JPH02193037A - Method and apparatus for measuring tension breaking stress - Google Patents

Method and apparatus for measuring tension breaking stress

Info

Publication number
JPH02193037A
JPH02193037A JP1273389A JP1273389A JPH02193037A JP H02193037 A JPH02193037 A JP H02193037A JP 1273389 A JP1273389 A JP 1273389A JP 1273389 A JP1273389 A JP 1273389A JP H02193037 A JPH02193037 A JP H02193037A
Authority
JP
Japan
Prior art keywords
mold
metal
arm
tensile
sample material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1273389A
Other languages
Japanese (ja)
Inventor
Noboru Yoda
登 誉田
Kazuo Toyama
外山 和男
Masato Kurita
真人 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1273389A priority Critical patent/JPH02193037A/en
Publication of JPH02193037A publication Critical patent/JPH02193037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable measurement of a tension breaking stress near right below a solidification point accurately and handily by removing a part of a mold when metal within a mold reaches a specified temperature right below the solidification point to apply an volumetric force by a centrifugal force to metal in place. CONSTITUTION:Temperature within a chamber 1 is controlled to a specified temperature right below a solidification point of a sample material and a mold 7 wherein molten metal is injected into an end of an arm 3 provided in the chamber 1. Then, when a rotating shaft 2 is accelerated with a motor 8 to reach a specified rotational speed, the arm 4 performs a uniform circular motion at a position where a centrifugal acceleration balances with a dynamic acceleration maintaining a fixed angle with the rotating shaft 2 with a distance from an arm pin 4 to the mold 7 as rotation radius. Then, after the rotational speed of the arm 3 reaches a specified value, the mold is separated to impart a volumetric force to the sample material at the part from which the mold 7 is separated away by a centrifugal force. The volumetric force is applied to a portion with the smallest sectional area of the part from which the mold 7 is removed to break it and the sample material is broken. Thus, a tension stress is calculated from a mass of the sample material broken and the centrifugal acceleration at that time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は凝固点直下における引張破断の応力測定方法及
びそれを実施する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring stress at tensile break just below the freezing point and an apparatus for carrying out the method.

〔従来技術〕[Prior art]

引張試験は引張試験装置に取り付けた供試材を一方向に
引張ることによって金属材料の機械的性質を測定するも
のであり、特に連続鋳造における鋳造速度の向上、半溶
融凝固加工における加工精度の向上を図るためには、凝
固点直下における引張破断応力の測定が不可欠である。
Tensile testing measures the mechanical properties of metal materials by pulling the specimen attached to a tensile testing device in one direction, and is particularly useful for improving casting speed in continuous casting and improving processing accuracy in semi-molten solidification processing. In order to achieve this, it is essential to measure the tensile rupture stress just below the freezing point.

従来、凝固点直下における引張破断応力を測定するため
の温度制御方法には加熱法及び溶融凝固法があった。こ
のうち加熱法は金属を加熱して凝固金属を得、凝固点直
下における引張破断応力を測定するものである。この方
法によると合金の凝固末期、即ち高固相率状態における
脆性の測定が結晶粒界の優先溶融の影響を受けるので、
実際の凝固の進行に即さないという問題があった。そこ
で、鋳型内に溶湯を注入し、これ放冷して凝固させ、凝
固点直下における引張破断応力を測定する溶融凝固法を
採用し、これにより合金の凝固の進行に伴った引張破断
応力を測定する方法及び装置の研究、開発が行われてい
る。
Conventionally, there have been heating methods and melt solidification methods as temperature control methods for measuring tensile rupture stress just below the freezing point. Among these methods, the heating method heats the metal to obtain a solidified metal, and measures the tensile stress at break immediately below the solidification point. According to this method, the measurement of brittleness in the final stage of solidification of the alloy, that is, in the high solid phase state, is affected by preferential melting of grain boundaries.
There was a problem that it did not correspond to the actual progress of coagulation. Therefore, we adopted a melt-solidification method in which molten metal is poured into a mold, allowed to cool and solidify, and the tensile stress at break just below the solidification point is measured.This method measures the tensile stress at break as the alloy solidifies. Research and development of methods and devices is underway.

溶融凝固法により引張破断応力を測定する方法を以下に
説明する。第4図は鋳鉄製金型の鋳型を用いた引張荷重
方式の試験装置の平面図である。
A method for measuring tensile stress at break using the melt solidification method will be described below. FIG. 4 is a plan view of a tensile load type testing device using a cast iron mold.

矩形の台25上に長方形板状の鋳型側壁21.21が所
定間隔をあけてその長手方向の側面を台25の長手方向
と平行に対向させて配されている。鋳型側壁21.21
の中央部には厚さ2 mmの断熱材22が埋め込まれて
おり、更にその中央部には厚さIIIIIllの断熱材
23が貼付されている。鋳型21.21の一端部は台2
5の一端部に固定されており、この固定端部から鋳型側
壁21.21間に予めガス炉で溶製した合金を注湯し、
鋳型側壁21.21間の両端部を封じ、注湯された合金
を放冷により凝固させると、断熱材23が設けられた部
位が最終凝固部となり、その部分に肉厚減少部を有する
角柱状の供試材が得られる。
On the rectangular base 25, rectangular plate-shaped mold side walls 21.21 are arranged at predetermined intervals with their longitudinal side faces parallel to and facing the longitudinal direction of the base 25. Mold side wall 21.21
A heat insulating material 22 with a thickness of 2 mm is embedded in the center of the holder, and a heat insulating material 23 with a thickness of IIIll is attached to the center. One end of the mold 21.21 is placed on the stand 2
5, and from this fixed end to the space between the mold side walls 21 and 21, an alloy previously melted in a gas furnace is poured,
When both ends between the mold side walls 21 and 21 are sealed and the poured alloy is allowed to cool and solidify, the part where the heat insulating material 23 is provided becomes the final solidified part, and a prismatic shape with a reduced wall thickness is formed in that part. A sample material of

この供試材は前記固定端部と対向する側の端部方向に設
けられたロードセル29と連結材27で連結されている
。供試材の最終凝固部が凝固開始後所定時間経過すると
、ロードセル29を介して供試材に引張速度1mm/s
で静荷重を負荷し、供試材を肉厚減少部で瞬間的に破断
させる。この際の破断荷重を肉厚減少部の断面積で割算
して引張応力を求める(日本金属学会誌、第49巻、第
9号、1985及び軽金属、 Vol、36. Nn7
.1986)。
This sample material is connected by a connecting member 27 to a load cell 29 provided in the direction of the end opposite to the fixed end. When the final solidified portion of the test material has passed a predetermined period of time after the start of solidification, a tensile speed of 1 mm/s is applied to the test material via the load cell 29.
A static load is applied to the test material, causing it to break instantaneously at the part where the wall thickness decreases. The tensile stress is determined by dividing the breaking load at this time by the cross-sectional area of the reduced wall thickness part (Journal of the Japan Institute of Metals, Vol. 49, No. 9, 1985 and Light Metals, Vol. 36. Nn7
.. 1986).

また第5図及び第6図は組合わせ金型の鋳型を用いた曲
げ荷重方式の試験装置の概略縦断面図である。第5図に
示した長方形の板状の鋳型側壁26゜26は断面視が縦
長の同寸法の板体を縦に3段積重ねた構成を有する鋳型
側壁26を所定間隔をあけて対向配置した組合わせ金型
の鋳型である。この鋳型側壁26.26間に溶鋼を鋳込
口28より下注ぎで鋳込む、鋳込み後1.5〜3.5分
して第6図の如く中段金型を左右に引き離し、その部分
の鋳片を露出させる。続いて鋳片の下部を下段金型によ
って拘束した状態で一方の上段金型の側部に取り付けら
れた曲げ用シリンダ27にて他方側へ押し、鋳片の曲げ
状態を測定する([連続鋳造における力学的挙動」日本
鉄鋼協会 鉄鋼基礎共同研究会、 1985)。
Furthermore, FIGS. 5 and 6 are schematic longitudinal sectional views of a bending load type test device using a mold of a combination mold. The rectangular plate-shaped mold side wall 26 26 shown in FIG. 5 is a set of mold side walls 26 having a configuration in which three vertically stacked plates of the same size and vertically elongated cross sections are arranged facing each other at a predetermined interval. This is a mold for a matching mold. Molten steel is poured between the mold side walls 26 and 26 by pouring from the pouring port 28. After 1.5 to 3.5 minutes after casting, the middle mold is separated from the left and right as shown in Figure 6, and that part is cast. Expose the piece. Next, with the lower part of the slab restrained by the lower mold, it is pushed to the other side by a bending cylinder 27 attached to the side of one of the upper molds, and the bending state of the slab is measured ([Continuous Casting ``Mechanical behavior in ``Iron and Steel Institute of Japan, Steel Basics Joint Research Group, 1985).

[発明が解決しようとする課題] ところが、溶融凝固法で引張荷重方式による装置では引
張荷重が供試材の端部に付与されるため、荷重が破断部
に伝播する途中で荷重の一部が供試材と鋳型との摩擦に
消費され、試験片の破断荷重測定に誤差が生じるという
問題があった。
[Problems to be Solved by the Invention] However, in a device that uses a tensile load method using the melt-solidification method, the tensile load is applied to the edge of the specimen material, so part of the load is lost while the load is propagating to the fractured part. There was a problem in that it was consumed by friction between the test material and the mold, causing an error in measuring the breaking load of the test piece.

また溶融凝固法で曲げ荷重方式によるものはく試験法が
大がかりであるという問題があった。
Another problem with the melt solidification method is that the foil test method using the bending load method is extensive.

本発明は上述のような問題を解決するためになされたも
のであり、実際の凝固の進行に即した溶融凝固法により
正確に、また簡易に凝固点直下近傍における引張破断応
力を測定する方法及び装置を提供することを目的とする
The present invention has been made in order to solve the above-mentioned problems, and provides a method and device for accurately and easily measuring tensile rupture stress in the vicinity of the freezing point using a melt solidification method that corresponds to the actual progress of solidification. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

本発明の引張破断応力測定方法は、その一部が分離除去
できるような構造を有する鋳型内に溶融金属を注入し、
これを凝固させ、凝固点直下の所定温度における金属の
引張破断応力を測定する方法において、前記鋳型内の金
属が前記所定温度になった場合、前記鋳型の一部を除去
し、鋳型を除去した部分の凝固金属に遠心力による体積
力を付与し、この体積力で前記部分の金属を破断させ、
破断された凝固金属の質量及びこのときの遠心加速度か
ら引張応力を求めることを特徴とする。
The method for measuring tensile stress at break of the present invention involves injecting molten metal into a mold having a structure in which a part of the metal can be separated and removed.
In the method of solidifying the metal and measuring the tensile rupture stress of the metal at a predetermined temperature just below the freezing point, when the metal in the mold reaches the predetermined temperature, a part of the mold is removed, and the part from which the mold has been removed is Applying body force due to centrifugal force to the solidified metal, and causing the metal in the part to break with this body force,
The method is characterized in that the tensile stress is determined from the mass of the broken solidified metal and the centrifugal acceleration at this time.

また、本発明の引張応力測定装置は、鋳型内の金属を凝
固点直下近傍の所定温度に保つチャンバ内に、鉛直方向
に設けられた回転軸と、該回転軸にて支持されたアーム
部と、該アーム部の一端に着脱自在に取り付けられた前
記鋳型とを備えたことを特徴とする。
Further, the tensile stress measuring device of the present invention includes a rotating shaft provided in a vertical direction in a chamber that maintains the metal in the mold at a predetermined temperature near the freezing point, and an arm supported by the rotating shaft. The mold is detachably attached to one end of the arm portion.

6〔作用〕 本発明方法においては、その一部が分離除去できるよう
な構造を有する鋳型内に溶融金属を注入し、これを凝固
させる。
6 [Operation] In the method of the present invention, molten metal is poured into a mold having a structure such that a part of the metal can be separated and removed, and the molten metal is solidified.

鋳型内の金属が凝固点直下の所定温度になった場合、鋳
型の一部が除去され、鋳型を除去した部分の金属に遠心
力による体積力を付与する。付与された体積力で前記部
分の金属が破断され、破断された金属の質量とこのとき
の遠心加速度により引張応力が測定される。
When the metal in the mold reaches a predetermined temperature just below the freezing point, a part of the mold is removed, and a centrifugal force applies a body force to the metal in the area from which the mold has been removed. The applied body force causes the metal in the portion to break, and the tensile stress is measured based on the mass of the broken metal and the centrifugal acceleration at this time.

また、本発明装置においては、アーム部を回転させ、前
記鋳型の一部が除去され、鋳型が除去された部分の金属
に遠心力による体積力が付与される。この体積力により
金属が破断され、破断された金属の質量とこのときの遠
心加速度により引張応力が測定される。
Further, in the apparatus of the present invention, the arm portion is rotated to remove a portion of the mold, and body force due to centrifugal force is applied to the metal in the portion from which the mold has been removed. The metal is broken by this body force, and the tensile stress is measured based on the mass of the broken metal and the centrifugal acceleration at this time.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき具体的に
説明する。第1図は本発明の引張破断応力測定装置の模
式的縦断面図であり、図中1は一例を開口させである大
径円筒体11と、小径円筒体12とをそれぞれの開口部
を対向させて配し、両開口部間を連結してなる瓶のよう
な形状を有するチャンバである。チャンバlの大径円筒
体11の部分は地中に埋められており、チャンバl内は
金属の凝固点直下の所定温度に保たれるように温度制御
されている。このチャンバ1の底部には回転軸2が立設
されており、回転軸2の中間部のチャンバ1の底部から
600mmの高さには全長800■のアーム3をアーム
ピン4にて支持している。またアーム3の一端部には重
さ400gのバランスマス6が取り付けられており、ア
ーム3の他端部にはその一部分が分離除去できるような
構造を有する鋳型7が、その分離されない部分にて取り
付けられている。アームピン4から鋳型7までの距離は
500mmである。更に回転軸2の上端部は駆動ベルト
5にてチャンバ1の小径円筒体12内に備えられている
モータ8と連結されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a schematic vertical cross-sectional view of the tensile stress measuring device of the present invention, and 1 in the figure shows a large-diameter cylindrical body 11 with an open opening, and a small-diameter cylindrical body 12 with their respective openings facing each other. It is a chamber shaped like a bottle, with both openings connected. A portion of the large-diameter cylindrical body 11 of the chamber 1 is buried underground, and the temperature inside the chamber 1 is controlled to be maintained at a predetermined temperature just below the freezing point of the metal. A rotating shaft 2 is erected at the bottom of the chamber 1, and an arm 3 having a total length of 800 cm is supported by an arm pin 4 at a height of 600 mm from the bottom of the chamber 1 at the middle of the rotating shaft 2. . Further, a balance mass 6 weighing 400 g is attached to one end of the arm 3, and a mold 7 having a structure such that a part of it can be separated and removed is attached to the other end of the arm 3. installed. The distance from the arm pin 4 to the mold 7 is 500 mm. Further, the upper end of the rotating shaft 2 is connected by a drive belt 5 to a motor 8 provided within a small diameter cylindrical body 12 of the chamber 1 .

第2図は本発明の引張破断応力測定装置に用いられる供
試材の平面断面図であり、供試材10はアーム支持部側
の端部10a(幅60mm) と端部10b(幅40舗
)とが繋ぎ部13にて連結された杆状の形状を有する。
FIG. 2 is a plan cross-sectional view of a specimen used in the tensile breaking stress measurement device of the present invention. ) and has a rod-like shape connected by a connecting portion 13.

この繋ぎ部13は端部10b直前になるまでその断面積
が縮小する。なお、第2図において端部10b直前の繋
ぎ部13がなだらかな曲線形状を有するのは試験時の応
力集中を避けるためである。第3図は上述した形状を有
する供試材10を形成させる鋳型7の平面断面図である
。鋳型7は端部10aから繋ぎ部13の一部に対応する
残留鋳型部14(図中斜線部)、繋ぎ部13と端部10
bとからなる部分の縦の中心線の一側に対応する分離鋳
型部15、同中心線の他側に対応する分離鋳型部16 
(ともに図中破線部)とからなっている。また、鋳型7
の内側全面には断熱材(図示せず)が貼付されており、
供試材10の場所による温度差が少なくなるようにしで
ある。
The cross-sectional area of this connecting portion 13 decreases until it reaches just before the end portion 10b. The reason why the connecting portion 13 immediately before the end portion 10b in FIG. 2 has a gentle curved shape is to avoid stress concentration during the test. FIG. 3 is a plan sectional view of the mold 7 in which the test material 10 having the above-described shape is formed. The mold 7 has a residual mold part 14 (shaded area in the figure) corresponding to a part of the joint part 13 from the end part 10a, the joint part 13 and the end part 10.
A separation mold part 15 corresponding to one side of the vertical center line of the part consisting of b, and a separation mold part 16 corresponding to the other side of the same center line.
(Both are indicated by broken lines in the figure). Also, mold 7
A heat insulating material (not shown) is attached to the entire inside of the
This is done so that the temperature difference depending on the location of the sample material 10 is reduced.

上述のような構成を有する引張破断応力測定装置を用い
て以下の如く本発明を実施した。まず、チャンバ1内の
温度を供試材の凝固点直下の所定温度に制御し、チャン
バ1内に設けられたアーム3の端部に供試材たる溶融金
属を注入した鋳型7を取り付ける。モータ8にて回転軸
2を所定の回転速度に達するまで加速すると、アーム3
は遠心加速度と重力加速度とが釣り合う位置で回転軸2
と一定の角度を保ちながらアームピン4から鋳型7まで
の距離を回転半径として等速用運動する。
The present invention was carried out as follows using a tensile stress measuring device having the above-described configuration. First, the temperature inside the chamber 1 is controlled to a predetermined temperature just below the freezing point of the sample material, and the mold 7 into which the molten metal serving as the sample material is poured is attached to the end of the arm 3 provided in the chamber 1. When the motor 8 accelerates the rotating shaft 2 until it reaches a predetermined rotational speed, the arm 3
is the position where centrifugal acceleration and gravitational acceleration are balanced, and rotation axis 2
It moves at a constant velocity while maintaining a constant angle with the distance from the arm pin 4 to the mold 7 as the radius of rotation.

アーム3の回転速度が所定値に達してから、所定時間経
過後、分離鋳型部15及び16を図示しない鋳型分離装
置により分離させ、更に所定時間同じ回転速度で回転さ
せ、鋳型が分離除去された部分の供試材に遠心力により
体積力を付与する。鋳型分離後5秒以内に供試材が破断
されない場合は、再度鋳型に溶融金属を注入し直し、回
転速度を増加させて上記同様の試験を行う。
After the rotational speed of the arm 3 reached a predetermined value and a predetermined time elapsed, the separated mold parts 15 and 16 were separated by a mold separation device (not shown), and further rotated at the same rotational speed for a predetermined time to separate and remove the mold. A body force is applied to the sample material by centrifugal force. If the test material does not break within 5 seconds after separation of the mold, molten metal is poured into the mold again, the rotational speed is increased, and the same test as above is performed.

このような試験を繰り返すうちに、ある回転速度におい
て、供試材の鋳型が除去された部分の最も断面積が小さ
い部分に、その部分を破断させるに足る体積力が付与さ
れ、そこで供試材は破断する。破断された供試材の質量
及びこのときの遠心加速度により引張応力が算出される
As these tests are repeated, at a certain rotational speed, a body force sufficient to break the part of the sample material with the smallest cross-sectional area from which the mold has been removed is applied, and the sample material breaks. The tensile stress is calculated from the mass of the fractured test material and the centrifugal acceleration at this time.

以下に本発明方法を実施し、引張応力を実際に算出した
場合の数値例を示す。
Examples of numerical values when the method of the present invention is implemented and the tensile stress is actually calculated are shown below.

(以 下 余 白) まず、表1に示す化学成分の鋼材を電気炉にて溶解し、
鋳型7に注入する。チャンバ1内はこの鋳型7内の合金
が1200’Cに保たれるように温度制御されている。
(Left below) First, steel materials with the chemical composition shown in Table 1 were melted in an electric furnace.
Pour into mold 7. The temperature in the chamber 1 is controlled so that the alloy in the mold 7 is maintained at 1200'C.

モータ9にて回転軸2を回転速度が80Orpmに達す
るまで加速する。この回転速度で鋳型7を5秒間回転さ
せた後、分離鋳型部15及び16を分離除去して供試材
の一部を露出し、更に5秒間同じ回転速度で回転させる
。回転速度800rpmでは供試材は破断されなかった
ので、再度鋳型7に溶融金属を注入し、回転速度を5O
rpm増加させて上記同様の試験を行った。この際、回
転速度は800rpmから5Orpm刻みで1l100
rpまで変化させた。
The rotating shaft 2 is accelerated by the motor 9 until the rotational speed reaches 80 rpm. After rotating the mold 7 at this rotational speed for 5 seconds, the separated mold parts 15 and 16 are separated and removed to expose a part of the sample material, and the mold 7 is further rotated at the same rotational speed for 5 seconds. Since the test material did not break at a rotation speed of 800 rpm, molten metal was poured into the mold 7 again and the rotation speed was increased to 50 rpm.
A test similar to the above was conducted by increasing the rpm. At this time, the rotation speed is 1l100 in 5Orpm increments from 800rpm.
Changed up to rp.

その結果、回転速度が1105Orpを越えると供試材
10は繋ぎ部13の断面積が最少の部位で破断された。
As a result, when the rotational speed exceeded 1105 Orp, the sample material 10 was broken at the portion where the cross-sectional area of the connecting portion 13 was the smallest.

この際の遠心加速度と破断部位から先の供試材の質量か
ら引張荷重を算出し、以下の如く引張応力を求める。
The tensile load is calculated from the centrifugal acceleration at this time and the mass of the sample material beyond the fracture site, and the tensile stress is determined as follows.

回転速度: 11050rp =110rad/sec
 (角速度)遠心加速度: (回転半径)×(角速度戸
= 6170G :重力加速度 但し回転半径は、正確には回転軸と鋳型との距離である
が、重力加速度に比べ延伸加速度が極めて大きいので、
アームピンと鋳型との距離とした。
Rotation speed: 11050rp = 110rad/sec
(Angular velocity) Centrifugal acceleration: (Rotation radius) x (Angular velocity door = 6170G: Gravitational acceleration However, the rotation radius is precisely the distance between the rotation axis and the mold, but since the stretching acceleration is extremely large compared to the gravitational acceleration,
The distance between the arm pin and the mold was taken as the distance between the arm pin and the mold.

引張応力= (引張荷重)/(破断面積)=(破断供試
材の質量)×(遠心加 速度)/(破断面積) = 120g X 617 G / (5mm x 1
0m+n)= 1.5kg f /rm” 以上より引張破断応力は1.5kg f / mm”と
なる。
Tensile stress = (Tensile load) / (Fracture area) = (Mass of fracture specimen) x (Centrifugal acceleration) / (Fracture area) = 120g x 617 G / (5mm x 1
0m+n)=1.5kg f/rm" From the above, the tensile stress at break is 1.5 kg f/mm".

なお、本発明の装置においてチャンバ1内に設けられた
アーム3.モータ81回転軸2.駆動ベルト5等は、本
実施例1200°Cに耐えられるように工夫されている
のはいうまでもない。
In addition, in the apparatus of the present invention, the arm 3 provided in the chamber 1. Motor 81 rotating shaft 2. Needless to say, the drive belt 5 and the like are designed to withstand temperatures of 1200°C in this embodiment.

〔効果〕〔effect〕

以上詳述した如く本発明の引張破断応力測定方法及び装
置においては、鋳型が分離除去された部分に遠心力によ
り体積力が付与され、この体積力により供試材を破断さ
せて凝固点直下の高温度領域における引張試験を行う。
As detailed above, in the method and apparatus for measuring tensile stress at break of the present invention, body force is applied by centrifugal force to the part where the mold has been separated and removed, and this body force causes the test material to break and rise to a height just below the freezing point. Perform a tensile test in the temperature range.

従って本発明によると、引張荷重が供試材と鋳型との摩
擦に消費されることがなく、供試材の破断荷重測定が正
確に行える。しかもその測定に用いる装置の小型化が図
れ、またその試験方法は簡易である。
Therefore, according to the present invention, the tensile load is not consumed by friction between the test material and the mold, and the breaking load of the test material can be accurately measured. Moreover, the equipment used for the measurement can be miniaturized, and the testing method is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の引張破断応力測定装置を説明するため
の縦断面模式図、第2図は本発明の引張破断応力測定方
法に用いられる供試材の平面図、第3図は第2図の供試
材を形成させる鋳型の平面断面図、第4図は従来゛の引
張荷重方式の試験装置の平面断面図、第5図及び第6図
は従来の曲げ荷重方式の試験方法を説明するための概略
縦断面図である。 1・・・チャンバ 2・・・回転軸 3・・・アーム7
・・・鋳型 特 許 出願人
FIG. 1 is a schematic longitudinal cross-sectional view for explaining the tensile stress at break stress measuring device of the present invention, FIG. Fig. 4 is a plan sectional view of a conventional tensile load type test device, and Figs. 5 and 6 explain the conventional bending load type test method. FIG. 1... Chamber 2... Rotating shaft 3... Arm 7
...Mold patent applicant

Claims (1)

【特許請求の範囲】 1、その一部が分離除去できるような構造を有する鋳型
内に溶融金属を注入し、これを凝固させ、凝固点直下の
所定温度における金属の引張破断応力を測定する方法に
おいて、 前記鋳型内の金属が前記所定温度になった 場合、前記鋳型の一部を除去し、鋳型を除去した部分の
凝固金属に遠心力による体積力を付与し、この体積力で
前記部分の金属を破断させ、破断された凝固金属の質量
及びこのときの遠心加速度から引張応力を求めることを
特徴とする引張破断応力測定方法。 2、請求項1記載の引張破断応力測定方法を実施する引
張破断測定装置において、 前記鋳型の内部を所定温度に保つチャンバ と、該チャンバ内に鉛直方向に設けられた回転軸と、該
回転軸にて支持されたアーム部と、該アーム部の一端に
着脱自在に取り付けられた前記鋳型とを備えたことを特
徴とする引張破断応力測定装置。
[Claims] 1. In a method of injecting molten metal into a mold having a structure such that a part of the metal can be separated and removed, solidifying the metal, and measuring the tensile rupture stress of the metal at a predetermined temperature just below the freezing point. , When the metal in the mold reaches the predetermined temperature, a part of the mold is removed, and a body force due to centrifugal force is applied to the solidified metal in the part from which the mold has been removed, and this body force causes the metal in the part to 1. A method for measuring tensile stress at break, which comprises: breaking a solidified metal, and determining the tensile stress from the mass of the broken solidified metal and the centrifugal acceleration at this time. 2. A tensile rupture measuring device for carrying out the tensile rupture stress measuring method according to claim 1, comprising: a chamber for maintaining the inside of the mold at a predetermined temperature; a rotating shaft vertically provided in the chamber; and the rotating shaft. 1. A tensile breaking stress measuring device comprising: an arm supported by an arm; and the mold detachably attached to one end of the arm.
JP1273389A 1989-01-21 1989-01-21 Method and apparatus for measuring tension breaking stress Pending JPH02193037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273389A JPH02193037A (en) 1989-01-21 1989-01-21 Method and apparatus for measuring tension breaking stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273389A JPH02193037A (en) 1989-01-21 1989-01-21 Method and apparatus for measuring tension breaking stress

Publications (1)

Publication Number Publication Date
JPH02193037A true JPH02193037A (en) 1990-07-30

Family

ID=11813637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273389A Pending JPH02193037A (en) 1989-01-21 1989-01-21 Method and apparatus for measuring tension breaking stress

Country Status (1)

Country Link
JP (1) JPH02193037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255246A (en) * 2000-03-08 2001-09-21 Mitsubishi Heavy Ind Ltd Centrifugal force experimental device
CN103048193A (en) * 2012-12-10 2013-04-17 江西洪都航空工业集团有限责任公司 Tension angle box bottom intensity estimation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255246A (en) * 2000-03-08 2001-09-21 Mitsubishi Heavy Ind Ltd Centrifugal force experimental device
CN103048193A (en) * 2012-12-10 2013-04-17 江西洪都航空工业集团有限责任公司 Tension angle box bottom intensity estimation method

Similar Documents

Publication Publication Date Title
Park et al. The effect of CaF 2 on the viscosities and structures of CaO-SiO 2 (-MgO)-CaF 2 slags
JP2001525540A (en) Sampling device for thermal analysis
Din et al. High strength aerospace aluminium casting alloys: a comparative study
JPH02193037A (en) Method and apparatus for measuring tension breaking stress
EP3311157B1 (en) Apparatus and method for analysis of molten metals
Madhusudhan et al. Experimental study on cooling rate of centrifugal casting based on grain size
JP2010042443A (en) Apparatus for determining hot tearing susceptibility of metallic melt
US5951164A (en) Method for contactless continuous temperature measurement of the solidification of metal alloys
Reddy et al. Microstructure refinement with forced convection in aluminium and superalloys
US3537295A (en) Method and apparatus for testing foundry mold materials
Lu et al. New experimental apparatus to investigate hot tearing behavior in steel
KR102456026B1 (en) Apparatus for measurement of glass forming ability and measurement methods of using the same
SU1052923A1 (en) Device for determining deformation and shear force of moulding of core sand
SU1070449A1 (en) Casting solidified layer mechanical property determination method
KR102414763B1 (en) Apparatus for measurement of glass forming ability to prevent cracking by coagulation contraction and measurement methods of using the same
JPH0449881B2 (en)
Diószegi et al. Volumetric changes during the solidification of cast iron
JPH01162551A (en) Method for continuously casting round shape billet
JP2637004B2 (en) Evaluation method of powder for continuous casting of low carbon steel
NO180110B (en) Method and apparatus for controlling the flow of molten material cast from a pool for receiving and storing a molten material
JPH0116031Y2 (en)
JPS62259060A (en) Immersion testing method for refractory brick
SU804187A1 (en) Method of producing castings
SU326479A1 (en) ALL-UNION PAG? NTNO-THG ^: [^. 'SHIFTSKYA, oIOLIOTEKA
KR20010091758A (en) Tensile and bending tester in temperature gradient field