JPH02190497A - Slide bearing material and its production - Google Patents

Slide bearing material and its production

Info

Publication number
JPH02190497A
JPH02190497A JP1039289A JP1039289A JPH02190497A JP H02190497 A JPH02190497 A JP H02190497A JP 1039289 A JP1039289 A JP 1039289A JP 1039289 A JP1039289 A JP 1039289A JP H02190497 A JPH02190497 A JP H02190497A
Authority
JP
Japan
Prior art keywords
thickness
layer
bearing material
alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1039289A
Other languages
Japanese (ja)
Inventor
Hiroo Wakiyama
裕夫 脇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP1039289A priority Critical patent/JPH02190497A/en
Publication of JPH02190497A publication Critical patent/JPH02190497A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain the structurally strong bearing material excellent in its sliding performance at a low cost by successively forming the electroplating layers of a Cu-based metal and an Ni-Pb alloy respectively having specified thickness on one surface of a backing metal material of soft steel sheet, etc. CONSTITUTION:A Cu or Cu alloy electroplating layer 3 having 3-50mu thickness, an Ni plating layer 2 having 0.1-5mu thickness, and a Pb alloy plating layer 1 having 5-50mu thickness as an overlay are successively formed by electroplating on the backing metal 4 of soft steel sheet, etc., to obtain the bearing material. Since the four layers are thus formed, the performance required as the bearing material is maintained even if each plating is extremely thin, and the cost is reduced. When the thickness of the layer 3 is smaller than the lower limit, the seizing preventive effect in abrasion is not produced, and the effect is not changed at higher than the upper limit. When the thickness of layer 2 is beyond that limits, the diffusion of the Sn in the layer 1 into the layer 3 to form a hard compd. is not prevented. When the thickness of the layer 1 is beyond that limits, the characteristic required as the bearing material is not obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はすべり軸受材ならびにその製造法に係り、詳し
くは、内燃機関等のクランク軸受、または回転体の軸受
として用いられ、特に、比較的支持荷重の小さい部分に
好適に使用されるすべり軸受材ならびにその製造法に係
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sliding bearing material and a method for manufacturing the same. Specifically, it is used as a crank bearing for an internal combustion engine or a bearing for a rotating body, and is particularly suitable for bearings that support relatively large loads. The present invention relates to a sliding bearing material suitable for use in small parts of the world, and a method for producing the same.

従  来  の  技  術 例えば、内燃機関等のクランク軸にはその回転運動及び
揺動運動から種々の荷重が発生し、その支持′vJ重の
種類や大きさに応じてずへり軸受が用いられている。こ
のすべり軸受は通常第7図に示すような半割軸受といわ
れる半円形状のものがらなっている。また、図示してい
ないが、フランジ付半円形状のものも含む。このすべり
軸受10の各端面10a同志を突合わせ、例えば、第8
図(a)ならびに(b)に示す如く、リング状に組合わ
せて使用する。すなわら、第8図(a)ならびに(b)
はクランクシャフトの一例の縦断面図ならびに横断面図
を示すものであって、このジャーナル12及びクランク
ビン13の連結部においては各端面には板状のスラスト
軸受15a、15bを介在させ、または図示していない
が、フランジ付軸受(10と15が一体化したもの)を
用い、結合部は二つの半割軸受10をリング状に組合わ
せて支承する。このすべり軸受10は通常その作用や支
持荷重によって第5図ならびに第6図に示す通り層状構
造のものからなっている。例えば、第5図に示すように
、すべり軸受材は例えば、Pb−Sn台金のホワーイト
メタル系やCu−Pb−Snのケルメツト系合金等の鋳
造材や粉末の焼結材による軸受台金筒5と軟鋼からなる
裏金4とを積層してなる複合材料で構成され、この軸受
台金目5によって軸受としての荷重支承面を形成する。
Conventional technology For example, various loads are generated on the crankshaft of an internal combustion engine, etc. due to its rotational and oscillating motion, and shoulder bearings are used depending on the type and size of the supporting load. There is. This sliding bearing is usually in the form of a semicircle, which is called a half bearing as shown in FIG. Although not shown, it also includes a semicircular shape with a flange. The respective end surfaces 10a of this slide bearing 10 are butted against each other, for example, the eighth
As shown in Figures (a) and (b), they are used in combination in a ring shape. That is, FIGS. 8(a) and (b)
2 shows a vertical cross-sectional view and a cross-sectional view of an example of a crankshaft, and in the connecting portion between the journal 12 and the crank bin 13, plate-shaped thrust bearings 15a and 15b are interposed on each end surface, or Although not shown, a flanged bearing (10 and 15 integrated) is used, and the joint is supported by combining two half bearings 10 in a ring shape. This sliding bearing 10 usually has a layered structure as shown in FIGS. 5 and 6 depending on its function and supporting load. For example, as shown in FIG. 5, the sliding bearing material is made of a cast material such as a white metal based Pb-Sn base metal or a kelmet based alloy of Cu-Pb-Sn, or a bearing base made of a sintered powder material. It is made of a composite material made by laminating a cylinder 5 and a back metal 4 made of mild steel, and this bearing base metal eye 5 forms a load bearing surface as a bearing.

また、第6図に示す叩(、前記軸受合金の表面に例えば
Pb−Sn−Ju、 Pb−Sn、Pb−In等のPb
合金メッキ@6によって薄く被覆すると共に、このPb
含金メッキ閤6と裏金4の軟鋼との各々の間にNt等の
中間層7を介在させたものがある。
In addition, as shown in FIG.
In addition to thinly coating with alloy plating @6, this Pb
There is one in which an intermediate layer 7 of Nt or the like is interposed between the gold-containing plating plate 6 and the mild steel back metal 4.

己れらの軸受は構造的に強固で、その性能も慣れている
が、製造工程が軸受台金の積曜工程及びメッキ工程が前
後する等と煩雑で連Vt5J造が困難であリコストも高
いという問題があった。
Their bearings are structurally strong and their performance is well-known, but the manufacturing process is complicated as the bearing base metal loading process and plating process are delayed, making continuous Vt5J construction difficult and costly. There was a problem.

発明が解決しようとする課題 本発明は上記問題の解決を目的とし、具体的には、構造
的に強固ですべり性能にすぐれ、かつ安価なすベリ軸受
材ならびにその製造法を提案することを目的とする。
Problems to be Solved by the Invention The purpose of the present invention is to solve the above-mentioned problems, and specifically, to propose a structurally strong, excellent sliding performance, and inexpensive bearing material and its manufacturing method. do.

課題を解決するための 手段ならびにその作用 すなわち、本発明は、軟鋼板等の裏金材の片面に厚さ3
〜50μmのCu若しくはCu合金電気メッキ層と、厚
さ0.1〜5μmのNi電電気メッキ上、厚さ5〜50
μmのPb合金電気メッキ層とを順に形成されたものか
ら成ることを特徴としたすべり軸受材であり、前記すベ
リ軸受材を温度150〜500℃で加熱処理することを
特徴とする。
Means for solving the problem and its operation, that is, the present invention provides a back metal material such as a mild steel plate having a thickness of 3.
~50μm Cu or Cu alloy electroplating layer and 0.1~5μm thick Ni electroplating, thickness 5~50μm
This sliding bearing material is characterized in that it consists of a Pb alloy electroplated layer of .mu.m in thickness, and is characterized in that the sliding bearing material is heat-treated at a temperature of 150 to 500.degree.

以下、本発明の手段たる構成ならびにその作用について
詳しく説明すると、次の通りである。
Hereinafter, a detailed explanation of the configuration and the operation of the means of the present invention will be as follows.

そこで、本発明者等は構造的に強固で性能にすぐれ、安
価なすべり軸受材ならびにその製造法について検討した
Therefore, the present inventors investigated a structurally strong, high-performance, and inexpensive sliding bearing material as well as a manufacturing method thereof.

従来、Cu −Pb −Sn系焼結合金等を軸受材とし
て使用する場合、その合金の表面は次のような目的のた
めにオーバーレイといわれる厚さ20μm程度のPb系
合金をメッキする方法が一般的に行なわれている。
Conventionally, when Cu-Pb-Sn based sintered alloys are used as bearing materials, the surface of the alloy is generally plated with a Pb based alloy with a thickness of about 20 μm called an overlay for the following purposes: It is carried out according to

1)軸受と軸との焼付防止 2)耐食性の向上 3)ゴミ、切粉等の異物埋収性 4)なじみ性の向上 5)歪の分散 6)加工精度の向上 等である。1) Preventing seizure between bearing and shaft 2) Improved corrosion resistance 3) Ability to embed foreign substances such as dust and chips 4) Improved familiarity 5) Dispersion of distortion 6) Improving processing accuracy etc.

本発明者等はオーバレイメッキ謂について着目し、試験
研究を行なった結果、オーバレイ合金メッキ層があれば
、このメッキ及びその下地である例えば焼結合金軸受材
層の僅かの厚みで軸受材として十分に耐えることを見出
した。
The inventors of the present invention have focused on so-called overlay plating, and have conducted research and found that if there is an overlay alloy plating layer, this plating and the slight thickness of the underlying layer, such as a sintered alloy bearing material layer, are sufficient as a bearing material. It was found that it can withstand

そこで、更に進んで研究を行ない、本発明は成立したも
のである。
Therefore, further research was conducted and the present invention was established.

すなわち、本発明は、従来の焼結合金等の軸受材層を特
に構成せず、従来の軸受材の構成を大幅に改善し、軸受
性能が良くかつ安価な軸受材ならびにその製造する技術
を見出したものである。
In other words, the present invention significantly improves the structure of conventional bearing materials without specifically configuring the conventional bearing material layer such as sintered alloy, and discovers a bearing material with good bearing performance and low cost, and a technology for manufacturing the same. It is something that

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一つの実施例の軸受材の楕成企示す縦
断面図であり、第2図ならびに第3図は本発明のすべり
軸受材のCUメッキ層厚さと摩ta摩耗テスト評価との
関係を示すグラフならびにオーバレイ層厚さと焼付荷重
との関係を示すグラフであり、第4図は本発明の実施例
のすべり軸受材の偏心荷重疲労試験R(アンダーウッド
試験R)の説明図であり、第5図ならびに第6図はそれ
ぞれ従来例の軸受材の構成を示す縦断面図であり、第7
図は半割りすべり軸受材の斜視図であり、第8図(a)
ならびに(b)は内燃機関のクランクシャフトのすべり
面に軸受を組み込んだ縦断面図ならびに横断面図である
FIG. 1 is a vertical cross-sectional view showing the oval shape of a bearing material according to one embodiment of the present invention, and FIGS. 2 and 3 are CU plating layer thickness and abrasion test evaluation of the sliding bearing material of the present invention. 4 is a graph showing the relationship between the overlay layer thickness and the seizure load, and FIG. 4 is an explanatory diagram of the eccentric load fatigue test R (Underwood test R) of the sliding bearing material of the example of the present invention. FIG. 5 and FIG. 6 are longitudinal cross-sectional views showing the structure of a conventional bearing material, respectively, and FIG.
The figure is a perspective view of a half-split plain bearing material, and Fig. 8(a)
and (b) is a vertical cross-sectional view and a cross-sectional view in which a bearing is incorporated into the sliding surface of a crankshaft of an internal combustion engine.

符号1はオーバレイ合金メッキ層、2はNiメッキ層、
3はCu若しくはCu合金メッキ關、4は裏金、5は軸
受台金目、6はPb合金メッキ層、1は中間園、10は
半割軸受、10aは端面、12はジャーナル、13はク
ランクビン、15a、 15bはスラスト軸受、20は
回転軸、21a、 21bは供試メタル、22は荷重用
金具を示す。
1 is an overlay alloy plating layer, 2 is a Ni plating layer,
3 is a Cu or Cu alloy plated shaft, 4 is a back metal, 5 is a bearing base metal, 6 is a Pb alloy plated layer, 1 is a middle ground, 10 is a half bearing, 10a is an end face, 12 is a journal, 13 is a crank bin, 15a and 15b are thrust bearings, 20 is a rotating shaft, 21a and 21b are test metals, and 22 is a load fitting.

第1図に示す本発明のすべり軸受材は、裏金4の軟鋼板
の上にCu若しくはCu合金メッキWI3とその上にN
1メッキ層2と表面オーバレイであるPb系合金メッキ
暖6を電気メッキにより順に形成した四層構造のものか
らなり、しかも、これらのメッキ層の厚さがそれぞれ3
〜50μI、0.1〜5μm、5〜50μmのものから
成るものである。
The sliding bearing material of the present invention shown in FIG.
It has a four-layer structure in which a plating layer 2 and a surface overlay Pb-based alloy plating layer 6 are sequentially formed by electroplating, and each of these plating layers has a thickness of 3 plating layers.
~50μI, 0.1~5μm, and 5~50μm.

このような四層構造とすると、上記の各メッキがきわめ
て薄い厚さのものであっても、軸受材としての要求され
る性能を保持し、しかも、安価なものである。
With such a four-layer structure, even if each of the above-mentioned platings is extremely thin, it maintains the performance required as a bearing material and is inexpensive.

次に、各メッキ層の限定理由について述べると、次の通
りである。
Next, the reason for limiting each plating layer is as follows.

Cu若しくはC0合金メッキ閾の厚さを3〜504zn
+とじたのは、3μm未満では下地1として摩耗時の耐
焼付防止の効果が得られず、50μmをこえても効果は
変らず、コストも上昇し、好ましくないからである。
The thickness of Cu or C0 alloy plating threshold is 3~504zn
The reason why the + is added is because if the thickness is less than 3 μm, the effect of preventing seizure during abrasion cannot be obtained as the base 1, and if it exceeds 50 μm, the effect will not change and the cost will increase, which is not preferable.

N1メッキ謂の厚さを0.1〜5μmとしたのは、温度
上昇時にオーバレイ合金メッキ層中のSnがCu若しく
はCu合金メッキ層の方へ拡散して硬い化合物震を形成
するのを防止するためである。
The reason why the thickness of the N1 plating is set to 0.1 to 5 μm is to prevent Sn in the overlay alloy plating layer from diffusing toward the Cu or Cu alloy plating layer and forming a hard compound layer when the temperature rises. It's for a reason.

この範囲外では拡散防止効果は得られない。Outside this range, no diffusion prevention effect can be obtained.

オーバレイ層の厚さを5〜50μmとしたのは、アンダ
ーウッド試験による偏心荷重疲労試験結果から軸受メタ
ルが焼付くまでの時間特性の評価を判断して総合的に良
好な値が得られる範囲であり、この範囲外では軸受材と
して要求される特性を満すことはできない。
The thickness of the overlay layer was set to 5 to 50 μm, based on the evaluation of the time characteristics until the bearing metal seizes based on the results of the eccentric load fatigue test conducted by the Underwood test. However, outside this range, the properties required for a bearing material cannot be met.

次に、本発明の軸受材の製造法について説明する。Next, a method for manufacturing the bearing material of the present invention will be explained.

軟8M薄板(通常は1〜4m1l)の帯鋼を用い、これ
に厚さ3〜50μnのCu若しくはCu合金メッキを通
常の方法で行なう。この場合、シアン化銅によるメッキ
が最も好ましいが、ビロリン酸銅によるメッキや、1i
ilI!Il銅によるメッキであっても良い。このよう
にして出来上った素材を加工工程へ送り、第2図のよう
な半円筒形状メタルに加工する。この形状は組付けられ
て使用する機械により種々異なり、油溝等の加工を施し
ても良い。この加工部分は軸との接触面とはならないた
め、CU若しくはCU合金メッキ層が存在しな(とも問
題とならない。その上にワット氏浴等のメッキ浴により
Niを厚さ1〜5μmメッキする。
A soft 8M thin plate (usually 1 to 4 ml) of steel strip is used and plated with Cu or Cu alloy to a thickness of 3 to 50 .mu.m using a conventional method. In this case, plating with copper cyanide is most preferable, but plating with copper birophosphate or plating with 1i
ilI! It may be plated with Il copper. The material thus completed is sent to a processing step and processed into a semi-cylindrical metal as shown in FIG. This shape varies depending on the machine to be assembled and used, and processing such as oil grooves may be applied. Since this processed part does not become a contact surface with the shaft, there is no CU or CU alloy plating layer (there is no problem. Ni is plated on top of it to a thickness of 1 to 5 μm using a plating bath such as Watt's bath. .

次に、このN1メッキ層の上にPb金合金らなるオーバ
レイメッキ層を電気メッキによって施す。
Next, an overlay plating layer made of a Pb gold alloy is applied on the N1 plating layer by electroplating.

このPb合金組成は5n10%、Cu2〜3%を基本と
するが、これに常法によりIn、T/%sb%Cd%Z
n、Mn%Ca%Ha等の金属を目的によって添加して
も良い。このメッキ層の厚さは5〜50μmとする。
This Pb alloy composition is basically 5n10% and Cu2-3%, but in addition to this, In, T/%sb%Cd%Z
Metals such as n, Mn%Ca%Ha may be added depending on the purpose. The thickness of this plating layer is 5 to 50 μm.

このオーバレイ合金メッキ回の厚みと特性との関係は第
2図ならびに第3図に示すように下地の影響による特性
の変化に対応するものであり、メッキ厚みの上限は経済
性も考慮して決められる。なお、第2図はCuメッキ1
厚さを変え、N1メッキ閤の厚さ1μm%Pb−10%
5n−2%Cu合金メッキ[20μmとした場合のCU
メッキ層厚さと摩擦摩耗テスト評価の関係を示すグラフ
、第3図はCuメッキ跨5μm%N1メッキ層2μmと
し、オバレイ合金メッキII(Pb−10%5n−2%
Cu)の厚さを変えた場合のオーバレイメッキ層厚さと
焼付荷重との関係を示すグラフである。
As shown in Figures 2 and 3, the relationship between the thickness of this overlay alloy plating and its properties corresponds to changes in properties due to the influence of the substrate, and the upper limit of the plating thickness is determined by taking economic efficiency into account. It will be done. In addition, Figure 2 shows Cu plating 1.
Change the thickness, N1 plating thickness 1μm%Pb-10%
5n-2% Cu alloy plating [CU when set to 20 μm
A graph showing the relationship between plating layer thickness and friction wear test evaluation, Figure 3 shows a 5 μm% N1 plating layer spanning Cu plating of 2 μm, and overlay alloy plating II (Pb-10% 5N-2%).
2 is a graph showing the relationship between overlay plating layer thickness and baking load when the thickness of Cu) is changed.

実施例 以下、実施例をあげ、さらに詳しぐ説明する。Example Hereinafter, examples will be given and more detailed explanation will be given.

実施例1゜ 冷間圧延鋼板([C] =0.08%、(Mn]=0.
20%、[Si ] =0.01%、[S] =0.0
10%、[P]=0.0051%)の厚さi 、 s 
mmのものを用い、アルカリによる脱脂、塩酸による酸
洗いを行なった後、第1表に示す条件でビロリン酸銅メ
ッキを行ない、鋼板上に厚さ5μmのCuメッキ層を形
成させた。
Example 1゜ Cold rolled steel plate ([C] = 0.08%, (Mn] = 0.
20%, [Si] =0.01%, [S] =0.0
10%, [P] = 0.0051%) thickness i, s
After degreasing with alkali and pickling with hydrochloric acid, copper birophosphate plating was performed under the conditions shown in Table 1 to form a Cu plating layer with a thickness of 5 μm on the steel plate.

次に、通常のワット氏浴といわれている第2表に示すN
iメッキ浴を用いてこのCuメッキ層上に厚さ1μmの
Niをメッキした。次に、園弗酸浴を用いてこの旧メッ
キ層上に第2表に示す条件でメッキし、厚さ20μm1
7)Pb−10%5n−2%Cuのオーバレイ合金メッ
キ■を形成させた。
Next, N
Ni was plated to a thickness of 1 μm on this Cu plating layer using an i-plating bath. Next, plating was performed on this old plating layer using a hydrofluoric acid bath under the conditions shown in Table 2 to a thickness of 20 μm.
7) An overlay alloy plating (■) of Pb-10%5n-2%Cu was formed.

第  1  表 第 表 第 表 このようにして得た材料(比較例)とこの材料を更に温
度170℃で2時間加熱炉中で加熱処理した材料(実施
例)についてキャビチーシコンテストを行なった。実施
例のものは比較例に対し良好な耐キャとチーシコン性を
示した。
Table 1 A cavity contest was conducted on the material thus obtained (comparative example) and the material obtained by further heat-treating this material in a heating furnace at a temperature of 170° C. for 2 hours (example). The samples of Examples showed better resistance to corrosion and corrosion than Comparative Examples.

なお、キャビテーションテスト方法は以下の通りである
The cavitation test method is as follows.

振  動  数   10KHz 撮     幅   45μm クリアランス 1 、3 mm 時     間   15分間 また、このテストで比較例のものは合金メッキの50%
が剥離したのに対し、実施例のものでは15%程度のメ
ッキ否剥離にとどまった。
Vibration frequency: 10 KHz Shooting width: 45 μm Clearance: 1.3 mm Time: 15 minutes Also, in this test, the comparative example had 50% of the alloy plating.
However, in the example, only about 15% of the plating peeled off.

実施例2゜ 第4表に示すようにCuメッキ層、Niメッキ層ならび
にオーバレイ合金メッキ1の各メッキ台の厚さを変えた
以外は実施例1と同様に行ない、軸受材を作成し、これ
らについて偏心荷重疲労試験を行なった。
Example 2 Bearing materials were prepared in the same manner as in Example 1, except that the thicknesses of the Cu plating layer, Ni plating layer, and overlay alloy plating 1 were changed as shown in Table 4. An eccentric load fatigue test was conducted on the

なお、偏心荷重疲労試験は第4図に示す回転軸20に荷
重用金具22を取付けた8i置に供試メタル21a、2
1bを取付け、加熱油をかけながら回転試験を行なった
。その条件は回転速度350Orpm、供試メタル背面
温度150℃、メタル面への偏心荷重750klJ/I
]2とし、供試メタルの焼付発生までの時間を測定した
。その結果を第4表に示した。
In addition, the eccentric load fatigue test was carried out using the test metals 21a and 2 at the 8i position where the loading fitting 22 was attached to the rotating shaft 20 shown in FIG.
1b was installed and a rotation test was conducted while applying heated oil. The conditions are: rotation speed 350 rpm, back temperature of the test metal 150°C, eccentric load 750 klJ/I on the metal surface.
]2, and the time until the occurrence of seizure of the test metal was measured. The results are shown in Table 4.

なお、この時の軸受用供試メタルにかかる荷重を油温に
よって調整できるメタル背面の温度が重要な影響を受け
るため、試験にあたっては精密に調整して行なった。
The load applied to the test metal for the bearing at this time was significantly affected by the temperature on the back side of the metal, which can be adjusted by the oil temperature, so the test was conducted with precise adjustment.

第4表 アンダ ウッド試験による総合評価結果 第4表から明らかなように、下地であるCuメッキ膿の
厚さは5μm前後から艮(なり、あまり厚くとも効果が
上らない。また、Niメッキ閾は温度上昇時にオーバレ
イメッキ層中のSnがCuメッキの方へ拡散してい(の
を防止するためのものであるから均一に被覆されていれ
ば、少なくとも0.1μm程度でよく、好ましくは1〜
2μmにNiメッキすれば十分にSnが拡散防止できる
Table 4 Comprehensive evaluation results from the Underwood test As is clear from Table 4, the thickness of the underlying Cu plating layer is approximately 5 μm or more, and the effect is not improved even if it is too thick. This is to prevent Sn in the overlay plating layer from diffusing toward the Cu plating when the temperature rises, so as long as the coating is uniform, the thickness may be at least 0.1 μm, preferably 1 to 1 μm.
Ni plating to a thickness of 2 μm can sufficiently prevent Sn from diffusing.

また、この結果からオーバレイメッキ層は10〜30μ
mであれば偏心荷重疲労試験結果が良好であり、異物埋
収性等から考えてHHoμmあれば総合的に良好な値と
なり、30μm以上の被覆はこの結果からあまり効果は
ないが下地間との関係から50L1mまで被覆すること
ができる。
Also, from this result, the overlay plating layer is 10 to 30 μm.
If the thickness is 30μm, the results of the eccentric load fatigue test are good, and considering the foreign matter embedding ability, HHoμm is a good value overall, and coatings with a thickness of 30μm or more are not very effective, but the From the relationship, it is possible to cover up to 50L1m.

〈発明の効果〉 以上詳しく説明したように、本発明は、軟鋼板等の裏金
材の片面に厚さ3〜50μmのCu若しくはGo合金電
気メッキ層と、厚さ0.1〜5μmのN1電気メッキ1
と、厚さ5〜50μmのllb合金電気メッキ(3)と
を順に形成されたものから成ることを特徴とするすべり
軸受であり、前記すべり軸受材を温度150〜500℃
で加熱処理することを特徴とする。
<Effects of the Invention> As explained in detail above, the present invention provides a Cu or Go alloy electroplating layer with a thickness of 3 to 50 μm on one side of a back metal material such as a mild steel plate, and a N1 electroplated layer with a thickness of 0.1 to 5 μm. Plating 1
and llb alloy electroplating (3) having a thickness of 5 to 50 μm.
It is characterized by heat treatment.

従って、本発明のすべり軸受材は裏金上に特定厚さのC
U若しくはCu合金メッキ層、N1メッキ層、オーバレ
イメッキ腑を電気メッキにより設けたため、構造的に強
固ですべり性能にすぐれ、しかも、安価であり、かつ耐
キャビテーション性にすぐれ、内燃機関等のクランク軸
、その他の部分で従来の軸受材と同等に使用することが
できる。
Therefore, the plain bearing material of the present invention has a specific thickness of C on the backing metal.
Since the U or Cu alloy plating layer, N1 plating layer, and overlay plating layer are provided by electroplating, it is structurally strong and has excellent sliding performance, is inexpensive, and has excellent cavitation resistance, making it suitable for crankshafts of internal combustion engines, etc. , it can be used equivalently to conventional bearing materials in other parts.

また、裏金上にCu若しくはCu合金メッキ層、N1メ
ッキ震、オーバレイメッキ層を電気メッキ法により順に
形成させ、更に、加熱処理するようにしたため、連続的
で、しかも、簡単にかつ低コストですべり軸受材が製造
できる。
In addition, the Cu or Cu alloy plating layer, N1 plating layer, and overlay plating layer are sequentially formed on the backing metal by electroplating, and then heat-treated, so that the sliding can be performed continuously, easily, and at low cost. Bearing materials can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの実施例の軸受材の構成を示す縦
断面図、第2図ならびに第3図は本発明のすべり軸受材
のCuメメツ位厚さと摩擦摩耗テスト評価との関係を示
すグラフならびにオバレイ層厚さと焼付荷重との関係を
示すグラフ、第4図は本発明の実/1fjPAのすべり
軸受材の偏心vJ重疲労試験機(アンダーウッド試験機
)の説明図、第5図ならびに第6図はそれぞれ従来例の
軸受材の構成を示す縦断面図、第7図は半割りすべり軸
受材の斜視図、第8図(a)ならびに(b)は内燃機関
のクランクシャフトのすべり面に軸受を組み込んだ縦断
面図ならびに横断面図である。 符号1・・・・・・オーバレイ合金メッキ層2・・・・
・・N1メッキ圀 3・・・・・・Cu若しくはCU合金メッキ膿4・・・
・・・裏金     5・・・・・・軸受合金層6・・
・・・・III)合金メッキ層 7・・・・・・中間位    10・・・・・・半割軸
受10a・・・・・・端面    12・・・・・・ジ
ャーナル13・・・・・・クランクビン 15a、 15b・・・・・・スラスト軸受20・・・
・・・回転軸 21a、 21b・・・・・・供試メタル22・・・・
・・荷重用金具 第1図 第2図 C区メ7代7普ffr  (p〈 第3図 第4図 第7図 Qa 第5 図 第6図 第8図 (し)
FIG. 1 is a vertical cross-sectional view showing the structure of a bearing material according to an embodiment of the present invention, and FIGS. 2 and 3 show the relationship between the Cu thickness and friction wear test evaluation of the sliding bearing material of the present invention. Figure 4 is an explanatory diagram of the eccentric vJ heavy fatigue testing machine (Underwood testing machine) for real/1fjPA plain bearing material of the present invention, and Figure 5 is a graph showing the relationship between overlay layer thickness and seizure load. 6 is a vertical cross-sectional view showing the structure of a conventional bearing material, FIG. 7 is a perspective view of a half-split sliding bearing material, and FIGS. 8(a) and (b) are diagrams showing the structure of a crankshaft of an internal combustion engine. FIG. 2 is a vertical cross-sectional view and a cross-sectional view of a bearing incorporated in the surface. Code 1... Overlay alloy plating layer 2...
...N1 plating area 3...Cu or CU alloy plating 4...
...Backing metal 5...Bearing alloy layer 6...
...III) Alloy plating layer 7 ... Middle position 10 ... Half bearing 10a ... End face 12 ... Journal 13 ...・Crankbin 15a, 15b... Thrust bearing 20...
... Rotating shafts 21a, 21b ... Test metal 22 ...
...Loading fittings Figure 1 Figure 2 C section me 7th generation 7ffr (p〈 Figure 3 Figure 4 Figure 7 Figure 7 Qa Figure 5 Figure 6 Figure 8 (shi)

Claims (1)

【特許請求の範囲】 1)軟鋼板等の裏金材の片面に厚さ3〜50μmのCu
若しくはCu合金電気メッキ層と、厚さ0.1〜5μm
のNi電気メッキ層と、厚さ5〜50μmのPb合金電
気メッキ層とを順に形成されたものから成ることを特徴
とするすべり軸受材。 2)前記Cu合金電気メッキ層がCu−Ni合金メッキ
層である請求項1記載のすベり軸受材。 3)前記Pb合金電気メッキ層がPb−Sn−Cu合金
メッキ層である請求項1又は2記載のすベり軸受材。 4)前記請求項1記載のすべり軸受材を温度150〜5
00℃で加熱処理することを特徴とする耐キャビテーシ
ョン性良好なすべり軸受材の製造法。
[Claims] 1) Cu with a thickness of 3 to 50 μm on one side of a back metal material such as a mild steel plate
or Cu alloy electroplated layer with a thickness of 0.1 to 5 μm
1. A plain bearing material comprising a Ni electroplated layer with a thickness of 5 to 50 μm and a Pb alloy electroplated layer with a thickness of 5 to 50 μm. 2) The sliding bearing material according to claim 1, wherein the Cu alloy electroplated layer is a Cu-Ni alloy plated layer. 3) The sliding bearing material according to claim 1 or 2, wherein the Pb alloy electroplated layer is a Pb-Sn-Cu alloy plating layer. 4) The sliding bearing material according to claim 1 is heated to a temperature of 150 to 5
A method for producing a plain bearing material with good cavitation resistance, characterized by heat treatment at 00°C.
JP1039289A 1989-01-18 1989-01-18 Slide bearing material and its production Pending JPH02190497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039289A JPH02190497A (en) 1989-01-18 1989-01-18 Slide bearing material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039289A JPH02190497A (en) 1989-01-18 1989-01-18 Slide bearing material and its production

Publications (1)

Publication Number Publication Date
JPH02190497A true JPH02190497A (en) 1990-07-26

Family

ID=11748855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039289A Pending JPH02190497A (en) 1989-01-18 1989-01-18 Slide bearing material and its production

Country Status (1)

Country Link
JP (1) JPH02190497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215696A (en) * 1990-01-19 1991-09-20 Honda Motor Co Ltd Sliding member
WO2004063426A1 (en) * 2003-01-16 2004-07-29 Chuetsu Metal Works Co., Ltd. Metal plating coating film having sliding function and article coated therewith
JP2015155571A (en) * 2014-02-21 2015-08-27 株式会社Kanzacc composite metal material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221399A (en) * 1985-03-27 1986-10-01 N D C Kk Plate bearing
JPS62112787A (en) * 1985-11-13 1987-05-23 Toyota Central Res & Dev Lab Inc Metallic laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221399A (en) * 1985-03-27 1986-10-01 N D C Kk Plate bearing
JPS62112787A (en) * 1985-11-13 1987-05-23 Toyota Central Res & Dev Lab Inc Metallic laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215696A (en) * 1990-01-19 1991-09-20 Honda Motor Co Ltd Sliding member
WO2004063426A1 (en) * 2003-01-16 2004-07-29 Chuetsu Metal Works Co., Ltd. Metal plating coating film having sliding function and article coated therewith
JP2015155571A (en) * 2014-02-21 2015-08-27 株式会社Kanzacc composite metal material

Similar Documents

Publication Publication Date Title
US6273972B1 (en) Stratified composite material for sliding elements and method for the production thereof
US4696867A (en) Aluminum based bearing alloys
JPH0694036A (en) Multilayer slide bearing excellent in fretting resistant characteristic
JP3570607B2 (en) Sliding member
JPH1150296A (en) Sliding member
JP2693369B2 (en) Multi-layered end bearing and manufacturing method thereof
JPH01316514A (en) Multilayer sliding material
JPH01307512A (en) Multilayer aluminum alloy plain bearing and its manufacture
US5334460A (en) CU-PB system alloy composite bearing having overlay
US5413875A (en) Copper alloy sliding bearing with high-strength back metal
EP0120553B1 (en) Bearing having nickel-tin-copper barrier layer
JP3754315B2 (en) Multi-layer sliding material
KR20020049015A (en) Sliding bearing having multilayer lead-free overplate and method of manufacture
JP3026272B2 (en) Plain bearing
JPS6096741A (en) Sliding bearing and manufacture
JPH02190497A (en) Slide bearing material and its production
KR100235835B1 (en) Material for slide bearing
JP5017521B2 (en) Bearing material
JPH0617820A (en) Slide member
GB2271780A (en) Process for producing sliding bearing
JPH1030137A (en) Copper base sliding member
JPS5844140B2 (en) Composite sliding material
JP3754353B2 (en) Sliding member with composite plating film
US20040052438A1 (en) Bearing device for internal combustion engines
JPH04331817A (en) Sliding bearing having composite plating film