JPH02192403A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH02192403A
JPH02192403A JP1008638A JP863889A JPH02192403A JP H02192403 A JPH02192403 A JP H02192403A JP 1008638 A JP1008638 A JP 1008638A JP 863889 A JP863889 A JP 863889A JP H02192403 A JPH02192403 A JP H02192403A
Authority
JP
Japan
Prior art keywords
oxide
thin film
deposition
annealing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1008638A
Other languages
Japanese (ja)
Other versions
JP2730558B2 (en
Inventor
Takahito Machi
敬人 町
Atsushi Tanaka
厚志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1008638A priority Critical patent/JP2730558B2/en
Publication of JPH02192403A publication Critical patent/JPH02192403A/en
Application granted granted Critical
Publication of JP2730558B2 publication Critical patent/JP2730558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the title thin film with composition made proper after annealing by controlling the ratio of the deposition amount of a component oxide having higher vapor pressure when component oxides for an oxide super conductor are to be put to physical deposition on a substrate. CONSTITUTION:In the objective oxide superconducting thin film production processes comprising (1) a process to physically deposit component oxides for an oxide superconductor on a substrate and (2) an annealing process for the resultant deposition layer, the following constitution is added; that is, in the above physical deposition process, the ratio of the deposition amount of a compo nent oxide with higher vapor pressure is continuously increased over the entire specified period containing the end point of the deposition process. For example, in forming a Bi-Sr-Ca-Cn-O-based superconducting thin film, the deposition of a Bi2O3 component with higher vapor pressure is continuously increased. This period and the extent of the increase are determined after practical annealing treatment is made on the resultant deposition layer formed at a uniform superconductor composition ratio over the entire film.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、酸化物超伝導薄膜の製造方法に関し、アニー
ル後の組成が適正化されるように堆積工程を改良した超
伝導薄膜の製造方法を提供することを目的とし、 基板上に酸化物超伝導体の成分酸化物を物理的に堆積さ
せる工程とそれにより得られた堆積層をアニールする工
程とを含む酸化物超伝導薄膜の製造方法において、 上記物理的堆積工程において、上記成分酸化物のうちで
相対的に蒸気圧高い成分酸化物の堆積量の比率を、この
堆積工程の終了時点を含む所定期間全体にわたって連続
的に増加させるように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for producing an oxide superconducting thin film, and provides a method for producing a superconducting thin film in which the deposition process is improved so that the composition after annealing is optimized. In a method for producing an oxide superconducting thin film, the method includes the steps of physically depositing a component oxide of an oxide superconductor on a substrate and annealing the deposited layer obtained thereby. In the physical deposition step, the ratio of the amount of component oxides deposited having a relatively high vapor pressure among the component oxides is configured to increase continuously over a predetermined period including the end of the deposition step. .

〔産業上の利用分野〕[Industrial application field]

本発明は酸化物超伝導薄膜の製造方法に関する。 The present invention relates to a method for manufacturing an oxide superconducting thin film.

〔従来の技術〕[Conventional technology]

近年のコンビ二−タシステムの高速化の要求に伴い、配
線によるロスを低減するために、半導体の高密度実装が
進められている。しかし、高密度化のために配線を微細
化すると抵抗の増加が避けられず、高速信号の歪や大幅
な減衰をもたらす。
With the recent demand for higher speeds in combinatorial systems, high-density packaging of semiconductors is being promoted in order to reduce loss due to wiring. However, when wiring is miniaturized to increase density, resistance inevitably increases, resulting in distortion and significant attenuation of high-speed signals.

そこで、抵抗がゼロの超伝導体で配線を形成することが
試みられている。
Therefore, attempts are being made to form wiring using superconductors that have zero resistance.

酸化物超伝導体、特に、CuおよびOを含む結晶面を有
するB 1−3r−Ca−Cu−0系等の酸化物超伝導
体は臨界温度(Tc)が高いため、このような配線を形
成するための材料として実用上極めて有利である。
Oxide superconductors, especially oxide superconductors such as the B1-3r-Ca-Cu-0 system that have crystal planes containing Cu and O, have a high critical temperature (Tc), so it is difficult to use such wiring. It is extremely advantageous in practice as a material for forming.

従来、酸化物超伝導体の配線は、加熱した基板上に目的
とする酸化物の構成元素をスパッタまたは蒸着等によっ
て物理的に堆積させ、形成された堆積層をアニール(焼
成)して薄膜(厚さ数μ以下)として形成するのが一般
的である。
Conventionally, oxide superconductor wiring has been produced by physically depositing the desired oxide constituent elements on a heated substrate by sputtering or vapor deposition, and then annealing (baking) the formed deposited layer to form a thin film ( It is generally formed with a thickness of several microns or less.

スパッタや蒸着によって堆積した堆積層中の相対的に蒸
気圧の高い成分酸化物(たとえばビスマス、バリウム等
の酸化物)は、その後のアニール処理によって著しく含
有量が変化する。しかも、その組成のずれは、膜厚方向
に対して連続的に変化する。これは、堆積した成分酸化
物によって蒸気圧が異なるためで、アニール温度ですで
に融点を超える酸化物もあり、気体となって抜けてゆく
酸化物は、表面から飛び出してゆくからである。
The content of component oxides (for example, oxides of bismuth, barium, etc.) with relatively high vapor pressure in the deposited layer deposited by sputtering or vapor deposition changes significantly by subsequent annealing treatment. Furthermore, the compositional deviation continuously changes in the film thickness direction. This is because the vapor pressure differs depending on the deposited component oxide, and some oxides already exceed their melting point at the annealing temperature, and the oxides that escape as a gas fly out from the surface.

そのため、アニールされた薄膜内に超伝導特性を有する
部分と有さない部分が膜厚方向に不均一に分布してしま
うという問題があった。
Therefore, there is a problem in that portions having superconducting properties and portions not having superconducting properties are unevenly distributed in the film thickness direction within the annealed thin film.

アニールによる組成変動はバルクや厚膜(厚さ10−程
度以上)の超伝導体でも同様に発生するが、組成変動領
域は自由表面から深さ数p程度であるので、これらの場
合にはその影響が比較的小さく、特にバルクの場合には
用途によっては無視できる程度である。
Compositional fluctuations due to annealing occur similarly in bulk and thick-film (about 10 mm or more thick) superconductors, but since the compositional fluctuation region is about several meters deep from the free surface, in these cases, The effect is relatively small, especially in bulk, and may be negligible depending on the application.

しかし、厚さ数−程度以下の薄膜の場合には、アニール
による組成変動はほとんど膜厚全域に及ぶため、超伝導
薄膜を製造するために致命的な障害となっていた。
However, in the case of a thin film with a thickness of several orders of magnitude or less, the compositional variation due to annealing extends over almost the entire film thickness, which has been a fatal hindrance to the production of superconducting thin films.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、アニール後の組成が適正化されるように堆積
工程を改良した超伝導薄膜の製造方法を提供することを
目的とする。
An object of the present invention is to provide a method for manufacturing a superconducting thin film in which the deposition process is improved so that the composition after annealing is optimized.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、 基板上に酸化物超伝導体の成分酸化物を物理的に堆積さ
せる工程とそれにより得られた堆積層をアニールする工
程とを含む酸化物超伝導薄膜の製造方法において、 上記物理的堆積工程において、上記成分酸化物のうちで
相対的に蒸気圧の高い成分酸化物の堆積量の比率を、こ
の堆積工程の終了時点を含む所定期間全体にわたって連
続的に増加させることを特徴とする酸化物超伝導薄膜の
製造方法によって達成される。
The above object, according to the present invention, provides an oxide superconducting thin film comprising the steps of physically depositing a component oxide of an oxide superconductor on a substrate and annealing the resulting deposited layer. In the manufacturing method, in the physical deposition step, the ratio of the amount of component oxide deposited having a relatively high vapor pressure among the component oxides is continuously adjusted over a predetermined period including the end of this deposition step. This is achieved by a method for producing an oxide superconducting thin film characterized by increasing the

本発明においては、堆積層中の相対的に蒸気圧の高い成
分酸化物の堆積量の比率を、必要な深さから自由表面に
到る領域で連続的に増加させることによって、アニール
中に堆積層から気散して失われる上記成分酸化物の損失
量を相殺して、アニール後に得られる超伝導薄膜内の組
成を均一に適正比に制御する。
In the present invention, the ratio of the amount of component oxides with relatively high vapor pressure in the deposited layer is continuously increased in the region from the required depth to the free surface. By offsetting the amount of loss of the component oxides that are vaporized and lost from the layer, the composition within the superconducting thin film obtained after annealing is controlled uniformly to an appropriate ratio.

本発明は酸化物超伝導体の薄膜一般に適用できる。特に
、超伝導体の成分酸化物として、相対的に著しく蒸気圧
が高いものを含む場合に適用することが極めて有利であ
る。このような超伝導体としては、B 1−3r−Ca
−Cu−0系のようにCuと0を含む結晶面を有するも
のが代表的である。Biおよ゛びSrの代りに、それぞ
れTIおよびBaで置換した系も特にTcが高く優れた
超伝導特性を有することが知られている。
The present invention can be applied to thin films of oxide superconductors in general. In particular, it is extremely advantageous to apply this method to cases where the component oxide of the superconductor includes one having a relatively high vapor pressure. Such superconductors include B 1-3r-Ca
A typical example is one having a crystal plane containing Cu and 0, such as the -Cu-0 system. It is known that systems in which Bi and Sr are replaced with TI and Ba, respectively, have particularly high Tc and excellent superconducting properties.

しかし、これらのうちBi 、 Ba、T Iの酸化物
は超伝導体を構成する他の元素−3r、 Ca、 Cu
−の酸化物と比べて蒸気圧が相対的に高い。そのため、
堆積層のアニール中にこれらの元素の酸化物が堆積層の
自由表面から選択的に気散し、堆積層の自由表面からあ
る深さまではこれらの元素の濃度が所定濃度よりも低下
する。すなわち、ある深さから自由表面まで、これらの
元素の濃度が連続的に低下する。したがって、その深さ
までは超伝導体としての組成が得られない。この深さは
酸化物の蒸気圧およびアニールの温度や時間等の処理条
件によって決まるが、通常数−程度、少なくとも1pa
程度に及ぶ。この値は薄膜の厚さに匹敵するので、実質
的に薄膜の全厚に近い領域が超伝導体の組成にならず、
超伝導薄膜が得られない。
However, among these, the oxides of Bi, Ba, and TI are combined with other elements constituting the superconductor -3r, Ca, and Cu.
-The vapor pressure is relatively high compared to the oxides. Therefore,
During annealing of the deposited layer, oxides of these elements are selectively diffused from the free surface of the deposited layer, such that the concentration of these elements is lower than a predetermined concentration up to a certain depth from the free surface of the deposited layer. That is, from a certain depth to the free surface, the concentration of these elements decreases continuously. Therefore, a superconducting composition cannot be obtained up to that depth. This depth is determined by the vapor pressure of the oxide and the processing conditions such as annealing temperature and time, but is usually several inches deep, at least 1 pa.
To some extent. Since this value is comparable to the thickness of the thin film, a region close to the total thickness of the thin film does not have a superconducting composition;
A superconducting thin film cannot be obtained.

本発明では、アニール中の組成変動が起る深さに相当す
る領域を堆積させる際に、この組成変動を相殺するよう
に成分酸化物の堆積量の比率を刻々と連続的に調整する
。すなわち、組成変動相当領域での高蒸気圧の成分酸化
物の堆積量の比率が、組成変動が開始する深さから自由
表面にかけて連続的に増加する分布となるように堆積さ
せる。
In the present invention, when depositing a region corresponding to the depth where compositional fluctuation occurs during annealing, the ratio of the deposition amounts of component oxides is continuously adjusted moment by moment so as to cancel out the compositional fluctuation. In other words, the deposition is performed so that the ratio of the amount of component oxides with high vapor pressure deposited in the region corresponding to compositional fluctuations is distributed so that it continuously increases from the depth where compositional fluctuations start to the free surface.

これは、成分酸化物のうちで相対的に蒸気圧の高い成分
酸化物の堆積量の比率を、堆積工程の終了時点を含む所
定期間全体にわたって連続的に増加させることによって
行なう。
This is accomplished by continuously increasing the proportion of the component oxides deposited that have higher vapor pressures over a predetermined period of time, including the end of the deposition process.

連続的に増加させる期間、および増加の程度は全厚にわ
たって均一な超伝導体組成比率で堆積させた堆積層に実
際のアニール処理を行なって決定する。
The period of continuous increase and the degree of increase are determined by performing an actual annealing treatment on a deposited layer deposited with a uniform superconductor composition ratio over the entire thickness.

物理的に堆積させる方法としては、従来行なわれている
スパッタ、蒸着等の方法を用いる。
As the physical deposition method, conventional methods such as sputtering and vapor deposition are used.

アニールとしては、超伝導体の成分酸化物の堆積層に従
来行なっているアニールを行なう。
As for annealing, conventional annealing is performed on the deposited layer of the component oxide of the superconductor.

〔作 用〕[For production]

本発明では、予め堆積工程で、アニールによる組成変動
分を相殺するような比率で堆積させるので、アニール後
に薄膜の厚さ全体にわたって均一に必要な超伝導体とし
ての組成が得られる。
In the present invention, since the deposition process is performed in advance at a ratio that offsets the composition variation due to annealing, the necessary composition for a superconductor can be obtained uniformly over the entire thickness of the thin film after annealing.

以下に添付図面を参照し実施例によって本発明を更に詳
しく説明する。
The invention will be explained in more detail below by way of examples with reference to the accompanying drawings.

〔実施例〕〔Example〕

本発明にしたがって、Bi、Sr、Ca2Cu30xの
超伝導薄膜を作製した。
According to the present invention, superconducting thin films of Bi, Sr, and Ca2Cu30x were fabricated.

第1図に、用いた多元同時スパッタ装置を示す。FIG. 1 shows the multi-sputtering system used.

この装置は真空チャンバ(図示せず)内に設けてあり、
チャンバ内は02とArの混合ガス(圧力= 1.3 
X 10−”Torr、分圧比=02 :Ar =l 
:1)で満たされている。図中、1および2はそれぞれ
Bi2Sr、Ca2Cu、OxターゲットおよびBi、
03 ターゲットである。MgO単結晶の基板3をヒー
タブロック4上に載せて基板おさえ5で保持しである。
The device is located within a vacuum chamber (not shown);
Inside the chamber is a mixed gas of 02 and Ar (pressure = 1.3
X 10-” Torr, partial pressure ratio = 02: Ar = l
:1) is satisfied. In the figure, 1 and 2 are Bi2Sr, Ca2Cu, Ox target and Bi, respectively.
03 Target. A MgO single crystal substrate 3 is placed on a heater block 4 and held by a substrate presser 5.

構成元素Bi、 Sr、 Ca、 Cuの酸化物のうち
でBi酸化物(B1203)の蒸気圧が特に高く、アニ
ール中に気散し易い。
Among the oxides of the constituent elements Bi, Sr, Ca, and Cu, Bi oxide (B1203) has a particularly high vapor pressure and is easily diffused during annealing.

まず、組成変動領域の深さと変動の分布曲線を知るため
に、従来と同様にBi、5r2Ca2Cu30xのター
ゲット1のみを用いて一定バワー100Wでスパッタを
行い、厚さ1μの堆積層を形成し、これに大気中で86
0℃2時間のアニールを行なった。その結果、第3図の
曲線Bで示すようにほぼ膜厚全体にわたってB1濃度が
低下した。この場合、形成された薄膜は超伝導を示さな
い。
First, in order to know the depth of the compositional variation region and the distribution curve of variation, sputtering was performed using only target 1 of Bi, 5r2Ca2Cu30x at a constant power of 100W to form a deposited layer with a thickness of 1μ, as in the conventional method. 86 in the atmosphere
Annealing was performed at 0°C for 2 hours. As a result, as shown by curve B in FIG. 3, the B1 concentration decreased over almost the entire film thickness. In this case, the formed thin film does not exhibit superconductivity.

次に、別に用意したMgO単結晶の基板1を第1図のよ
うにスパッタ装置にセットし、Ba2Sr2Ca2Cu
30xのターゲット1とBi2O,のターゲット2を用
いてスパッタを行ない厚さ1μの堆積層を形成した。
Next, a separately prepared MgO single crystal substrate 1 was set in a sputtering apparatus as shown in FIG.
Sputtering was performed using a 30x target 1 and a Bi2O target 2 to form a deposited layer with a thickness of 1 μm.

スパッタパワーはターゲット1については一定100W
に維持したが、ターゲット2については、スパッタ開始
時点の40Wからスパッタ終了時点の100Wまで連続
的に増加させた。増加させる程度は、第3図の曲線Bを
参照して刻々調整した。
Sputter power is constant 100W for target 1
However, for target 2, the power was continuously increased from 40 W at the start of sputtering to 100 W at the end of sputtering. The degree of increase was adjusted moment by moment with reference to curve B in FIG.

これによって堆積する堆積量の比率をターゲット1およ
び2についてそれぞれ第2図の曲線d1およびd2で示
す。ターゲット1によるBi、5r2Ca2[:u、O
xの堆積量は、一定スバッタパワーとすることによって
一定とし、これにターゲット2に連続的に増加するBi
、O,の堆積量を加算したものが刻々の堆積量となる。
The ratio of the amount deposited by this is shown by curves d1 and d2 in FIG. 2 for targets 1 and 2, respectively. Bi, 5r2Ca2[:u, O
The amount of deposited x is kept constant by setting a constant spatter power, and the amount of Bi
, O, becomes the instantaneous amount of accumulation.

ただし、第2図は、堆積するSrの量に対するBiの量
の比率で表わしである。Srの酸化物は安定であり、後
のアニールでも変動が認められないため基準壷として用
いた(第3図についても同様)。
However, FIG. 2 shows the ratio of the amount of Bi to the amount of deposited Sr. Since the Sr oxide is stable and no fluctuation was observed even after subsequent annealing, it was used as a reference pot (the same applies to FIG. 3).

堆積終了後、大気中で860℃2時間のアニールを行な
った。得られた薄膜は、第3図の曲線Aで示すように、
厚さ全体にわたって均一に所定の81濃度であった。
After the deposition was completed, annealing was performed at 860° C. for 2 hours in the atmosphere. The obtained thin film, as shown by curve A in FIG.
There was a predetermined 81 concentration uniformly throughout the thickness.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、堆積時の組成比
を連続的に変化させることによって、アニール後の組成
を均一に制御することが可能となり、均一な所要組成を
有する超伝導薄膜を製造することができる。
As explained above, according to the present invention, by continuously changing the composition ratio during deposition, it is possible to uniformly control the composition after annealing, and a superconducting thin film having a uniform required composition can be produced. can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を行なうために用いられる多元
同時スパッタ装置の一例を模式的に示す配置図、 第2・図は、本発明にしたがって堆積した堆積層中のB
iの量とSrの量の比率を示すグラフ、および 第3図は、アニール後の膜中のBi量/Sr量の比率を
本発明法および従来法について比較して示すグラフであ
る。 1・・・口12Sr、Ca、Cu、のターゲット、2・
・・B1□0.のターゲット、 3・・・MgO単結晶の基板。
FIG. 1 is a layout diagram schematically showing an example of a multi-sputtering simultaneous sputtering apparatus used for carrying out the method of the present invention, and FIG.
A graph showing the ratio of the amount of i to the amount of Sr, and FIG. 3 are graphs showing a comparison of the ratio of the amount of Bi to the amount of Sr in the film after annealing between the method of the present invention and the conventional method. 1...Target of mouth 12Sr, Ca, Cu, 2.
・・B1□0. target, 3...MgO single crystal substrate.

Claims (1)

【特許請求の範囲】 1、基板上に酸化物超伝導体の成分酸化物を物理的に堆
積させる工程とそれにより得られた堆積層をアニールす
る工程とを含む酸化物超伝導薄膜の製造方法において、 上記物理的堆積工程において、上記成分酸化物のうちで
相対的に蒸気圧の高い成分酸化物の堆積量の比率を、こ
の堆積工程の終了時点を含む所定期間全体にわたって連
続的に増加させることを特徴とする酸化物超伝導薄膜の
製造方法。
[Claims] 1. A method for producing an oxide superconducting thin film, which includes the steps of physically depositing a component oxide of an oxide superconductor on a substrate and annealing the deposited layer obtained thereby. In the physical deposition step, the ratio of the amount of component oxides deposited having a relatively high vapor pressure among the component oxides is continuously increased over a predetermined period including the end of the deposition step. A method for producing an oxide superconducting thin film, characterized by:
JP1008638A 1989-01-19 1989-01-19 Superconducting thin film manufacturing method Expired - Lifetime JP2730558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008638A JP2730558B2 (en) 1989-01-19 1989-01-19 Superconducting thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008638A JP2730558B2 (en) 1989-01-19 1989-01-19 Superconducting thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH02192403A true JPH02192403A (en) 1990-07-30
JP2730558B2 JP2730558B2 (en) 1998-03-25

Family

ID=11698495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008638A Expired - Lifetime JP2730558B2 (en) 1989-01-19 1989-01-19 Superconducting thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP2730558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145713A (en) * 1990-12-21 1992-09-08 Bell Communications Research, Inc. Stoichiometric growth of compounds with volatile components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145713A (en) * 1990-12-21 1992-09-08 Bell Communications Research, Inc. Stoichiometric growth of compounds with volatile components

Also Published As

Publication number Publication date
JP2730558B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JP2711253B2 (en) Superconducting film and method for forming the same
KR100908066B1 (en) Buffer layer of superconducting thin film by co-deposition of dissimilar materials
JPH02192403A (en) Production of superconducting thin film
JPS63241824A (en) Manufacture of superconductor
EP0490776B2 (en) A thin film of superconductor and a process for preparing the same
RU2308789C1 (en) Method for producing thick-film structure around high-temperature superconductor
JPH0297421A (en) Production of high temperature superconducting thin film
JP2747490B2 (en) Method for producing oxide superconducting thin film
KR0174382B1 (en) Fabricating method of high to superconducting thin film
JPH0365502A (en) Preparation of superconductive thin film
JPS63241825A (en) Manufacture of superconductor
JP2537993B2 (en) Thin film superconductor and method and apparatus for manufacturing the same
JPH02194184A (en) Production of oxide superconducting thin film
JPH03162574A (en) Rf sputtering device
JPH01100825A (en) Manufacture of superconducting thin film
JPH01132008A (en) Superconductor and its manufacture
JPH01282105A (en) Production of superconducting ceramic film
JPH04164821A (en) Superconducting thin film and its production
JPH01120715A (en) Oxide superconducting molding
CA1281247C (en) Methods for high tc superconductor film deposition
JP3068916B2 (en) Manufacturing method of superconducting thin film
JPH0517147A (en) Production of thin compound oxide film containing lead
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH02232381A (en) Superconducting thin tape and its production
JPH01115009A (en) Oxide superconducting compact and manufacture thereof