JPH02192665A - Solid electrolyte type fuel cell module - Google Patents

Solid electrolyte type fuel cell module

Info

Publication number
JPH02192665A
JPH02192665A JP1011433A JP1143389A JPH02192665A JP H02192665 A JPH02192665 A JP H02192665A JP 1011433 A JP1011433 A JP 1011433A JP 1143389 A JP1143389 A JP 1143389A JP H02192665 A JPH02192665 A JP H02192665A
Authority
JP
Japan
Prior art keywords
fuel cell
current collector
collector tube
solid oxide
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1011433A
Other languages
Japanese (ja)
Other versions
JP2818944B2 (en
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1011433A priority Critical patent/JP2818944B2/en
Publication of JPH02192665A publication Critical patent/JPH02192665A/en
Application granted granted Critical
Publication of JP2818944B2 publication Critical patent/JP2818944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable the application of compact design to a fuel cell and ensure the heat equalization of the whole cell. CONSTITUTION:A solid electrolyte fuel cell 1 comprises internal and external collector ring tubes 2 and 3 formed concentrically and cylindrically with each other, and six fuel cells 4 arranged between the tubes 2 and 3. The internal collector ring tube 2 has heat pipe construction containing a condensable fluid. At least one of the tubes 2 and 3 is made of metal. According to this construction, the solid electrolyte type fuel cell 1 comes to have reinforced construction and it becomes possible to make the fuel cells 4 compact. Moreover, it is possible to equalize heat generation by making the tubes 2 and 3 of metal having high heat transfer quality.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、外部から供給される燃料を酸化させる際の
化学反応エネルギを直接電気的エネルギに変換する燃料
電池のうち、電解質が固体である固体電解質型燃料電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a solid electrolyte in which the electrolyte is solid among fuel cells that directly convert chemical reaction energy when oxidizing fuel supplied from the outside into electrical energy. The present invention relates to type fuel cells.

従来の技術 最も基本的な燃料電池である水素−酸素燃料電池は、外
部から供給される燃料として水素を、酸化剤とし酸素を
用いるもので、電解質を挾んで配設された水素<H2)
と酸素(02)が化学反応して、反応の自由エネルギに
相当する約1V(常温で最高1.23V)の起電力が得
られる。
Conventional technology A hydrogen-oxygen fuel cell, which is the most basic fuel cell, uses hydrogen as a fuel supplied from the outside and oxygen as an oxidizing agent.
and oxygen (02) undergo a chemical reaction, and an electromotive force of approximately 1V (maximum 1.23V at room temperature) corresponding to the free energy of the reaction is obtained.

H2+  (1/2)02→H20 したがって、電力を得る他の手段である火力光電が、熱
エネルギを機械的エネルギに変換し、さらに電気的エネ
ルギに変換するため、その変換効率が40%以下である
のに対し、この燃料電池は、燃料の化学的エネルギを直
接電気的エネルギに変換するため変換効率が80%に達
する可能性がある。
H2+ (1/2)02→H20 Therefore, thermal power photoelectric power, which is another means of obtaining electricity, converts thermal energy into mechanical energy and then into electrical energy, so the conversion efficiency is 40% or less. In contrast, this fuel cell directly converts the chemical energy of the fuel into electrical energy, so the conversion efficiency can reach 80%.

また、燃料電池では普通の一次電池および二次電池と異
り、燃料(N2)と酸化剤(02)が供給されれば連続
して電力を取出すことができる。
Furthermore, unlike ordinary primary and secondary batteries, a fuel cell can continuously extract electric power if fuel (N2) and oxidizer (02) are supplied.

また電池の働く温度により常温燃料電池(室温〜300
 ’C)と高温燃料電池(300℃以上)に分けられ、
特に高温燃料電池においては、電解質として水溶液を使
用できないためイオンII電性の固体電1fI質や融解
塩が用いられており、固体電解質としては、ジルコニア
(ZrO2)に、イツトリア(Y203 )や酸化イツ
テリビウム(Yb 203 )あるいは酸化カルシウム
(Cab)等を加えた酸化物固体電解質が使用され、ま
た電極には触媒効果を有J゛るニッケル(N1〉の粉末
を固めた多孔性の金属等が用いられている。また燃料と
しては、例えば、水素ガス(N2)や−酸化炭素(Co
)等が用いられる。
Also, depending on the operating temperature of the battery, room temperature fuel cells (room temperature to 300
'C) and high temperature fuel cells (over 300℃).
In particular, in high-temperature fuel cells, since aqueous solutions cannot be used as electrolytes, solid electrolytes with ion II conductivity or molten salts are used. As solid electrolytes, zirconia (ZrO2), ittria (Y203), and itteribium oxide are used. (Yb 203 ) or calcium oxide (Cab), etc., is used as an oxide solid electrolyte, and the electrodes are made of porous metal made of hardened nickel (N1) powder, which has a catalytic effect. In addition, examples of fuel include hydrogen gas (N2) and -carbon oxide (Co
) etc. are used.

発明が解決しようとする課題 前述した従来の固体電解質型燃料電池の場合には、燃料
電池がエネルギ変換装置どして円滑に働くように、空気
電極や燃料電極をガスが透過するように多孔質にしてい
る。また、固体電解質は電気抵抗が比較的大きいため電
池の内部抵抗を低減するためには可能な限り厚みが薄い
方が望ましく、また電極もガス反応を活光に行うために
は厚みをある程度薄くする必要がある。その結果、固体
電解質層の強度が小さく、また電極も多孔質で剛性の小
さいものとなり、強度を確保するためにある程度の厚さ
を持った多孔質の支持管の表面に、固体電解質および電
極をコーティングする必要があった。この点が固体電解
質型燃料電池を小型化づる場合の障害となっている。
Problems to be Solved by the Invention In the case of the conventional solid oxide fuel cell mentioned above, in order for the fuel cell to function smoothly as an energy conversion device, the air electrode and the fuel electrode are made of porous materials so that gas can pass through them. I have to. In addition, solid electrolytes have a relatively high electrical resistance, so in order to reduce the internal resistance of the battery, it is desirable that the thickness be as thin as possible, and the thickness of the electrodes must be reduced to some extent in order to carry out gas reactions with active light. There is a need. As a result, the strength of the solid electrolyte layer is low, and the electrodes are also porous and have low rigidity.In order to ensure strength, the solid electrolyte and electrodes are placed on the surface of a porous support tube with a certain thickness. It needed to be coated. This point is an obstacle to downsizing solid oxide fuel cells.

また、燃料電池の場合には、温度が高いほど光電反応が
活発となるが、固体電解質および多孔性の電極の熱伝導
性が低く、そのため電池内の温度分布が不均一となり、
反応速度等にむらが生じ、変換効率が低下や電池の破損
を引起すという問題があった。
In addition, in the case of fuel cells, the higher the temperature, the more active the photoelectric reaction, but the thermal conductivity of the solid electrolyte and porous electrode is low, resulting in uneven temperature distribution within the cell.
There was a problem that unevenness occurred in the reaction rate, etc., resulting in a decrease in conversion efficiency and damage to the battery.

この光電は上記した技術的背4の下になされたもので、
剛性を備えた構造として燃料電池の小型化を可能とし、
また電池全体の灼熱化を図り、電極各部における光電反
応を均一化して電気的エネルギへの変換効率を向上させ
た固体電解質型燃料電池を提供づることを目的どしてい
る。
This photoelectricity was developed based on the technical background 4 mentioned above.
It has a rigid structure that allows fuel cells to be made smaller.
It also aims to provide a solid electrolyte fuel cell that improves the efficiency of conversion into electrical energy by making the entire cell more scorching and making the photoelectric reaction uniform in each part of the electrode.

課題を解決するための手段 り記課題を解決づるための手段としてこの発明は、空間
を存して同心円筒状に設けられた内部集電子管と外部集
電予管との間に、管状の固体電解質の内側に空気電極ま
たは燃料電極を、外側に燃料電極または空気電極を設け
た燃料電池単体セルを複数個配設した固体電解質型燃料
電池モジュールに85いて、前記内部集電子管と外部集
電予管とのうちの少くとも一方の集電子管が金属製であ
ることをvf徴としている。
Means for Solving the Problems As a means for solving the problems, the present invention provides a solid tubular tube between an internal current collector tube and an external current collector tube that are provided in a concentric cylindrical shape with a space between them. A solid electrolyte fuel cell module 85 has a plurality of single fuel cells each having an air electrode or a fuel electrode on the inside of the electrolyte and a fuel electrode or an air electrode on the outside. The VF characteristic is that at least one of the collector tubes is made of metal.

また、前記内部集電子管と外部集電予管とのうちの少く
とも一方がヒートバイブであることを特徴としている。
Further, at least one of the internal current collector tube and the external current collector tube is a heat vibrator.

作   用 上記のように同心状に設けられた内部集電子管と外部集
電予管との間に、管状の固体電解質の内側および外側に
電極を設けた燃料電池単体セルを複数個配設して構成さ
れる固体電解質型燃料電池モジュールにおいて、内部集
電子管と外部集電予管とのうちの少くとも一方の集電子
管を金属製とすることにより、固体電解質型燃料電池が
構造的に補強され、燃料電池単体セルの小型化が可能と
なる。また、集電子管を伝熱性の高い金属製と覆ること
により均熱化が図られ、発電能力が向上する。
Function A plurality of single fuel cells each having electrodes on the inside and outside of a tubular solid electrolyte are arranged between the internal current collector tube and the external current collector tube that are arranged concentrically as described above. In the solid oxide fuel cell module configured, the solid oxide fuel cell is structurally reinforced by making at least one of the internal current collector tube and the external current collector tube made of metal, It becomes possible to downsize single fuel cells. In addition, by covering the current collector tube with a metal that has high heat conductivity, it is possible to equalize the heat and improve the power generation capacity.

また、固体電解質型燃料電池の金属製とした内部集電子
管と外部集電予管とのうちの少くとも一方をヒートバイ
ブとすることにより、ヒートバイブの灼熱作用により電
池の湿度が均一化し、電気的エネルギへの変換効率がさ
らに向上する。
In addition, by using a heat vibrator as at least one of the metal internal current collector tube and external current collector tube of the solid oxide fuel cell, the humidity of the battery is uniformized by the heating effect of the heat vibrate, and the electricity is The conversion efficiency into target energy is further improved.

実施例 以下、この発明の固体電解質型燃料電池の実施例を第1
図および第4図に基づいて説明する。
Embodiment The following is a first embodiment of the solid oxide fuel cell of the present invention.
This will be explained based on the diagram and FIG.

第1図ないし第2図は第1実施例を示すもので、第1図
に示す固体電解質型燃料電池1は、同心円筒状に設けら
れた内部集電子管2と外部集電予管3と、これら両者間
に配設された6個の燃料電池単体セル4とから構成され
ており、また前記内部集電子管2は、その内部に凝縮性
の作動流体を封入したヒートバイブ構造となっている。
1 and 2 show a first embodiment, and the solid oxide fuel cell 1 shown in FIG. It is composed of six single fuel cells 4 disposed between the two, and the internal current collector tube 2 has a heat vibrator structure in which a condensable working fluid is sealed inside.

この各燃料電池単体セル4は第2図に示すようにジルコ
ニア(2rO2)にイツトリア(Y2O2)を加えた酸
化物((2rO2)0.92(Y203 )0.08)
を管状に形成した固体電解質5と、この管状の固体電解
質5の内周を覆うように密接させて設けられた空気電極
6と、この固体電解質5の外周に密接して設けられた燃
料電極7との三層@造の管状に形成されており、的記空
気電極6と燃料電極7とは、それぞれストロンチウム(
Sr )をドープしたランタンマンガナイト(La−x
SrxMaO3)やニッケル(N1)等の金属粉末を固
めた多孔性の金属から構成されている。また最外層の前
記燃料電極7と中間層の固体電解質5との両者には、長
手方向に連続する1本のスリット8が形成されており、
このスリット8内にはインターコネクタ9が嵌装されて
おり、このインターコネクタ9ば前記最外層の燃ね電極
7と非接触状態で、かつ最内層の空気電極7と接触した
状態に設けられている。
As shown in FIG. 2, each fuel cell unit 4 is made of an oxide ((2rO2) 0.92 (Y203) 0.08) in which itria (Y2O2) is added to zirconia (2rO2).
A solid electrolyte 5 formed into a tubular shape, an air electrode 6 provided closely to cover the inner periphery of the tubular solid electrolyte 5, and a fuel electrode 7 provided closely to the outer periphery of the solid electrolyte 5. The air electrode 6 and the fuel electrode 7 are each made of strontium (
Lanthanum manganite (La-x) doped with Sr)
It is made of a porous metal made by solidifying metal powder such as SrxMaO3) or nickel (N1). Further, a single slit 8 continuous in the longitudinal direction is formed in both the fuel electrode 7 in the outermost layer and the solid electrolyte 5 in the intermediate layer.
An interconnector 9 is fitted in this slit 8, and this interconnector 9 is provided in a non-contact state with the outermost burning electrode 7 and in contact with the innermost air electrode 7. There is.

さらに、管状の空気電極6の内側の中空部内には酸素(
02)を含んだ空気が供給され、また燃料電極7の外側
には水素(N2)が供給されるようになっている。
Furthermore, oxygen (
02) is supplied, and hydrogen (N2) is supplied to the outside of the fuel electrode 7.

そして、上記のように構成される燃料電池単体セル4は
、ヒートバイブ構造を備えた内部集電子管2の外径とほ
ぼ同一の外径に形成されており、ニッケル(N;)製の
導電MA維フェルト10で被包された前記内部集電子管
2の外周には6個の燃料電池単体セル4が、各燃料電池
単体セル4のインターコネクタ9がそれぞれ前記導電繊
維フェル1〜10に接触づ゛るようにして配設されると
ともに、その外側は、内周にニッケル製の41Ji維フ
エルト11を設けたニッケル製の外部集電予管3によっ
て覆われている。このように、6個の燃料電池単体セル
4を、ヒートバイブ411造を備えた内部集電子管2と
ニッケル製の外部集電予管3との間に、それぞれニッケ
ル製の導電繊維フェルト10.11を介して挟持するこ
とにより、多孔質で強度の小さい両機種6.7および固
体電解質5とからなる各燃料電池単体セル4を緩WI′
!jるとともに、熱膨張による外径変化時の各燃料電池
単体セル4の破損および画集電子管2,3との接触不良
の発生を防止り−るようになっている。また外部集電予
管3内の各燃料電池単体セル4の外側に形成された空間
には水素が供給されるようになっている。
The fuel cell single cell 4 configured as described above is formed to have an outer diameter that is almost the same as the outer diameter of the internal current collector tube 2 equipped with a heat vibe structure, and is made of a conductive MA made of nickel (N;). On the outer periphery of the internal current collector tube 2 covered with fiber felt 10, six single fuel cells 4 are arranged, and the interconnectors 9 of each single fuel cell 4 are in contact with the conductive fiber felts 1 to 10, respectively. The outside is covered with a nickel external current collector tube 3 having a 41Ji fiber felt 11 made of nickel on the inner periphery. In this way, six single fuel cells 4 are connected between the internal current collector tube 2 equipped with a heat vibrator 411 and the external current collector tube 3 made of nickel, respectively, using conductive fiber felts 10 and 11 made of nickel. By holding each fuel cell unit 4, which is porous and has low strength, by sandwiching it between the two models 6.7 and the solid electrolyte 5.
! This also prevents damage to each fuel cell unit 4 and poor contact with the art collection electron tubes 2 and 3 when the outer diameter changes due to thermal expansion. Further, hydrogen is supplied to a space formed outside each fuel cell single cell 4 in the external current collector tube 3.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池1は、例えば、特殊の触媒下でメ
タンを水蒸気とともに高温に加熱して得た高温の水素お
よび一酸化炭素を燃料として外部集電予管3の内側の空
間に供給するとともに、各燃料電池単体セル4の中空部
に酸素を酸化剤として供給すると、各燃料電池単体セル
4内において、イオン導電性の固体電解質5を介して酸
素(N2)と水素(02)とが化学反応して水(N20
)が生成されるとともに、反応時の自由エネルギに相当
する電子が陽極である空気電極6側に捕集され、各空気
電極6に捕集された電子はそれぞれインターコネクタ9
から4電繊維フエルト10を介して内部集電子管2に集
電される。
The solid oxide fuel cell 1 supplies high-temperature hydrogen and carbon monoxide, obtained by heating methane together with water vapor to a high temperature under a special catalyst, as fuel to the space inside the external current collector tube 3. When oxygen is supplied as an oxidizing agent to the hollow part of each fuel cell single cell 4, oxygen (N2) and hydrogen (02) are chemically converted into each fuel cell single cell 4 via the ionic conductive solid electrolyte 5. Reacts and produces water (N20
) is generated, and electrons corresponding to the free energy during the reaction are collected on the air electrode 6 side, which is an anode, and the electrons collected on each air electrode 6 are connected to the interconnector 9.
The current is collected from the current through the four-electric fiber felt 10 to the internal current collector tube 2.

したがって、内部集電子管2と外部集電予管3との間に
負荷を設けると、各燃料電池単体セル4の陰極である燃
料型4f!7から導電繊維フェルト11を介して外部集
電予管3を経由して陽極の内部集電子管2へ電流が流れ
る。
Therefore, when a load is provided between the internal current collector tube 2 and the external current collector tube 3, the fuel type 4f which is the cathode of each fuel cell single cell 4! Current flows from 7 through the conductive fiber felt 11 to the internal current collector tube 2 of the anode via the external current collector tube 3.

このようにして、固体電解質型燃料電池1に燃料の水素
と酸化剤の酸素とを逐次補給するとともに、起電反応の
結果生成された水を排出除去Jることにより、安定した
電流を連続的に取出すことができる。
In this way, by sequentially replenishing the solid oxide fuel cell 1 with hydrogen as a fuel and oxygen as an oxidizing agent, and discharging and removing water generated as a result of the electromotive reaction, a stable current can be continuously generated. It can be taken out.

また、高温の水素の供給状態の差や、水素の供給側と、
供給側から遠い側とによる水素ガスの温度差等によって
、固体電解質型燃料電池1の温度に差が生じると、各燃
料電池単体セル4間、あるいは各燃料電池単体セル4の
部分で起電反応にむらが生じるため、固体電解質型燃料
電池1全体としての起電呈が低下するが、この実施例に
おいては、内部1電子管2にヒートパイプを使用してい
るため、内部集電子管2の全長方向または周方向で、固
体電解質型燃料電池1の外部集電予管3内の最も高温の
部分に面した部分がと−トパイプの蒸発部となるととも
に、この蒸発部と比較して温度の低い部分が凝縮部とな
り、蒸光部で蒸発した作動流体の蒸気が、高温部分から
奪った熱を黒光潜熱として輸送して低温部分において凝
縮する際に欣然して、ヒートバイブの全長を灼熱化する
In addition, there are differences in the supply status of high-temperature hydrogen, and
When a temperature difference occurs in the solid oxide fuel cell 1 due to a temperature difference between the hydrogen gas and the side far from the supply side, an electromotive reaction occurs between each fuel cell unit 4 or in a portion of each fuel cell unit 4. Due to this unevenness, the electromotive force of the solid oxide fuel cell 1 as a whole decreases. However, in this embodiment, since a heat pipe is used for the internal electron tube 2, Alternatively, in the circumferential direction, the part facing the highest temperature part in the external current collector tube 3 of the solid oxide fuel cell 1 becomes the evaporation part of the pipe, and the part whose temperature is lower than this evaporation part. becomes the condensing part, and the vapor of the working fluid evaporated in the evaporating part transports the heat taken from the high-temperature part as black light latent heat and condenses in the low-temperature part, causing the whole length of the heat vibe to become scorching.

したがって、固体電解質型燃料電池1の全体の温度が均
一となり、高効率で起電反応が行なわれ、起電能力を高
水準に維持することができる。
Therefore, the temperature of the entire solid oxide fuel cell 1 becomes uniform, the electromotive reaction is carried out with high efficiency, and the electromotive capacity can be maintained at a high level.

また第3図は第2実施例を示すもので、これは前記第1
実施例の固体電解質型燃料電池1を1個のモジュールと
して複数個組合わせた集合型燃料電池で、第1実施例と
同一構成部分には同一の符号を付して説明する。
Further, FIG. 3 shows a second embodiment, which is similar to the first embodiment.
This is an aggregated fuel cell in which a plurality of solid oxide fuel cells 1 of the embodiment are combined as one module, and the same components as in the first embodiment will be described with the same reference numerals.

集合型燃料電池21は、ヒートバイブ構造を備えた内部
集電子管2の外側に外部集電予管3を同心円筒状に設け
るとともに、この画集電子管2゜3の間に管状の6個の
燃料電池単体セル4を配設した円筒状の固体電解質型燃
料電池1を複数個集合させたものである。そして、隣り
合う固体電解質型燃料電池1,1の外部集電予管3,3
を互いに接触させた状態で、集電子板22.22間に5
個ずつ挟装したものを4列に設けて、合計で20個の固
体電解質型燃料電池1が組込まれている。
The collective fuel cell 21 has an external current collecting tube 3 arranged in a concentric cylindrical shape outside an internal current collecting tube 2 having a heat-vib structure, and six tubular fuel cells arranged between the collecting electron tubes 2°3. A plurality of cylindrical solid electrolyte fuel cells 1 each having a single cell 4 arranged therein are assembled together. Then, the external current collector tubes 3, 3 of the adjacent solid oxide fuel cells 1, 1
5 between the current collector plates 22 and 22 with the
A total of 20 solid oxide fuel cells 1 are installed, each being sandwiched in four rows.

また、各集電子板22は、それぞれ導体板23の一方の
面(第3図においてそれぞれ下面)に絶縁rfA24が
貼付されている。そして、各固体電解質型燃料電池1は
、その外部集電予管3の外周を、両側から挾んでいる集
電子板22.22のうちの一方の(第3図においてそれ
ぞれ上方に位置ザる)@電子板22の絶縁膜24に当接
し、かつ他方の(第3図においてそれぞれ下方に位置す
る)集電子板22の導体板23に当接するとともに、各
固体電解質型燃料電池1は、その外部集電予管3の外周
を絶縁膜24に当接した前記一方のく第3図においてそ
れぞれ上方に位置する)集電子板22と内部集電子管2
の端部との間を配線(図示せず)でそれぞれ接続して直
列接続となっており、第3図において最上部の集電子板
22の導体板23がプラス端子25となり、また最下部
の集電子板22の導体板23がマイナス端子26となっ
ている。
Further, in each collector plate 22, an insulating rfA 24 is attached to one surface (the lower surface in FIG. 3) of a conductor plate 23, respectively. Each solid oxide fuel cell 1 is mounted on one of the current collector plates 22 and 22 that sandwich the outer periphery of the external current collector tube 3 from both sides (positioned above in FIG. 3). @The insulating film 24 of the electronic board 22 and the conductor plate 23 of the other current collector plate 22 (located below in FIG. 3), and each solid oxide fuel cell 1 The outer periphery of the current collector tube 3 is in contact with the insulating film 24, and the current collector plate 22 (located above in FIG.
They are connected in series by wiring (not shown) between the ends of the current collector plate 22, and in FIG. The conductor plate 23 of the current collector plate 22 serves as a negative terminal 26.

また各固体電解質型燃料電池1は、各燃料電池単体セル
4の中空部に酸素が供給され、外部集電予管3の内側の
空間には水素が供給され、また生成された水は外部へ排
出されるようになっている。
Furthermore, in each solid oxide fuel cell 1, oxygen is supplied to the hollow part of each fuel cell single cell 4, hydrogen is supplied to the space inside the external current collector tube 3, and the generated water is sent to the outside. It is designed to be ejected.

また、この実施例の各固体電解質型燃料電池1は、内部
集電子管2にヒートパイプを用いて各固体電解質型燃料
電池1の温度の均一化を図ることにより、前記第1実施
例と同様に高効率で起電反応が行なわれ、起電能力が高
水準に維持されるようになっている。
In addition, each solid oxide fuel cell 1 of this embodiment is similar to the first embodiment by using a heat pipe in the internal current collector tube 2 to equalize the temperature of each solid oxide fuel cell 1. The electromotive reaction is carried out with high efficiency, and the electromotive ability is maintained at a high level.

次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.

集合型燃料電池21は、各固体電解質型燃料電池1の6
個の燃料電池単体セル4の各中空部に酸素が、外部集電
予管3の内側でかつ各燃料電池単体セル4の周囲の空間
に水素がそれぞれ供給されると、管状の各燃料電池単体
セル4の固体電解質5を介して酸素と水素とが化学反応
して水が生成されるとともに、遊離した電子が内側の空
気電極(図示せず)に捕集され、捕集された電子は内部
集電子管2に集電される。
The collective fuel cell 21 includes 6 of each solid oxide fuel cell 1.
When oxygen is supplied to each hollow part of the single fuel cell unit 4 and hydrogen is supplied to the inside of the external current collector pipe 3 and the space around each single fuel cell unit 4, each tubular single fuel cell unit Oxygen and hydrogen chemically react through the solid electrolyte 5 of the cell 4 to generate water, and the liberated electrons are collected by an inner air electrode (not shown), and the collected electrons are Current is collected into the current collector tube 2.

そして、−列に配設された5個の固体電解質型燃料電池
1の各内部集電子管2に集電された電子は、それぞれの
列ごとに第3図において上方に位置するjJ電子板22
にそれぞれ配線接続されて集電されるとともに、それぞ
れの列ごとに第3図において下方に位置する集電子板2
2に各固体電解質型燃料電池1の外部集電予管3が電気
的に接続されていることにより、集合型燃料電池21の
プラス端子25とマイナス端子26との間に負荷を設け
ると、マイナス端子26側からプラス端子25側に電流
が流れる。したがって、この集合型燃料電池21は、2
0@の固体;f7 wl−質型燃料雷池1を有すること
から、各固体電解質型燃料電池1の6個の燃料電池単体
セル4がそれぞれ約10.4wの起電力を有するものと
すると、全体で約1.25kWの電力を得ることができ
る。
The electrons collected in the internal current collector tubes 2 of the five solid oxide fuel cells 1 arranged in the - row are transferred to the jJ electronic board 22 located above in FIG. 3 for each row.
A current collector plate 2 is connected to the current collector plate 2 and is connected to the current collector plate 2 and is located at the lower side in FIG. 3 for each column.
Since the external current collector tube 3 of each solid oxide fuel cell 1 is electrically connected to the terminal 2, when a load is placed between the positive terminal 25 and the negative terminal 26 of the collective fuel cell 21, the negative Current flows from the terminal 26 side to the positive terminal 25 side. Therefore, this collective fuel cell 21 has 2
0@ solid; f7 wl- Since the solid oxide fuel cell 1 has a fuel lightning pond 1, assuming that each of the six fuel cell single cells 4 of each solid oxide fuel cell 1 has an electromotive force of approximately 10.4 W, the total Approximately 1.25kW of power can be obtained.

また第4図は第3実施例の固体電解質型燃料電池を示す
もので、これは前記第1実施例の固体電解質型燃料電池
における外部集電予管をヒートパイプとしたもので第1
実施例と同一の構成部分には同一の符号を付して説明す
る。
Further, FIG. 4 shows a solid oxide fuel cell according to a third embodiment, in which the external current collector tube in the solid oxide fuel cell according to the first embodiment is replaced with a heat pipe.
Components that are the same as those in the embodiment will be described with the same reference numerals.

固体電解質型燃料電池31は、内部集電子管32と外部
集電予管33とを同心円筒状に設けるとともに、画集電
子管32.33間には、管状の固体電解質5の内側に多
孔質の空気電極6を、外側に多孔質の燃料電極7をそれ
ぞれ設(ブた燃料電池単体セル4が6個設けられており
、また曲記内部集電子管32は金属管製で、また外部集
電予管33は二重管式のヒートパイプ構造となっている
The solid electrolyte fuel cell 31 has an internal current collector tube 32 and an external current collector tube 33 arranged in a concentric cylindrical shape, and has a porous air electrode inside the tubular solid electrolyte 5 between the collector electron tubes 32 and 33. 6 and a porous fuel electrode 7 on the outside (6 fuel cells 4 are provided, the internal current collector tube 32 is made of a metal tube, and the external current collector tube 33 is made of a metal tube). has a double-tube heat pipe structure.

また、前記各燃料電池単体セル4の内側の空気電極6は
インターコネクタ9により4電繊維フエルト10を介し
て内部集電子管32と電気的に接続され、外側の燃料電
極7は導電繊維フェルト11を介して外部集電予管33
と電気的に接続されている。各燃料電池単体セル4の中
空部内には酸素が供給されるとともに、各燃料電池単体
セル4の外側には水素が供給されるようになっている。
Furthermore, the air electrode 6 on the inside of each single fuel cell 4 is electrically connected to the internal current collector tube 32 via the four-electric fiber felt 10 by an interconnector 9, and the outer fuel electrode 7 is connected to the internal current collector tube 32 through the conductive fiber felt 11. External current collection tube 33 through
electrically connected to. Oxygen is supplied into the hollow portion of each single fuel cell 4, and hydrogen is supplied to the outside of each single fuel cell 4.

そして、前記外部集電予管33は、内管33aと外管3
3bとを空間を存して同心状に設けた二重管の前記空間
部分を密封し、その内部に凝縮性の作動流体を封入して
ヒートパイプ構造となっている。
The external current collecting tube 33 includes an inner tube 33a and an outer tube 3.
3b and 3b are provided concentrically with a space between them, and the space portion of the double pipe is sealed, and a condensable working fluid is sealed inside the double pipe to form a heat pipe structure.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池31は、各燃料電池用体セル4の
各中空部に酸素が、外部集電予管3の内側でかつ各燃料
電池単体セル4の周囲の空間に水素がそれぞれ供給され
ると、管状の各燃料電池単体セル4の固体電解質5を介
して酸素と水素とが化学反応して水が生成されるととも
に、遊離した電子が内側の空気電極6に捕集され、捕集
された電子は内部集電子管32に集電される。
In the solid oxide fuel cell 31, oxygen is supplied to each hollow part of each fuel cell body 4, and hydrogen is supplied to the space inside the external current collector tube 3 and around each fuel cell unit 4. Then, oxygen and hydrogen chemically react through the solid electrolyte 5 of each tubular fuel cell unit 4 to generate water, and the liberated electrons are collected and collected by the inner air electrode 6. The collected electrons are collected into an internal current collector tube 32.

したがって、内部集電子管32と外部集電予管33との
間に負荷を設けると、各燃料電池単体セル4の陰極であ
る燃料電極7から導電繊維フェルト11を介して外部集
電予管3を経由して陽極の内部集電子管2へ電流が流れ
る。
Therefore, when a load is placed between the internal current collector tube 32 and the external current collector tube 33, the external current collector tube 3 is connected from the fuel electrode 7, which is the cathode of each fuel cell single cell 4, through the conductive fiber felt 11. A current flows through the anode to the internal current collector tube 2.

このようにして、固体電解質型燃料電池1に燃料の水素
と酸化剤の酸素とを逐次補給するとともに、起電反応の
結果生成された水を外部へ排出することにより、安定し
た電流を連続的に取出すことができる。
In this way, by sequentially replenishing the solid oxide fuel cell 1 with hydrogen as a fuel and oxygen as an oxidizer, and discharging water generated as a result of the electromotive reaction to the outside, a stable current can be continuously generated. It can be taken out.

また、外部集電予管33にヒートパイプを使用したので
、固体電解質型燃料電池1に部分的な温度差が生じると
、外部集電予管33のヒートバイブ作用により均熱化さ
れ、起電反応にむらが生じないため、固体電解質型燃料
電池31の起電能力が高水準に維持される。
In addition, since a heat pipe is used as the external current collector tube 33, if a local temperature difference occurs in the solid oxide fuel cell 1, the temperature is equalized by the heat vibration effect of the external current collector tube 33, and electricity is generated. Since there is no unevenness in the reaction, the electromotive capacity of the solid oxide fuel cell 31 is maintained at a high level.

なお、前記各実施例においては、内部集電子管2(32
)と外部集電予管3 (33)のいずれか一方をヒート
パイプにした場合について説明したが、内部集電子管2
(32)と外部集電予管3(33)の両方をヒートパイ
プとプることもでき、この場合には、固体電解質型燃料
電池1(31)の均熱化がより効果的に達成される。
In each of the above embodiments, the internal current collector tube 2 (32
) and external current collector tube 3 (33) were explained as heat pipes, but internal current collector tube 2
(32) and the external current collector tube 3 (33) can also be used as heat pipes. In this case, the temperature uniformity of the solid oxide fuel cell 1 (31) can be achieved more effectively. Ru.

また、各実施例においては、固体電解質型燃料電池1 
(33)の各燃料電池単体セル4の内側の中空部に酸素
を、外側に水素をそれぞれ供給してて起電反応させたが
、逆に各燃料電池単体セル4の内側の中空部に水素を、
外側に酸素をそれぞれ供給して起電反応させてもよく、
この場合には陽極である空気電極と陰極である燃料電極
との位置が逆になるだけで同様に電力を取出プことがで
きる。
In addition, in each example, solid oxide fuel cell 1
Oxygen was supplied to the inner hollow part of each single fuel cell 4 in (33), and hydrogen was supplied to the outer part to cause an electromotive reaction, but conversely, hydrogen was supplied to the inner hollow part of each single fuel cell 4. of,
Oxygen may be supplied to the outside to cause an electromotive reaction,
In this case, electric power can be extracted in the same way by simply reversing the positions of the air electrode, which is the anode, and the fuel electrode, which is the cathode.

発明の詳細 な説明したようにこの発明の固体電解質型燃料電池は、
同心円筒状に設けられた内部集電子管と外部集電予管と
の間に、燃料電池単体セルを複数個配設した固体電解質
型燃料電池モジュールにおいて、前記内部集電子管と外
部集電予管とのうちの少くとも一方の集電子管を金属製
としたので、この金属製の集電子管が保護部材となって
固体電解質型燃料電池の橢械的強度を確保され、各燃料
電池単体セルの薄肉化および小径化が可能となり、固体
電解質型燃料電池の単位容積当りの発電能力を向上させ
ることができる。
As described in detail, the solid oxide fuel cell of the present invention has the following features:
In a solid oxide fuel cell module in which a plurality of single fuel cells are arranged between an internal current collector tube and an external current collector tube provided in a concentric cylindrical shape, the internal current collector tube and the external current collector tube are connected to each other. Since at least one of the current collector tubes is made of metal, this metal current collector tube serves as a protective member and ensures the mechanical strength of the solid oxide fuel cell, making it possible to reduce the thickness of each single fuel cell. Moreover, the diameter can be reduced, and the power generation capacity per unit volume of the solid oxide fuel cell can be improved.

また、燃料電池単体セルを複数飼猫えた固体電解質型燃
料電池モジュールの構成が簡潔となるとともに、機械的
強度上の制約が減少するため、固体電解質型燃料電池モ
ジュールを小型化および大型化する際の設計の自由度が
増し、必要な容積や出力等の条件を優先させて設計する
ことができる。
In addition, the structure of a solid oxide fuel cell module with multiple single fuel cells becomes simpler, and restrictions on mechanical strength are reduced, making it easier to downsize and enlarge solid oxide fuel cell modules. The degree of freedom in design increases, and it is possible to prioritize conditions such as required volume and output when designing.

さらに、内部集電子管および/または外部集電予管を、
伝熱性の高い金属管とすることにより、固体電解質型燃
料電池モジュールの均熱化が図れ、起電能力を向上させ
ることができる等の効果を有する。
Furthermore, an internal current collector tube and/or an external current collector tube,
By using a metal tube with high heat conductivity, it is possible to equalize the heat of the solid oxide fuel cell module, and it has effects such as being able to improve the electromotive capacity.

また、内部集電子管と外部集電予管とのうちの少くとも
一方をと−トバイブとすれば、ヒートパイプの作用によ
って固体電解質型燃料電池モジュールの長手方向および
周方向の均熱化がさらに速やかに行なわれ、固体電解質
型燃料電池モジュールの起電能力を高水準に保持するこ
とができる。
In addition, if at least one of the internal current collector tube and the external current collector tube is a tobbe, the heat pipe can uniformly heat the solid oxide fuel cell module in the longitudinal and circumferential directions even more quickly. The electromotive capacity of the solid oxide fuel cell module can be maintained at a high level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの光電の第1実施例を示すもの
で、第1図は固体電解質型燃料電池の断面正面図、第2
図は燃料電池単体セルの斜視断面図、第3図は第2実施
例の集合型燃料電池の断面正面図、第4図は第3実施例
の固体電解質型燃料電池の断面正面図である。 1・・・固体電解質型燃料電池、 2・・・ヒートバイ
ブ構造を備えた内部集電子管、 3・・・外部集電予管
、 4・・・燃料電池単体セル、 5・・・固体電解質
、6・・・空気電極、 7・・・燃料電極、 8・・・
スリット、9・・・インターコネクタ、  10.11
・・・導電繊維フェルト、 21・・・集合型燃料電池
、 22・・・集電子板、 23・・・導電板、 24
・・・絶縁膜、 25・・・プラス端子、 26・・・
マイナス端子、 31・・・固体電解質型燃料電池、 
32・・・内部集電子管、33・・・ヒートパイプ構造
8備えた外部集電予管。
Figures 1 and 2 show a first embodiment of this photovoltaic device, with Figure 1 being a cross-sectional front view of a solid oxide fuel cell, and Figure 2 being a cross-sectional front view of a solid oxide fuel cell.
The figure is a perspective sectional view of a single fuel cell, FIG. 3 is a sectional front view of an aggregate fuel cell according to a second embodiment, and FIG. 4 is a sectional front view of a solid oxide fuel cell according to a third embodiment. DESCRIPTION OF SYMBOLS 1...Solid electrolyte fuel cell, 2...Internal current collector tube with heat-vib structure, 3...External current collector tube, 4...Single fuel cell cell, 5...Solid electrolyte, 6...Air electrode, 7...Fuel electrode, 8...
Slit, 9...Interconnector, 10.11
... Conductive fiber felt, 21... Collective fuel cell, 22... Current collector plate, 23... Conductive plate, 24
...Insulating film, 25...Positive terminal, 26...
Negative terminal, 31... solid electrolyte fuel cell,
32... Internal current collector tube, 33... External current collector tube with heat pipe structure 8.

Claims (3)

【特許請求の範囲】[Claims] (1)空間を存して同心円筒状に設けられた内部集電子
管と外部集電予管との間に、管状の固体電解質の内側に
空気電極または燃料電極を、外側に燃料電極または空気
電極を設けた燃料電池単体セルを複数個配設した固体電
解質型燃料電池モジュールにおいて、前記内部集電子管
と外部集電予管とのうちの少くとも一方の集電予管が金
属製であることを特徴とする固体電解質型燃料電池モジ
ュール。
(1) An air electrode or a fuel electrode is placed on the inside of the tubular solid electrolyte, and a fuel electrode or air electrode is placed on the outside between the internal current collector tube and the external current collector tube, which are provided in a concentric cylindrical shape with a space between them. In a solid oxide fuel cell module in which a plurality of single fuel cells are arranged, at least one of the internal current collector tube and the external current collector tube is made of metal. Solid electrolyte fuel cell module with special features.
(2)前記内部集電子管と外部集電予管とのうちの少く
とも一方がヒートパイプであることを特徴とする請求項
1記載の固体電解質型燃料電池モジュール。
(2) The solid oxide fuel cell module according to claim 1, wherein at least one of the internal current collector tube and the external current collector tube is a heat pipe.
(3)前記内部集電子管の外径と燃料電池単体セルの外
径とをほぼ同じ寸法に形成し、内部集電子管の外周側に
6個の燃料電池単体セルを配設したことを特徴とする請
求項1または2記載の固体電解質型燃料電池モジュール
(3) The outer diameter of the internal current collector tube and the outer diameter of the single fuel cell are formed to be approximately the same size, and six single fuel cells are arranged on the outer peripheral side of the internal current collector tube. The solid oxide fuel cell module according to claim 1 or 2.
JP1011433A 1989-01-20 1989-01-20 Solid oxide fuel cell module Expired - Fee Related JP2818944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011433A JP2818944B2 (en) 1989-01-20 1989-01-20 Solid oxide fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011433A JP2818944B2 (en) 1989-01-20 1989-01-20 Solid oxide fuel cell module

Publications (2)

Publication Number Publication Date
JPH02192665A true JPH02192665A (en) 1990-07-30
JP2818944B2 JP2818944B2 (en) 1998-10-30

Family

ID=11777950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011433A Expired - Fee Related JP2818944B2 (en) 1989-01-20 1989-01-20 Solid oxide fuel cell module

Country Status (1)

Country Link
JP (1) JP2818944B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100881A2 (en) * 2002-05-23 2003-12-04 Alberta Research Council Inc. Solid oxide fuel cell system
EP1482590A1 (en) * 2003-05-30 2004-12-01 Sanyo Electric Biomedical Co., Ltd. Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell power generator
WO2006048574A1 (en) * 2004-11-02 2006-05-11 Commissariat A L'energie Atomique Fuel cell module, method for the production thereof and a unit comprises a number thereof
JP2007066758A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Fuel cell
JP2008519391A (en) * 2004-11-02 2008-06-05 コミツサリア タ レネルジー アトミーク Fuel cell module with flexible interconnect
US7736772B2 (en) 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
JP2010541147A (en) * 2007-09-28 2010-12-24 シーメンス エナジー インコーポレイテッド Fuel cell device and manufacturing method thereof
US8709674B2 (en) 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140178799A1 (en) * 2012-12-21 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Solid oxide fuel cell and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936367B2 (en) 2002-01-16 2005-08-30 Alberta Research Council Inc. Solid oxide fuel cell system
US7736772B2 (en) 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
WO2003100881A3 (en) * 2002-05-23 2005-05-19 Alberta Res Council Solid oxide fuel cell system
US7235321B2 (en) 2002-05-23 2007-06-26 Alberta Research Council, Inc. Solid oxide fuel cell system
WO2003100881A2 (en) * 2002-05-23 2003-12-04 Alberta Research Council Inc. Solid oxide fuel cell system
EP1482590A1 (en) * 2003-05-30 2004-12-01 Sanyo Electric Biomedical Co., Ltd. Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell power generator
WO2006048574A1 (en) * 2004-11-02 2006-05-11 Commissariat A L'energie Atomique Fuel cell module, method for the production thereof and a unit comprises a number thereof
JP2008519391A (en) * 2004-11-02 2008-06-05 コミツサリア タ レネルジー アトミーク Fuel cell module with flexible interconnect
JP2008519392A (en) * 2004-11-02 2008-06-05 コミツサリア タ レネルジー アトミーク FUEL CELL MODULE, MANUFACTURING METHOD THEREOF, AND UNIT INCLUDING MULTIPLE MODULES
US7887959B2 (en) 2004-11-02 2011-02-15 Commissariat A L'energie Atomique Fuel cell module with flexible interconnects
US8709675B2 (en) 2004-11-02 2014-04-29 Commissariat A L'energie Atomique Fuel cell module, manufacturing method thereof and unit containing several of the latter
US8709674B2 (en) 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure
JP2007066758A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Fuel cell
JP2010541147A (en) * 2007-09-28 2010-12-24 シーメンス エナジー インコーポレイテッド Fuel cell device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2818944B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP2777287B2 (en) Electrochemical fuel cell using ambient air as oxidant and coolant
JPH03241670A (en) Solid electrolyte type fuel cell
JPH03274672A (en) Solid electrolyte type fuel cell
JP2000268835A (en) Power generating device
KR100570752B1 (en) Reformer for fuel cell system and fuel cell system having thereof
KR100649676B1 (en) A micro reformer of wire type and a micro fuel cell with the same
JP4957545B2 (en) FUEL CELL MODULE AND FUEL CELL INCLUDING THE FUEL CELL MODULE
JPH02192665A (en) Solid electrolyte type fuel cell module
JPH0359955A (en) Fuel battery generator
JP2013118167A (en) Solid oxide fuel cell and method of manufacturing the same
KR20140053568A (en) Solid oxide fuel cell module
KR101222836B1 (en) Solid oxide fuel cell module
JP2816476B2 (en) Solid oxide fuel cell module
KR20110044657A (en) Supported flat-tubular solid oxide fuel cell
JPH1021942A (en) Solid electrolyte fuel cell
KR20020074046A (en) Monopolar cell pack of direct methanol fuel cell
KR101301354B1 (en) Solid oxide fuel cell and solid oxide fuel cell module
JP2816473B2 (en) Solid oxide fuel cell module
JP2004265872A (en) Fuel cell, fuel cell generator and instrument using the same
JP2816474B2 (en) Solid oxide fuel cell module
JPH0359956A (en) Fuel battery generator
JPH0722058A (en) Flat solid electrolyte fuel cell
JP2816471B2 (en) Solid oxide fuel cell module
JP5504498B2 (en) FUEL CELL, FUEL CELL SYSTEM, AND POWER GENERATION METHOD
US20110117475A1 (en) Anode supported solid oxide fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees