
スオキシダーゼ(COD)の場合には、COD 2 m
gを0.1Mリン酸援衝液(pH7,0)100afに
溶解したものを、同じ緩衝液で調製した0、5%グルタ
ルアルデヒド溶液とを混合したものを用いる。
An immobilized enzyme film 6 is further formed on the surface of the insulating substrate 2, covering the working electrode 3a and the control electrode 4a. The immobilized enzyme membrane 6 is formed by first forming an acetylcellulose membrane 6a by a spin method, dropping an enzyme solution 6b onto the working electrode 3a and air drying it, and then forming an acetylcellulose membrane 6c by a spin method. be. For example, in the case of glucose oxidase (COD), the enzyme solution is COD 2 m
g dissolved in 100af of 0.1M phosphate buffer (pH 7,0) and mixed with 0.5% glutaraldehyde solution prepared in the same buffer.

さて、第1図は、この第1の実施例に係るフローセル付
き酵素電極1の分解斜視図である。
Now, FIG. 1 is an exploded perspective view of an enzyme electrode 1 with a flow cell according to the first embodiment.

11は、アクリル板(支持部材)であり、この第1図で
は裏返した状態で示されている。蓋板11の下面11a
には、シリコンシート〔例えば厚さ0.13mmの5I
LASTIC(登録商標)シー)ティング・ダウ、コー
ニング社製が使用される)12を介して、上記酵素電極
1が装着される。シリコンシート12は弾性を有してお
り、アクリル板11と酵素電極10との密着性を高める
Reference numeral 11 denotes an acrylic plate (supporting member), which is shown upside down in FIG. Lower surface 11a of cover plate 11
For example, a silicone sheet [for example, 5I with a thickness of 0.13 mm] is used.
The enzyme electrode 1 is attached via a LASTIC (registered trademark) sheeting dow (made by Corning Inc.) 12. The silicone sheet 12 has elasticity and enhances the adhesion between the acrylic plate 11 and the enzyme electrode 10.

一方、フローセル13には、試料流路14が形成されて
おり、その両端部にはチューブライン17a、17bが
それぞれ接続される。フローセル上面13aには、この
試料流路14が露出すると共に、接点金具(接点端子)
15.15が設けられている。接点金具15.15から
は、リード線16が引出されている。18.18は、そ
れぞれ密着具であり、その凹溝18a、18a内には板
バネI9、!9がそれぞれ設けられている。
On the other hand, a sample channel 14 is formed in the flow cell 13, and tube lines 17a and 17b are connected to both ends of the sample channel 14, respectively. The sample channel 14 is exposed on the upper surface 13a of the flow cell, and a contact fitting (contact terminal)
15.15 is provided. A lead wire 16 is drawn out from the contact fitting 15.15. 18. 18 is a contact tool, and inside the grooves 18a, 18a are plate springs I9, ! 9 are provided respectively.

第2図は、この実施例フローセル付き酵素電極1を組立
てた状態の外観斜視図、第3図は、この状態での縦断面
図を示している。この状態では、アクリル板11とフロ
ーセル13とが合わされ、両者側縁11b、13bに密
着具18が装着されている。密着具18の板バネ19の
力により、アクリル板11とフローセル13が密着させ
られる。
FIG. 2 is a perspective view of the assembled state of the flow cell-equipped enzyme electrode 1 of this embodiment, and FIG. 3 is a longitudinal cross-sectional view of this state. In this state, the acrylic plate 11 and the flow cell 13 are put together, and the contact tool 18 is attached to the side edges 11b and 13b of both. The acrylic plate 11 and the flow cell 13 are brought into close contact with each other by the force of the leaf spring 19 of the contact tool 18.

この時、酵素電極IOがフローセル上面13aに密着し
、試料流路14の露出部が固定化酵素膜6に接する。一
方、酵素電極10の接点部3b、4bには、接点端子1
5.15が圧接し、リード線16と、作用電極3a、対
照電極4aとの導道がとられる。
At this time, the enzyme electrode IO is in close contact with the upper surface 13a of the flow cell, and the exposed portion of the sample channel 14 is in contact with the immobilized enzyme membrane 6. On the other hand, contact terminals 1
5.15 are brought into pressure contact, and a conductive path is established between the lead wire 16, the working electrode 3a, and the reference electrode 4a.

第4図は、実施例フローセル付き酵素電極rを用いた測
定システムを示している。リード線16は、測定機器2
1に接続され、作用電極3a、対照電極4a間に所定の
電圧(この実施例の場合には0.55V〜0.8V)が
印加されて、電極出力が測定される。
FIG. 4 shows a measurement system using an enzyme electrode r with an embodiment flow cell. The lead wire 16 is connected to the measuring device 2
1, a predetermined voltage (0.55V to 0.8V in this example) is applied between the working electrode 3a and the reference electrode 4a, and the electrode output is measured.

チューブライン17aは、リン酸緩衝液(0,1M、p
H7,0)容器22又は試料容器23に接続できる。一
方、チューブライン17bは、ミニポンプ24に接続さ
れ、リン酸緩衝液又は試料がフローセル13の試料流路
14を通って、このミニポンプ24に吸引される。ミニ
ポンプ24より排出されたリン酸緩衝液又は試料は、廃
液ボトル25へ導かれる。
The tube line 17a contains phosphate buffer (0.1M, p
H7,0) Can be connected to container 22 or sample container 23. On the other hand, the tube line 17b is connected to a mini-pump 24, and the phosphate buffer or sample passes through the sample channel 14 of the flow cell 13 and is sucked into the mini-pump 24. The phosphate buffer or sample discharged from the mini pump 24 is guided to a waste liquid bottle 25.

試料が試料流路14内を流れる時、固定化酵素膜6に接
触する。固定化酵素膜6内では、の反応が生じ、生成し
た1120□濃度に応じた電極出力が得られる。この電
極出力に後述の第9図に示す検量線を適用し、試料中の
グルコース濃度を知ることができる。
When the sample flows through the sample channel 14, it comes into contact with the immobilized enzyme membrane 6. A reaction occurs within the immobilized enzyme membrane 6, and an electrode output corresponding to the generated 1120□ concentration is obtained. By applying a calibration curve shown in FIG. 9, which will be described later, to this electrode output, the glucose concentration in the sample can be determined.

〈実施例2〉 この発明の第2の実施例を、第6図乃至第9図に基づい
て以下に説明する。
<Example 2> A second example of the present invention will be described below based on FIGS. 6 to 9.

この第2の実施例に係るフローセル付き酵素電極30は
、グルコースとシェフロース(蔗IN)の2つの項目の
測定に適用されるものであり、前述のCODを用いた酵
素電極lOと、インベルターゼ、ムタロターゼ及びCO
Dの三種の酵素を用いた同様の酵素電極10’を使用す
る。
The enzyme electrode 30 with a flow cell according to the second embodiment is applied to the measurement of two items, glucose and chefulose (potato IN), and includes the enzyme electrode IO using the above-mentioned COD, invertase, Mutarotase and CO
A similar enzyme electrode 10' using three types of enzymes in D is used.

第6図は、実施例フローセル付き酵素電極30の分解斜
視図であり、アクリル板(支持部材)31の上下を裏返
して示している。アクリル板下面31aには、シリコン
シート32を介して酵素電極10.10°が並べて装着
される。
FIG. 6 is an exploded perspective view of the enzyme electrode 30 with a flow cell according to the embodiment, and shows the acrylic plate (supporting member) 31 upside down. Enzyme electrodes 10.10° are attached to the lower surface 31a of the acrylic plate with a silicone sheet 32 interposed therebetween.

一方、フローセル33には、アクリル板31が嵌合する
凹部33aが形成される。この凹部33aの面33b内
には、試料流路34が露出すると共に、2対の接点金具
35、・・・ 35が設けられ、リード線36が接続さ
れる。試料流路34は、フローセル側面33c、33c
において、チューブライン37a、37bが接続される
。また、接点金具35、・・・、35には、リード線3
6が電気的に接続している。フローセル上面33dには
、固定具(密着手段)39取り付は用ねじ38.38が
螺入されている。
On the other hand, the flow cell 33 is formed with a recess 33a into which the acrylic plate 31 is fitted. In the surface 33b of the recess 33a, the sample flow path 34 is exposed, and two pairs of contact fittings 35, . . . , 35 are provided, to which a lead wire 36 is connected. The sample channel 34 is connected to the flow cell side surfaces 33c, 33c.
At this point, tube lines 37a and 37b are connected. In addition, the contact fittings 35, . . . , 35 have lead wires 3
6 is electrically connected. Screws 38 and 38 for attaching a fixture (closing means) 39 are screwed into the upper surface 33d of the flow cell.

第7図は、実施例フローセル付き酵素電極30を組立て
た状態での外観斜視図、第8図は、その縦断面図である
。アクリル板31は、フローセル凹部33aに嵌合し、
固定具39で押さえ付けられ、フローセル33に固定さ
れる。この時、第8図に示すように酵素電極10.10
”が面33bに密着し、酵素電極10、lOoのそれぞ
れの固定化酵素膜6.6”が試料流B34の露出部を覆
う。また、接点金具35、・・・ 35が酵素電極10
、lO”の接点部3b、4b、3° b、4° bにそ
れぞれ接触し、酵素電極10.10゛がリード線36に
導通する。
FIG. 7 is a perspective view of the assembled enzyme electrode 30 with a flow cell according to the embodiment, and FIG. 8 is a longitudinal sectional view thereof. The acrylic plate 31 fits into the flow cell recess 33a,
It is pressed down with a fixture 39 and fixed to the flow cell 33. At this time, as shown in FIG.
" is in close contact with the surface 33b, and each of the immobilized enzyme membranes 6.6" of the enzyme electrode 10 and lOo covers the exposed portion of the sample flow B34. In addition, the contact fittings 35, . . . 35 are the enzyme electrodes 10.
, lO'' contact portions 3b, 4b, 3°b, and 4°b, respectively, and the enzyme electrodes 10 and 10'' are electrically connected to the lead wire 36.

このフローセル付き酵素膜i30も、第4図に示すもの
と全く同様の測定システムを適用することができる。両
酵素電極10.10″には、それぞれ0.55〜0.8
vの電圧が印加される。なお、試料流路中央部34aに
おいて、酵素電極10.10“のいずれにも覆われない
開放した部分があり、この部分により試料が漏れるおそ
れがあるように第8図では見られるが、実際には酵素電
極10.10″は極めて薄いものであり(第3図、第5
図、第8図では、酵素電極の厚さが誇張して描かれてい
る)。また、試料流路34内の試料は、ミニポンプ24
に引かれて流動するので、試料が漏れることはまずない
A measurement system completely similar to that shown in FIG. 4 can be applied to this enzyme membrane i30 with a flow cell. Both enzyme electrodes 10.10″ each have 0.55 to 0.8
A voltage of v is applied. In addition, in the center part 34a of the sample flow path, there is an open part that is not covered by any of the enzyme electrodes 10, 10'', and although it can be seen in FIG. 8 that there is a risk of the sample leaking due to this part, in reality The enzyme electrode 10.10'' is extremely thin (Fig. 3, 5).
In FIG. 8, the thickness of the enzyme electrode is exaggerated). In addition, the sample in the sample flow path 34 is transferred to the mini pump 24.
The sample is unlikely to leak because it is attracted by the fluid and flows.

さて、酵素電極10の固定化酵素膜6内では、前述の(
1)式で表される反応が起こり、電極出力に第9図の検
量線を適用して、試料のグルコース濃度を知ることがで
きる。
Now, within the immobilized enzyme membrane 6 of the enzyme electrode 10, the above-mentioned (
1) The reaction expressed by the formula occurs, and by applying the calibration curve of FIG. 9 to the electrode output, the glucose concentration of the sample can be determined.

一方、酵素電極10°の固定化酵素膜6°内では、以下
の(2)〜(4)式で表される反応が生じる。
On the other hand, within 6 degrees of the immobilized enzyme membrane of 10 degrees of the enzyme electrode, reactions expressed by the following formulas (2) to (4) occur.

α−D−グルコース+フルクトース ・・・(2)α−
D−グルコース ムクロターゼ β−D−グルコース  ・・・(3) β−D−グルコース OD グルコン酸+H20□  ・・・(4)(4)式で生成
するti 2o□の濃度に応じた電極出力が酵素電極1
0°で得られる。しかし、(4)式の反応に関与するグ
ルコースには、(2)(3)式の反応で生成したものだ
けではなく、試料中に初めから含まれているものも含ま
れる。従って、酵素電極10’の電極出力より、酵素電
極10の電極出力を減じた電極出力差が、試料中のシュ
クロース濃度に対応する。第9図中には、電極出力差に
対するシュクロース濃度の検量線が示されている。
α-D-glucose + fructose ... (2) α-
D-glucose mucrotase β-D-glucose ... (3) β-D-glucose OD gluconic acid + H20□ ... (4) The electrode output according to the concentration of ti2o□ generated by the formula (4) is Enzyme electrode 1
Obtained at 0°. However, the glucose involved in the reaction of formula (4) includes not only that produced in the reaction of formulas (2) and (3), but also glucose that is originally contained in the sample. Therefore, the electrode output difference obtained by subtracting the electrode output of the enzyme electrode 10 from the electrode output of the enzyme electrode 10' corresponds to the sucrose concentration in the sample. FIG. 9 shows a calibration curve of sucrose concentration versus electrode output difference.

(へ)発明の詳細 な説明したように、この発明のフローセル付き酵素電極
は、絶!!基板上に電極と、この電極を被覆する固定化
酵素膜とを形成し、電極の一部を露出させて接点部とし
てなる酵素電極と、この酵素電極を支持する支持部材と
この支持部材上に支持された酵素電極に密着し、この酵
素電極の固定化酵素膜に接する試料流路と、酵素電極の
接点部に接触する接点端子とを備えてなるフローセル部
材と、このフローセル部材と前記支持部材の密着を保持
する密着手段とよりなるものである。
(to) As explained in detail, the enzyme electrode with a flow cell of this invention is absolutely perfect! ! An electrode and an immobilized enzyme membrane covering this electrode are formed on a substrate, and a part of the electrode is exposed to serve as a contact part, an enzyme electrode, a support member that supports this enzyme electrode, and a support member that is placed on this support member. A flow cell member comprising a sample channel that closely contacts a supported enzyme electrode and an immobilized enzyme membrane of the enzyme electrode, and a contact terminal that contacts a contact portion of the enzyme electrode; the flow cell member and the support member; and an adhesion means for maintaining adhesion.

よって、酵素電極のコストを低減し、その使い捨てを可
能とすると共に、固定化酵素膜の脱着の必要がなくその
破損を防止することができる。また、電極と固定化酵素
膜との密着性が向上かつ安定化し、電極出力の低ノイズ
化及び安定化が図られ、測定精度及び再現性を向上させ
ることが可能となる。さらに、フローセル部材に特殊な
加工が要求されず、加工費の増大がおさえられると共に
、試料の漏れも防止される。加えて、複数項目の測定も
容易に行うことができる。
Therefore, the cost of the enzyme electrode can be reduced, it can be made disposable, and there is no need to detach the immobilized enzyme membrane, thereby preventing its damage. In addition, the adhesion between the electrode and the immobilized enzyme membrane is improved and stabilized, the noise of the electrode output is reduced and stabilized, and measurement accuracy and reproducibility can be improved. Furthermore, no special processing is required for the flow cell member, which reduces processing costs and prevents sample leakage. In addition, multiple items can be easily measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の第1の実施例に係るフローセル付
き酵素電極の分解斜視図、第2図は、同フローセル付き
酵素電極の外観斜視図、第3図は、同フローセル付き酵
素電極の縦断面図、第4図は、同フローセル付き酵素電
極の適用される測定システムを説明する図、第5図(a
)は、同フローセル付き酵素電極に適用される酵素電極
の平面図、第5図(b)及び第5図(C)は、それぞれ
同酵素電極の第5図(a)中B−B線、C−C線におけ
る断面図、第6図は、この発明の第2の実施例に係るフ
ローセル付き酵素電極の分解斜視図、第7図は、同フロ
ーセル付き酵素電極の外観斜視図、第8図は、同フロー
セル付き酵素電極の縦断面図、第9図は、同フローセル
付き酵素電極のグルコース及びシュクロースの検量線を
説明する図、第10図は、従来のフローセル付き酵素電
極を説明する図である。 2:絶縁基板、   3a:作用電極、4a:対照電極
、 3b・4b・3’  b・4° b:接点部、6・6°
 :固定化酵素膜、 10・10゛ :酵素電極、 11・31ニアクリル板、 13・33:フローセル、 14・34:試料流量、15・35:接点金具、18:
密着具、   39:固定具。
FIG. 1 is an exploded perspective view of an enzyme electrode with a flow cell according to the first embodiment of the present invention, FIG. 2 is an external perspective view of the enzyme electrode with a flow cell, and FIG. 3 is an exploded perspective view of the enzyme electrode with a flow cell. A vertical cross-sectional view, FIG. 4 is a diagram illustrating a measurement system to which the enzyme electrode with flow cell is applied, and FIG.
) is a plan view of the enzyme electrode applied to the enzyme electrode with flow cell, and FIG. 5(b) and FIG. 5(C) are the BB line in FIG. 5(a) of the enzyme electrode, respectively. 6 is an exploded perspective view of an enzyme electrode with a flow cell according to a second embodiment of the present invention; FIG. 7 is an external perspective view of the enzyme electrode with a flow cell; FIG. 9 is a diagram illustrating the calibration curves of glucose and sucrose for the enzyme electrode equipped with a flow cell, and FIG. 10 is a diagram illustrating a conventional enzyme electrode equipped with a flow cell. It is. 2: Insulating substrate, 3a: Working electrode, 4a: Control electrode, 3b, 4b, 3' b, 4° b: Contact part, 6, 6°
: Immobilized enzyme membrane, 10/10゛: Enzyme electrode, 11/31 Niacrylic plate, 13/33: Flow cell, 14/34: Sample flow rate, 15/35: Contact fitting, 18:
Adhering tool, 39: Fixing tool.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に電極と、この電極を被覆する固定化
酵素膜とを形成し、電極の一部を露出させて接点部とし
てなる酵素電極と、 この酵素電極を支持する支持部材と この支持部材上に支持された酵素電極に密着し、この酵
素電極の固定化酵素膜に接する試料流路と、酵素電極の
接点部に接触する接点端子とを備えてなるフローセル部
材と、 このフローセル部材と前記支持部材の密着状態を保持す
る密着手段とよりなるフローセル付き酵素電極。
(1) An enzyme electrode formed by forming an electrode and an immobilized enzyme membrane covering the electrode on an insulating substrate and exposing a part of the electrode to serve as a contact part; a support member supporting the enzyme electrode; A flow cell member comprising: a sample channel that is in close contact with an enzyme electrode supported on a support member and in contact with an immobilized enzyme membrane of the enzyme electrode; and a contact terminal that is in contact with a contact portion of the enzyme electrode; and a contact means for maintaining the contact state of the support member.
JP1012273A 1989-01-21 1989-01-21 Enzyme electrode with flow cell Pending JPH02193054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012273A JPH02193054A (en) 1989-01-21 1989-01-21 Enzyme electrode with flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012273A JPH02193054A (en) 1989-01-21 1989-01-21 Enzyme electrode with flow cell

Publications (1)

Publication Number Publication Date
JPH02193054A true JPH02193054A (en) 1990-07-30

Family

ID=11800759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012273A Pending JPH02193054A (en) 1989-01-21 1989-01-21 Enzyme electrode with flow cell

Country Status (1)

Country Link
JP (1) JPH02193054A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270377A (en) * 1994-03-31 1995-10-20 Toto Ltd Polarograph analyser equipped with disposable flow cell
US5730149A (en) * 1993-12-30 1998-03-24 Toto Ltd. Toilet-bowl-mounted urinalysis unit
KR100741270B1 (en) * 2005-07-05 2007-07-19 학교법인 포항공과대학교 Lab-on-a-chip for electrochemical analysis having dual fluid flow channel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730149A (en) * 1993-12-30 1998-03-24 Toto Ltd. Toilet-bowl-mounted urinalysis unit
JPH07270377A (en) * 1994-03-31 1995-10-20 Toto Ltd Polarograph analyser equipped with disposable flow cell
KR100741270B1 (en) * 2005-07-05 2007-07-19 학교법인 포항공과대학교 Lab-on-a-chip for electrochemical analysis having dual fluid flow channel

Similar Documents

Publication Publication Date Title
US5707502A (en) Sensors for measuring analyte concentrations and methods of making same
US7455756B2 (en) Biosensor
AU6482198A (en) Electrochemical biosensor
JP2002090331A (en) Biosensor provided with porous thin film having chromatography function
US5507936A (en) Member for the formation of at least one electrode and/or one sensor
WO2003023389A9 (en) Solid electrochemical sensor
CN107957440B (en) Planar ammonia selective sensing electrode and method for fabricating the same
Yang et al. Biosensors and their Applications
Urban et al. Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers
Hintsche et al. Microbiosensors using electrodes made in Si-technology
CN112292446A (en) Glycated protein sensor, measurement method, program, and method for producing sensor
JPH02193054A (en) Enzyme electrode with flow cell
US20010024804A1 (en) Disposable plate electrode with biologicalactive film and manufacture method thereof
JPS6034061B2 (en) electrode device
AU2002366139A1 (en) Measurement device for measuring electric signal emitted by biological sample
JPH06109687A (en) Flow cell for electrochemical measurement
JPS59206756A (en) Fet chemical sensor combined with reference electrode
US5573649A (en) Miniaturized oxygen electrode and process of producing same
JPH03160358A (en) Enzyme sensor
Monroe Potentiometric (bioselective electrodes) assay systems: Utility and limitations
JPS6258154A (en) Enzymatic function electrode
CS274231B1 (en) Regenerable enzyme sensor with exchangeable membrane system
JPH04194661A (en) Enzyme electrode
JPH01203959A (en) Enzyme-immobilized fet sensor
JPS6457159A (en) Biosensor