JPH02190744A - Fine particle measuring instrument - Google Patents

Fine particle measuring instrument

Info

Publication number
JPH02190744A
JPH02190744A JP1010872A JP1087289A JPH02190744A JP H02190744 A JPH02190744 A JP H02190744A JP 1010872 A JP1010872 A JP 1010872A JP 1087289 A JP1087289 A JP 1087289A JP H02190744 A JPH02190744 A JP H02190744A
Authority
JP
Japan
Prior art keywords
gas
sample gas
cavity
capillary tube
reaction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1010872A
Other languages
Japanese (ja)
Other versions
JPH0754294B2 (en
Inventor
Toshio Takahara
高原 寿雄
Yuzuru Hanaoka
花岡 譲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1010872A priority Critical patent/JPH0754294B2/en
Publication of JPH02190744A publication Critical patent/JPH02190744A/en
Publication of JPH0754294B2 publication Critical patent/JPH0754294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure fine particles quantitatively and identify components by composing the measuring instrument of a capillary tube, a microwave source, a cavity, a reaction pipe, a gas discharging means, and an analyzing means. CONSTITUTION:The capillary tube guides sample gas from a space 1 under atmospheric pressure according to a pressure difference. A microwave is inputted to the cavity 4 from the microwave source 3. The sample gas and carrier gas from the capillary tube 2 are admitted to the reaction pipe 5 and a detection window is provided at the other end 5b. A gas discharging means 6 discharges the gas from the other end 5b of the reaction pipe 5. An analyzing means 7 is provided adjacently to the detection window of the reaction pipe 5 and analyzes particles in the sample gas, dissociated by microwave induced plasma produced in the reaction pipe 5, qualitatively and quantitatively.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体プロセスにおいてクリーンルーム内或は
常圧CVD装置内のような大気圧又は常圧下の空間内に
おける微粒子をインプロセスで検出できる微粒子測定装
置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention is a particulate measurement method that can detect particulates in-process in a space under atmospheric pressure or normal pressure, such as a clean room or an atmospheric pressure CVD apparatus in a semiconductor process. Regarding equipment.

〈従来の技術〉 従来、微粒子測定装置として、反応槽中にレーザ光を照
射し、散乱光に基づきガス中の微粒子の大きさを求める
。方法が公知である。しかしながら、この方法は次のよ
うな欠点がある。
<Prior Art> Conventionally, as a particulate measuring device, a laser beam is irradiated into a reaction tank and the size of particulates in a gas is determined based on the scattered light. Methods are known. However, this method has the following drawbacks.

■ レーザ光の波長の制約から、直径が0.1μm以下
の微粒子の測定は原理的に出来ない、加えて実際の測定
では測定装置を反応槽外において測定するため窓の汚れ
等によって0.5μm以下の微粒子は測定出来ない、一
方、半導体素子の高集積化は急速に進み、IMビットD
RAM、4MビットDRAMのプロセスでは管理すべき
微粒子の大きさが0.05μmのレベルとなっている。
■ Due to the limitations of the wavelength of the laser beam, it is theoretically impossible to measure particles with a diameter of 0.1 μm or less.In addition, in actual measurements, the measuring device is placed outside the reaction tank, so particles with a diameter of 0.5 μm may be measured due to dirt on the window, etc. The following fine particles cannot be measured.On the other hand, as semiconductor devices become more highly integrated, IM bit D
In the process of RAM and 4 Mbit DRAM, the size of particles to be managed is at the level of 0.05 μm.

■ 光学的手法による検出のため微粒子の大きさしか分
らず、微粒子の組成についての情報は得られない。
■ Because detection is done by optical methods, only the size of the particles can be determined, and no information about the composition of the particles can be obtained.

〈発明が解決しようとする課題〉 本発明の解決しようとする技術的課題は、大気圧又は常
圧下の空間内に存在する直径が0.05μm程度の微粒
子をインラインで検出でき同時に成分の同定も行える微
粒子測定装置を実現することにある。
<Problem to be solved by the invention> The technical problem to be solved by the present invention is to detect in-line fine particles with a diameter of about 0.05 μm existing in a space under atmospheric pressure or normal pressure, and to identify the components at the same time. The goal is to realize a particle measuring device that can measure particles.

く課題を解決するための手段〉 本発明の構成は、 A 常圧下の空間内からサンプルガスを圧力差に基づき
導出するキャピラリチューブ B マイクロ波源 Cマイクロ波源からのマイクロ波が導入されたキャビテ
ィ D キャビティ内を貫通し、一端よりキャピラリチュー
ブからのサンプルガスとキャリアガスとが導入され他端
に検出窓が設けられた反応管E 反応管の他端からガス
を排気する手段F 反応管の検出窓に隣接して設けられ
、反応管内に生成されたマイクロ波誘導プラズマによっ
て解離(ガス化・イオン化)されたサンプルガス中の微
粒子を定性・定量分析する分析手段とより構成される。
Means for Solving the Problems> The configuration of the present invention is as follows: A. A capillary tube that leads out sample gas from a space under normal pressure based on the pressure difference. B. A microwave source. C. A cavity into which microwaves from the microwave source are introduced. D. A cavity. A reaction tube E that penetrates through the inside of the tube, into which the sample gas and carrier gas from the capillary tube are introduced from one end, and a detection window is provided at the other end. Means F for exhausting gas from the other end of the reaction tube. It consists of an analysis means that is provided adjacently and performs qualitative and quantitative analysis of fine particles in the sample gas that have been dissociated (gasified and ionized) by the microwave-induced plasma generated in the reaction tube.

〈作用〉 マイクロ波誘導プラズマの場合、前記反応管の真空度が
10Torr前後の真空度において4000゛に以上の
熱プラズマが生成される。この励起温度は前記サンプル
ガスに含まれる微粒子を解離(ガス化・イオン化)する
に充分な温度である。
<Operation> In the case of microwave-induced plasma, a thermal plasma of 4000° or more is generated when the vacuum degree of the reaction tube is about 10 Torr. This excitation temperature is sufficient to dissociate (gasify and ionize) the fine particles contained in the sample gas.

前記空間は大気圧又は常圧であり、サンプルガスは圧力
差によって前記キャピラリチューブを通じ前記反応管内
に導かれる。サンプルガス中の微粒子は粒径が小さい程
、解離し易く、イオン化された微粒子は成分固有のスペ
クトルで発光する。これを分光器を用いて測定し、或は
原子イオンを質量分析装置に導いて測定し、微粒子の量
的測定並びに成分の同定を行う。
The space is at atmospheric pressure or normal pressure, and the sample gas is guided into the reaction tube through the capillary tube due to the pressure difference. The smaller the particle size of the fine particles in the sample gas, the more easily they dissociate, and the ionized fine particles emit light with a spectrum unique to the component. This is measured using a spectrometer, or the atomic ions are introduced into a mass spectrometer and measured to quantitatively measure the particles and identify their components.

〈実施例〉 以下図面に従い本発明を説明する。第1図は本発明実施
例装置の構成図である0図中、1は半導体プロセスにお
けるクリーンルーム、或は常圧CVD装置のよう゛な大
気圧又は常圧下の空間を示す。
<Example> The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 indicates a space under atmospheric pressure or normal pressure, such as a clean room in a semiconductor process or an atmospheric pressure CVD apparatus.

2はサンプルガスSGを採取するため一端が空間1内に
挿入されたキャピラリチューブ、3はマイクロ波源、4
はマイクロ波源3からのマイクロ波が導入されたキャビ
ティである。5は石英製の反応管で、キャビティ4内を
貫通して設置され、その一端にはキャピラリチューブ1
が接続されると共に、アルゴン、ヘリウム等のキャリア
ガスCGを導入するキャリアガス導入部5aが設けられ
ている。この反応管の他端には検出窓5bが設けられる
と共に、ガス排出部5cが設けられている。
2 is a capillary tube whose one end is inserted into space 1 to collect sample gas SG; 3 is a microwave source; 4
is a cavity into which microwaves from the microwave source 3 are introduced. 5 is a reaction tube made of quartz, which is installed to penetrate inside the cavity 4, and a capillary tube 1 is attached to one end of the reaction tube.
A carrier gas introduction section 5a is provided to which a carrier gas CG such as argon or helium is introduced. The other end of this reaction tube is provided with a detection window 5b and a gas discharge section 5c.

6は排気手段でガス排出部5cを通じ反応管5内を真空
に引く、7は検出窓5bに向けて設けられサンプルガス
SG中の微粒子を定性・定量分析する分析手段である。
Reference numeral 6 denotes an evacuation means that evacuates the inside of the reaction tube 5 through the gas discharge part 5c. Reference numeral 7 denotes an analysis means provided toward the detection window 5b for qualitative and quantitative analysis of particles in the sample gas SG.

この分析手段には、分光分析器、或は四重極質量分析計
のような質量分析装置が用いられる。7aは検出部とし
ての光電子増倍管である。8は信号検出部で、この中に
は前置増幅器8a、A/D変換器8b、マイクロプロセ
ッサを用いた演算処理回路80等が含まれる。
As this analysis means, a spectrometer or a mass spectrometer such as a quadrupole mass spectrometer is used. 7a is a photomultiplier tube as a detection section. Reference numeral 8 denotes a signal detection section, which includes a preamplifier 8a, an A/D converter 8b, an arithmetic processing circuit 80 using a microprocessor, and the like.

第2図は本発明実施例装置の要部を示す断面図である0
本図において、第1図における部分に対応する部分に同
一符号が付されている。キャビティ4には円板型で、外
周部よりマイクロ波が導入され、中心にマイクロ波が集
中する、例えば、Beenakker型キャビティが用
いられる。
FIG. 2 is a sectional view showing the main parts of the device according to the present invention.
In this figure, parts corresponding to those in FIG. 1 are given the same reference numerals. For example, a Beenakker type cavity is used as the cavity 4, which has a disk shape, into which microwaves are introduced from the outer periphery and concentrated at the center.

反応管5はキャビティ4の中心部を通るように設置され
る。
The reaction tube 5 is installed so as to pass through the center of the cavity 4.

このような構成で、排気手段6によって反応管5内の真
空度を10To r r前後に引き、マイクロ波源3か
ら周波数が2.45GHzのマイクロ波をキャビティ4
内に導き、キャリアガスCGを流すと、反応管5内に4
000°に以上の熱プラズマPLが生成される。
With this configuration, the degree of vacuum in the reaction tube 5 is drawn to around 10 Torr by the exhaust means 6, and microwaves with a frequency of 2.45 GHz are applied from the microwave source 3 to the cavity 4.
When the carrier gas CG is introduced into the reaction tube 5, 4
000° or higher thermal plasma PL is generated.

一方、空間1内は大気圧又は常圧に保たれておりサンプ
ルガスSGは圧力差によってキャピラリチューブ2を通
じ反応管5内に導かれる。プラズマPLに導かれたサン
プルガスSG中の微粒子は解離されイオン化される。プ
ラズマによって解離される微粒子は直径が小さい程解離
しやすく、直径が0.1〜0.05μmまでの微粒子を
解離することができる。
On the other hand, the inside of the space 1 is maintained at atmospheric pressure or normal pressure, and the sample gas SG is guided into the reaction tube 5 through the capillary tube 2 due to the pressure difference. Fine particles in the sample gas SG guided by the plasma PL are dissociated and ionized. The smaller the diameter of fine particles dissociated by plasma, the more easily they are dissociated, and fine particles having a diameter of 0.1 to 0.05 μm can be dissociated.

イオン化された微粒子は成分固有のスペクトルで発光す
る。この発光を例えば分光器を用いた分析手段7で検出
すれば、スペクトルの強度から微粒子の量的情報が得ら
れ、スペクトルの波長に基づき成分の同定を行う。
Ionized fine particles emit light in a spectrum unique to the component. If this emission is detected by an analysis means 7 using a spectrometer, for example, quantitative information on the particles can be obtained from the intensity of the spectrum, and the components can be identified based on the wavelength of the spectrum.

〈発明の効果〉 本発明によれば以下のような効果を有する。<Effect of the invention> According to the present invention, the following effects are achieved.

■ 従来の光学的方法によっては原理的に測定が不可能
であった直径が0.1〜0.05μmレベルの微粒子を
インラインで検出することができる。
(2) Fine particles with a diameter of 0.1 to 0.05 μm, which cannot be measured in principle using conventional optical methods, can be detected in-line.

■ 微粒子の量的情報が得られる他、成分の同定も同時
に行える。
■In addition to obtaining quantitative information on fine particles, the components can also be identified at the same time.

■ キャピラリチューブを使って前記反応管と前記キャ
ビティとの圧力差でサンプリングを行うのでサンプルガ
スを移送する特別の手段が要らない。
(2) Since sampling is performed using a capillary tube based on the pressure difference between the reaction tube and the cavity, no special means for transferring the sample gas is required.

■ マイクロ波誘導に基づくプラズマ中では微粒子の径
が小さい程、解離、イオン化し易く原理的に径の小さな
微粒子の測定に向いている。
■ In plasma based on microwave induction, the smaller the particle size, the easier it is to dissociate and ionize it, making it suitable in principle for measuring small particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置の構成図、第2図は本発明実
施例装置の要部を示す断面図である。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a main part of the apparatus according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 下記A乃至Fを構成要素とすることを特徴とする微粒子
測定装置。 A 常圧下の空間内からサンプルガスを圧力差に基づき
導出するキャピラリチューブ B マイクロ波源 C マイクロ波源からのマイクロ波が導入されたキャビ
ティ D キャビティ内を貫通し、一端よりキャピラリチュー
ブからのサンプルガスとキャリアガスとが導入され他端
に検出窓が設けられた反応管 E 反応管の他端からガスを排気する手段 F 反応管の検出窓に隣接して設けられ、反応管内に生
成されたマイクロ波誘導プラズマによつて解離、イオン
化されたサンプルガス中の微粒子を定性・定量分析する
分析手段
[Scope of Claims] A particle measuring device characterized by comprising the following components A to F. A Capillary tube that leads sample gas from a space under normal pressure based on the pressure difference B Microwave source C Cavity into which microwaves from the microwave source are introduced D Sample gas and carrier from the capillary tube penetrate through the cavity and enter from one end A reaction tube E into which a gas is introduced and a detection window provided at the other end. A means F for exhausting gas from the other end of the reaction tube. Analytical means for qualitative and quantitative analysis of fine particles in sample gas dissociated and ionized by plasma
JP1010872A 1989-01-19 1989-01-19 Particle measuring device Expired - Lifetime JPH0754294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010872A JPH0754294B2 (en) 1989-01-19 1989-01-19 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010872A JPH0754294B2 (en) 1989-01-19 1989-01-19 Particle measuring device

Publications (2)

Publication Number Publication Date
JPH02190744A true JPH02190744A (en) 1990-07-26
JPH0754294B2 JPH0754294B2 (en) 1995-06-07

Family

ID=11762431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010872A Expired - Lifetime JPH0754294B2 (en) 1989-01-19 1989-01-19 Particle measuring device

Country Status (1)

Country Link
JP (1) JPH0754294B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269555A (en) * 1988-04-20 1989-10-27 Fuji Photo Film Co Ltd Thermal printer device
JPH04328450A (en) * 1991-04-26 1992-11-17 Yokogawa Electric Corp Plasma generating spectrometer
US5432601A (en) * 1992-12-17 1995-07-11 Mitsubishi Denki Kabushiki Kaisha Fine particle analyzing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108655A (en) * 1980-12-25 1982-07-06 Tsukasa Sotsuken:Kk Device for measuring air fuel ratio of internal combustion engine or other burning apparatus
JPS57130433U (en) * 1981-02-06 1982-08-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108655A (en) * 1980-12-25 1982-07-06 Tsukasa Sotsuken:Kk Device for measuring air fuel ratio of internal combustion engine or other burning apparatus
JPS57130433U (en) * 1981-02-06 1982-08-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269555A (en) * 1988-04-20 1989-10-27 Fuji Photo Film Co Ltd Thermal printer device
JPH04328450A (en) * 1991-04-26 1992-11-17 Yokogawa Electric Corp Plasma generating spectrometer
US5432601A (en) * 1992-12-17 1995-07-11 Mitsubishi Denki Kabushiki Kaisha Fine particle analyzing device

Also Published As

Publication number Publication date
JPH0754294B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP3429137B2 (en) Method for real-time in-situ monitoring of trench formation process
JP2804873B2 (en) Particle analysis device and particle analysis method
JP2003086574A (en) Method and apparatus for analyzing gas of semiconductor treatment unit
EP1022559A1 (en) System and method for identifying gaseous effluents, and equipment provided with such a system
US20040179187A1 (en) Method and apparatus for implementing an afterglow emission spectroscopy monitor
JPH10513566A (en) Method and apparatus for measuring purity and / or pressure of gas for bulbs
JPH02190744A (en) Fine particle measuring instrument
JPS60241227A (en) Microwave plasma device
US3398582A (en) Method for measurement of vacuum pressure
US5153674A (en) Semiconductor production control and/or measuring unit
JPH05312712A (en) Method and apparatus for measuring fine particle
JPH02183140A (en) Fine particle measuring apparatus
US3549882A (en) Leak detector wherein a probe is monitored with ultraviolet radiation
JP3198127B2 (en) X-ray spectrometer
JPH0837175A (en) Contamination measuring method
JP2690572B2 (en) Surface condition evaluation method and apparatus
US3503686A (en) Atomic absorption spectrophotometer
EP0167561A1 (en) Method and apparatus for surface diagnostics.
JPH01227048A (en) Analyzing apparatus of composition of particle
JPH08327551A (en) Atmosphere contamination evaluating device
JPH06186204A (en) Method and apparatus for analyzing chemical species
WO2002023160A1 (en) Afterglow emission spectroscopy monitor
JPH07146240A (en) Density measuring method for fine particles
JPH02242140A (en) Breakdown spectral analysis method and apparatus
JPS58124977A (en) Energy dispersion type x-ray spectroscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 14