JPH02192649A - Linear electron gun device - Google Patents

Linear electron gun device

Info

Publication number
JPH02192649A
JPH02192649A JP985089A JP985089A JPH02192649A JP H02192649 A JPH02192649 A JP H02192649A JP 985089 A JP985089 A JP 985089A JP 985089 A JP985089 A JP 985089A JP H02192649 A JPH02192649 A JP H02192649A
Authority
JP
Japan
Prior art keywords
electron gun
electron
filament
gun device
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP985089A
Other languages
Japanese (ja)
Inventor
Saburo Ikeda
池田 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP985089A priority Critical patent/JPH02192649A/en
Publication of JPH02192649A publication Critical patent/JPH02192649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a gap between beams in a plurality of parallel electron gun device for obtaining an electron gun of a large beam length by using an ac power supply as a power supply for feeding current to a filament. CONSTITUTION:Displacement of an electron beam is made to oscillate in both directions depending upon a frequency by using the characteristics wherein the electron beam is displaced laterally due to magnetic field generated with current supplied to filaments 1-1, and 1-2 to 1-n, and employing an ac power supply 13. Due to the effect, it follows that an electron beam is radiated even in a gap between beams in a plurality of parallel electron gun device to obtain an electron of a large beam length. As a result, for example, thermal distribution on the beam irradiated surface of metal to be fused comes to be eliminated. According to this construction, it is possible to solve a problem about generation of the irregularity and the like of deposited thickness on a deposition surface and to obtain a uniform beam shape in a length-wise direction.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は金属溶解、蒸着等に用いる電子銃装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an electron gun device used for metal melting, vapor deposition, etc.

(従来の技術) 電子銃装置を用い金属溶解、蒸着等を行うことは、近年
多く使用されている0本作業においては。
(Prior Art) Metal melting, vapor deposition, etc. using an electron gun device is a technique that has been widely used in recent years in zero-line operations.

溶解面、蒸発面を広く取ることが有利であり、かつ、安
定した熱源を得るためには、リニア状の熱源を用いるこ
とが良い。この手段としてリニア電子銃がある。
It is advantageous to have a wide melting surface and evaporation surface, and in order to obtain a stable heat source, it is preferable to use a linear heat source. A linear electron gun is a means for this purpose.

第3図に代表的なリニア電子銃の断面図を示し、第4図
に同じくリニア電子銃の側面図を示す。
FIG. 3 shows a sectional view of a typical linear electron gun, and FIG. 4 shows a side view of the same linear electron gun.

(本図においてはカソードとしてフィラメントを用いた
場合について述べる。) フィラメント1に通電することにより、フィラメントl
は加熱され、かつ、ウェーネルト(副電極)2の電位に
より、フィラメント1より熱電子3が発生する。発生し
た熱電子3は、負電位がかかるアノードプレート4、お
よび、アノードプレート4に保持されるアノードバー5
の電界により、電・子ビーム6となり、前述の金属溶解
、蒸着等における熱源となる。
(This figure describes the case where a filament is used as the cathode.) By energizing filament 1, filament l
is heated, and thermoelectrons 3 are generated from the filament 1 due to the potential of the Wehnelt (auxiliary electrode) 2. The generated thermoelectrons 3 are transferred to an anode plate 4 to which a negative potential is applied and an anode bar 5 held by the anode plate 4.
The electric field turns into an electron/electron beam 6, which serves as a heat source for metal melting, vapor deposition, etc. described above.

リニア電子銃は、他にウェーネルト2を保持するウェー
ネルトホルダー7及び台座8、アノードプレート4、ア
ノードバー5を台座8と絶縁を保ちながら保持する絶縁
研石9、フィラメント1の両端を保持するフィラメント
ホルダー10及びフィラメントホルダー10の絶縁をお
こなう絶縁研石11さらにフィラメント1に加熱用の電
流を与える直流電源12から成り立っている。(尚、図
中には、アノードに印加する電子加速用電源は示さない
。)前記の如くリニi電子銃において電子ビームを発生
させると、フィラメント1においては、フィラメント1
加熱用電流が直流のため、フィラメント部分においては
その電流により周囲に磁界が生じ(アンペアの法則)、
第5図の如く電子ビーム6は横方向へ図中″d′″の変
位を生じる。
The linear electron gun also includes a Wehnelt holder 7 and a pedestal 8 that hold the Wehnelt 2, an anode plate 4, an insulated grinding stone 9 that holds the anode bar 5 while maintaining insulation from the pedestal 8, and a filament that holds both ends of the filament 1. It consists of an insulating grinder 11 for insulating the holder 10 and the filament holder 10, and a DC power supply 12 for supplying heating current to the filament 1. (Note that the electron acceleration power supply applied to the anode is not shown in the figure.) When an electron beam is generated in the Lini i electron gun as described above, the filament 1
Since the heating current is direct current, a magnetic field is generated around the filament due to the current (Ampere's law).
As shown in FIG. 5, the electron beam 6 causes a horizontal displacement of "d" in the figure.

今、電子ビーム6の長さ′L″が長くなった場合には、
フィラメント1を長くすることにより、ビーム長の大き
い電子銃が得られるが、フィラメント1は、−殻内に非
常に細く(11径程度)フィラメントの自重による撓み
等の変形を考慮すると一体型のフィラメントにてビーム
長の大きい電子銃を得ることは難しい。
Now, if the length 'L'' of the electron beam 6 becomes longer,
By making the filament 1 long, an electron gun with a long beam length can be obtained. However, the filament 1 has a very thin shell (about 11 diameter) and is an integral filament considering deformation such as bending due to the filament's own weight. It is difficult to obtain an electron gun with a large beam length.

ビーム長の大きい電子銃を得るためには、短フィラメン
トの電子銃を並列に並べる方法があるが、構造上フィラ
メントホルダー10のスペースが必要となり、第6図に
示す如く、各電子銃より引き出される電子ビーム6は、
フィラメントホルダー10の隙間を残した形のビーム形
状となる。
In order to obtain an electron gun with a large beam length, there is a method of arranging short filament electron guns in parallel, but this requires space for the filament holder 10 due to its structure, and as shown in FIG. The electron beam 6 is
The beam shape is such that a gap between the filament holders 10 is left.

(発明が解決しようとする課題) 前記の如き構成のビーム長の大きい電子銃にては、例え
ば溶融する金属におけるビーム照射面の温度分布が、第
7図に示すように、フィラメントホルダー10の隙間部
分において、極端に差がついてしまうこととなり、特に
、蒸発しにくい(蒸気圧の低い)金属においては、蒸発
する金属蒸気の蒸気密度が異なり、例えば、金属蒸着等
においては、蒸着面における蒸着厚さのバラツキ等が生
じる問題点がある。
(Problems to be Solved by the Invention) In an electron gun having a long beam length as described above, the temperature distribution of the beam irradiation surface in the melting metal, for example, is caused by the gap between the filament holders 10 and 10, as shown in FIG. In particular, for metals that are difficult to evaporate (low vapor pressure), the vapor density of the evaporated metal vapor differs, and for example, in metal evaporation, the evaporation thickness on the evaporation surface There are problems such as variations in the thickness.

本発明は、上記の点に鑑み、なされたものであり1分割
されたフィラメントをもったビーム長の大きい電子銃装
置において、長さ方向に均一なビーム形状を得ようとす
るものである。
The present invention has been made in view of the above points, and is an object of the present invention to obtain a uniform beam shape in the length direction in an electron gun device having a large beam length and having a filament divided into one part.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、線状熱源(線状カソード)にて熱電子を発生
させて、引き出し電界により電子ビームを得るリニア電
子銃装置において、特に、ビーム長の大きい電子銃を得
るために、複数台の電子銃を並列に並べた電子銃装置で
、フィラメントに流す電流で発生する磁界により、横方
向への電子ビームが変位する特性を利用し、従来、フィ
ラメントに流す電流として用いる直流電源に、交流電源
を用いることにより、電子ビームの変位を、片側のみで
なく、両方向への変位として、かつ、交流電源の周波数
に応じて振動させることにより、ビーム長の大きい電子
銃を得るための複数台の並列電子銃装置におけるビーム
間の隙間においても、電子ビームが照射されるようにす
るものである。
(Means for Solving the Problems) The present invention is directed to a linear electron gun device that generates thermoelectrons with a linear heat source (linear cathode) and obtains an electron beam using an extraction electric field. In order to obtain a gun, it is an electron gun device in which multiple electron guns are arranged in parallel, and the electron beam is displaced in the lateral direction by the magnetic field generated by the current flowing through the filament. By using an AC power source instead of the DC power source used as the current, the displacement of the electron beam is not only in one direction but in both directions, and by oscillating it according to the frequency of the AC power source, it is possible to generate electrons with a large beam length. The purpose is to irradiate electron beams even in gaps between beams in a plurality of parallel electron gun devices for obtaining a gun.

(作 用) 線状熱源(線状カソード)にて熱電子を発生させて、引
き出し電界により電子ビームを得るリニア電子銃装置に
おいて、フィラメントに流す電流として用いる電源に、
交流電源を用いることにより、ビーム長の大きい電子銃
を得るための、複数台の並列電子銃装置におけるビーム
間の隙間をなくすものである。
(Function) In a linear electron gun device that generates thermoelectrons with a linear heat source (linear cathode) and obtains an electron beam using an extraction electric field, the power source used as the current to flow through the filament is
By using an AC power source, gaps between beams in multiple parallel electron gun devices are eliminated in order to obtain an electron gun with a long beam length.

(実施例) 第1図を参照しながら、本発明に係るリニア電子銃装置
の実施例を説明する。分割されたフィラメント1−1.
1−2.〜1−nは、夫々、フィラメントサポート10
−1.10−2.〜,10−nにより保持されており、
このフィラメントには熱電子引き出し用のための電源と
して、交流電源13を接続する。又、フィラメントサポ
ートは、それぞれ、絶縁研石11−1.11−2.〜,
11−nにて、絶縁されている。
(Example) An example of a linear electron gun device according to the present invention will be described with reference to FIG. Split filament 1-1.
1-2. ~1-n are respectively filament supports 10
-1.10-2. ~,10-n,
An AC power source 13 is connected to this filament as a power source for extracting thermionic electrons. Further, the filament supports are respectively insulated grinding stones 11-1, 11-2. ~,
It is insulated at 11-n.

前記の如き構成の電子銃装置にて、電子ビームを発生す
ると、第2図に示す様なビーム形状が得られる。即ち、
フィラメント1−1.1−2.〜1−nに流す電流で発
生する磁界により、横方向への電子ビームが変位する特
性を利用し、かつ、交流電源13を使用することにより
、周波数に応じて電子ビームの変位を両方向へ振動する
こととなる。この効果により、ビーム長の大きい電子銃
を得るための、複数台の並列電子銃装置におけるビーム
間の隙間においても、電子ビームが照射されることとな
り、例えば溶融する金属面におけるビ−ム照射面の温度
分布がなくなり、金属蒸着等においては、特に、蒸発し
にくい(蒸気圧の低い)金属においては、蒸発する金属
蒸気の蒸気密度が異なって、蒸着面における蒸着厚さの
バラツキ等が生じる問題点を解消することが可能となる
When an electron beam is generated with the electron gun device having the above-mentioned configuration, a beam shape as shown in FIG. 2 is obtained. That is,
Filament 1-1.1-2. By utilizing the characteristic that the electron beam is displaced in the horizontal direction by the magnetic field generated by the current flowing through ~1-n, and by using the AC power supply 13, the displacement of the electron beam can be oscillated in both directions according to the frequency. I will do it. Due to this effect, electron beams are irradiated even in gaps between beams in multiple parallel electron gun devices to obtain an electron gun with a large beam length. In metal vapor deposition, especially for metals that are difficult to evaporate (low vapor pressure), the vapor density of the evaporated metal vapor differs, causing variations in the evaporation thickness on the evaporation surface. It becomes possible to eliminate the points.

〔発明の効果〕〔Effect of the invention〕

本発明に係るリニア電子銃装置により、ビーム長を大き
くするために短フィラメントの電子銃を並列にした場合
に発生するフィラメントホルダーの隙間による断続され
たビーム形状を、連続的なビーム形状とすることが可能
となり、ビーム照射面における、例えば溶融する金属面
の温度分布の不均一により、特に、金属蒸着等において
は、蒸発しにくい(蒸気圧の低い)金属における蒸着厚
さのバラツキ等が生じる問題点を解消することが可能と
なる。
By using the linear electron gun device according to the present invention, a beam shape interrupted by gaps between filament holders, which occurs when short filament electron guns are arranged in parallel to increase the beam length, can be changed to a continuous beam shape. This makes it possible to solve problems such as variations in the evaporation thickness of metals that are difficult to evaporate (low vapor pressure), especially in metal evaporation, due to uneven temperature distribution on the beam irradiation surface, for example on the melting metal surface. It becomes possible to eliminate the points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリニア電子銃装置の一実施例の要
部縦断面図、第2図は第1図のリニア電子銃装置により
得られるビーム形状を示す図、第3図は従来のリニア電
子銃装置の横断面図、第4図は第3図のIV−IV線矢
視図、第5図は従来のリニア電子銃装置により得られる
ビーム形状を示す。、1!j61i1tよヶよ。11.
ア、工銃l□並26.。装置して得られるビーム長の大
きい電子銃により得られるビーム形状を示す図、第7図
は第6図のリニア電子銃装置を並列に設置した状態での
ビーム照射部での温度分布を示す図である。 1.1−1.1−2.1−3・・・フィラメント2.2
−1.2−2.2−3・・・ウェーネルト3・・・熱電
子        4・・・アノードプレート5・・・
アノードバー     6.6−1.6−2.6−3・
・・電子ビーム7・・・ウェーネルトホルダー 8・・
・台座9・・・絶縁研石 10.10−1.10−2.10−3・・・フィラメン
トホルダー11.11−1.11−2.11−3・・・
絶縁研石12・・・直流電源       13・・・
交流電源代理人 弁理士 則 近 憲 佑 同    第子丸   健
FIG. 1 is a vertical cross-sectional view of a main part of an embodiment of the linear electron gun device according to the present invention, FIG. 2 is a diagram showing the beam shape obtained by the linear electron gun device of FIG. 1, and FIG. A cross-sectional view of the linear electron gun device, FIG. 4 is a view taken along the line IV--IV in FIG. 3, and FIG. 5 shows a beam shape obtained by a conventional linear electron gun device. , 1! j61i1t Yogayo. 11.
A. Machine gun l□ average 26. . Fig. 7 is a diagram showing the temperature distribution in the beam irradiation section when the linear electron gun apparatus of Fig. 6 is installed in parallel. It is. 1.1-1.1-2.1-3...Filament 2.2
-1.2-2.2-3... Wehnelt 3... Thermionic 4... Anode plate 5...
Anode bar 6.6-1.6-2.6-3・
...Electron beam 7...Wehnelt holder 8...
・Pedestal 9...Insulated grinding stone 10.10-1.10-2.10-3...Filament holder 11.11-1.11-2.11-3...
Insulated sharpening stone 12...DC power supply 13...
AC power supply agent Patent attorney Nori Chika Ken Yudo Daishimaru Ken

Claims (1)

【特許請求の範囲】[Claims] 複数の線状カソードを同一線上に配設し、ここで熱電子
を発生させて引き出し電界により電子ビームを得るリニ
ア電子銃装置において、線状カソードに流す電源に交流
電源を用いることを特徴としたリニア電子銃装置。
A linear electron gun device in which a plurality of linear cathodes are arranged on the same line, where thermionic electrons are generated and an electron beam is obtained by an extraction electric field, characterized in that an AC power source is used as a power source to flow through the linear cathodes. Linear electron gun device.
JP985089A 1989-01-20 1989-01-20 Linear electron gun device Pending JPH02192649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP985089A JPH02192649A (en) 1989-01-20 1989-01-20 Linear electron gun device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP985089A JPH02192649A (en) 1989-01-20 1989-01-20 Linear electron gun device

Publications (1)

Publication Number Publication Date
JPH02192649A true JPH02192649A (en) 1990-07-30

Family

ID=11731610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP985089A Pending JPH02192649A (en) 1989-01-20 1989-01-20 Linear electron gun device

Country Status (1)

Country Link
JP (1) JPH02192649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089506A (en) * 2010-10-19 2012-05-10 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Simplified particle emitter and method of operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089506A (en) * 2010-10-19 2012-05-10 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Simplified particle emitter and method of operating the same
US10699867B2 (en) 2010-10-19 2020-06-30 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Simplified particle emitter and method of operating thereof

Similar Documents

Publication Publication Date Title
US5635087A (en) Apparatus for plasma-assisted high rate electron beam vaporization
US2239642A (en) Coating of articles by means of cathode disintegration
US4461689A (en) Method and apparatus for coating a graphite member
JPH0627323B2 (en) Sputtering method and apparatus
JPH04232276A (en) Method and apparatus for treating articles by reaction with the aid of dc arc discharge
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
US3235647A (en) Electron bombardment heating with adjustable impact pattern
US4847476A (en) Ion source device
US3560252A (en) Vapor deposition method including specified solid angle of radiant heater
JP4689843B2 (en) Rectangular cathode arc source and arc spot pointing method
US3701915A (en) Electron beam gun
JPH02192649A (en) Linear electron gun device
JP2546591B2 (en) Apparatus and method for depositing material
US4911784A (en) Method and apparatus for etching substrates with a magnetic-field supported low-pressure discharge
JPH026184B2 (en)
JP3302710B2 (en) Substrate heating method using low voltage arc discharge and variable magnetic field
JP3555033B2 (en) Apparatus for coating a substrate with a material vapor under negative pressure or vacuum
US3748365A (en) Electron beam heating system
US3446934A (en) Electron beam heating apparatus
JP2000133179A (en) Electron beam generating device
JPH087814A (en) Electron gun device
JPH02278639A (en) Electron gun device
KR20020005274A (en) Ionizer used for ion gun sputtering deposition system
JP3835394B2 (en) Carbon nanotube production method and apparatus
JPH0554812A (en) Ion source