JPH0219024B2 - - Google Patents

Info

Publication number
JPH0219024B2
JPH0219024B2 JP1464981A JP1464981A JPH0219024B2 JP H0219024 B2 JPH0219024 B2 JP H0219024B2 JP 1464981 A JP1464981 A JP 1464981A JP 1464981 A JP1464981 A JP 1464981A JP H0219024 B2 JPH0219024 B2 JP H0219024B2
Authority
JP
Japan
Prior art keywords
piston
control
spring
valve
pressure reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1464981A
Other languages
Japanese (ja)
Other versions
JPS57130849A (en
Inventor
Toshifumi Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP1464981A priority Critical patent/JPS57130849A/en
Publication of JPS57130849A publication Critical patent/JPS57130849A/en
Publication of JPH0219024B2 publication Critical patent/JPH0219024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】 本発明は車両ブレーキ系に用いる減速度感知式
の液圧制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deceleration sensing type hydraulic pressure control device used in a vehicle brake system.

既知の如く、車両制動時の前後輪ブレーキ力は
これら前・後輪の路面への押付け力の差異に従つ
て適切に配分することが車輪ロツク発生の防止の
上から望ましく、このような制御のためのプロポ
ーシヨニング型液圧制御弁、あるいはこれに更に
車両の荷重積載状態の変化に伴う前・後輪の路面
への押付力変化に応じた配分比の変更を補正要素
として組込んだ減速度感知式の液圧制御弁も提供
されている。
As is known, when braking a vehicle, it is desirable to distribute the front and rear wheel brake forces appropriately in accordance with the difference in the pressing forces of the front and rear wheels against the road surface, in order to prevent the occurrence of wheel lock. A proportioning type hydraulic pressure control valve, or a reduction valve that incorporates as a correction element a change in the distribution ratio in response to changes in the pressing force of the front and rear wheels against the road surface due to changes in the vehicle's loading status. Speed sensitive hydraulic control valves are also provided.

さらにブレーキ時に車輪ロツクのおそれを検出
したときにブレーキ装置のブレーキ圧を減じるア
ンチロツク装置も周知である。
Antilock devices are also known which reduce the brake pressure of the brake system when a risk of wheel lock is detected during braking.

そこで本発明においては、減速度感知式液圧制
御装置にアンチロツク装置の機能を備えさせるこ
とにより装置の小型化を実現させることを目的と
するものである。
Therefore, an object of the present invention is to provide a deceleration sensing type hydraulic pressure control device with the function of an anti-lock device, thereby realizing miniaturization of the device.

本発明の車両ブレーキ系の減速度感知式液圧制
御装置の特徴は、プロポーシヨニング型液圧制御
弁の制御ピストンと調整ピストンの一端との間に
設けた制御スプリングと、一定減速度に達したと
きに閉じられる第一弁装置を介して後輪ブレーキ
装置に接続され、かつ前記調整ピストンの他端が
臨む封止液室とを備えた車両ブレーキ系の減速度
感知式液圧制御装置において、 前記制御ピストンと同軸的に配置され、かつ摺
動可能な減圧ピストンと、前記減圧ピストンの一
端に設けられた減圧室と、前記制御スプリングの
外側に設けられ、前記減圧ピストンの他端に利用
して減圧室の容積を縮小すべく付勢するホールド
スプリングと、前記後輪ブレーキ装置と前記減圧
室とを接続する通液路と、前記通液路に設けら
れ、後輪のロツク状態が検出されたときに開かれ
る第二弁装置とを備えた構成をなすところにあ
る。
The deceleration sensing type hydraulic pressure control device for vehicle brake systems of the present invention is characterized by a control spring provided between the control piston of the proportioning type hydraulic pressure control valve and one end of the adjustment piston, and a control spring provided between the control piston and one end of the adjustment piston of the proportioning type hydraulic pressure control valve. A deceleration-sensing hydraulic pressure control device for a vehicle brake system, which is connected to a rear wheel brake device via a first valve device that is closed when , a pressure reduction piston that is arranged coaxially with the control piston and is slidable; a pressure reduction chamber provided at one end of the pressure reduction piston; and a pressure reduction chamber provided outside the control spring and utilized at the other end of the pressure reduction piston. a hold spring that is biased to reduce the volume of the decompression chamber; a fluid passage connecting the rear wheel brake device and the decompression chamber; and a fluid passage provided in the fluid passage to detect a locked state of the rear wheel. and a second valve device that opens when the valve is opened.

以下本発明を図面に示す実施例に基づいて説明
する。
The present invention will be described below based on embodiments shown in the drawings.

図において1はバルブボデイであり、上部側に
液圧制御弁の収容部、下部側に電磁弁機構の収容
部が夫々設けられている。そして液圧制御弁の収
容部は段付のシリンダ2,3,4,5,6が図の
右側に向つて漸次段付大径に形成されており、ま
た最大径のシリンダ6の右端側には小径の調整シ
リンダ7が臨むよう形成されている。
In the figure, reference numeral 1 denotes a valve body, in which an accommodating portion for a hydraulic control valve is provided on the upper side, and an accommodating portion for an electromagnetic valve mechanism is provided on the lower side. In the housing part of the hydraulic control valve, stepped cylinders 2, 3, 4, 5, and 6 are formed with stepped cylinders 2, 3, 4, 5, and 6 having gradually larger diameters toward the right side of the figure, and the cylinder 6 with the largest diameter is formed on the right end side. is formed so that the small diameter adjustment cylinder 7 faces.

そしてシリンダ2,3,4は弁機構の収容部分
をなしており、8はシリンダ4に組付けられた中
シリンダ部材、9は中シリンダ、10は係止リン
グ、11はこの中シリンダ9を貫通して嵌挿され
た制御ピストンであり、その一端側(図の左端
側)頭部はシリンダ3,4を挿通してシリンダ2
内に位置され、シリンダ2,3の段付部に組付け
られたバルブシート13を協働して区画された
入・出液室a,bの連通を開・閉する弁部をなす
弁体部12が形成されている。また他端部はシリ
ンダ6内まで延出され、キヤツプ状のスプリング
座20に係合されている。14はホールドスプリ
ング、15,16はスプリング座、17はピスト
ンカツプ、18は入力液室aとマスタシリンダ
(図示せず)を連通する入力ポート、19は出力
液室bと後輪ブレーキ装置を連通する出力ポート
である。
The cylinders 2, 3, and 4 constitute a housing part for the valve mechanism, 8 is a middle cylinder member assembled to the cylinder 4, 9 is a middle cylinder, 10 is a locking ring, and 11 is a penetrating part of the middle cylinder 9. This is a control piston that is inserted into the cylinder 2, with the head on one end (the left end side in the figure) passing through the cylinders 3 and 4.
A valve body that forms a valve part that opens and closes communication between partitioned liquid inlet and outlet chambers a and b by cooperating with the valve seat 13 that is located inside the cylinder and is assembled to the stepped part of the cylinders 2 and 3. A portion 12 is formed. The other end extends into the cylinder 6 and is engaged with a cap-shaped spring seat 20. 14 is a hold spring, 15 and 16 are spring seats, 17 is a piston cup, 18 is an input port that communicates between the input fluid chamber a and a master cylinder (not shown), and 19 is a communication between the output fluid chamber b and the rear wheel brake device. This is an output port.

また前記スプリング座20には、調整シリンダ
7に滑合された調整ピストン21との間に制御ス
プリング22が張設され、制御ピストン11に頭
部方向へのバネ力を付勢している。
Further, a control spring 22 is stretched between the spring seat 20 and an adjusting piston 21 that is slidably fitted to the adjusting cylinder 7, and applies a spring force to the control piston 11 in the head direction.

23はシリンダ5,6に滑合された筒状段付の
減圧ピストンであり、小径端は前述した係止リン
グ10に対向し、大径端は前記スプリング座20
の外周部に位置するよう設けられている。そして
この減圧ピストン23の大径端とスプリング座2
0の右端フランジ部の間、及びバルブボデイ1の
内壁面の間には夫々調整スプリング24、ホール
ドスプリング25が張設されている。
Reference numeral 23 designates a cylindrical stepped pressure reducing piston that is slidably fitted to the cylinders 5 and 6, the small diameter end facing the aforementioned locking ring 10, and the large diameter end facing the spring seat 20.
It is located at the outer periphery of the The large diameter end of this decompression piston 23 and the spring seat 2
An adjustment spring 24 and a hold spring 25 are stretched between the right end flange portion of the valve body 1 and between the inner wall surface of the valve body 1, respectively.

以上の構成をなす液圧制御弁の作動は基本的に
は既知のものと同様であり、マスタシリンダから
入力液室aに伝えられた液圧Paは、初期には直
接出力液室bを介して後輪ブレーキ装置に伝えら
れ、その後入・出力液室a,bに臨む制御ピスト
ン11の液圧受圧面積Aa,Ab(Aa<Ab)と、
制御スプリング22の付勢バネ力Fの関係がP=
F/Aa−Abなる液圧値を越えたときに出力液圧
Pbは入力液圧Paに対しtanθ=Ab/Aaなる関係
で折点減圧制御される。
The operation of the hydraulic pressure control valve with the above configuration is basically the same as that of the known one, and the hydraulic pressure Pa transmitted from the master cylinder to the input liquid chamber a is initially directly transmitted through the output liquid chamber b. hydraulic pressure receiving areas Aa, Ab (Aa<Ab) of the control piston 11 facing the input/output liquid chambers a, b;
The relationship between the biasing spring force F of the control spring 22 is P=
Output fluid pressure when it exceeds the fluid pressure value F/Aa-Ab
Pb is controlled to be reduced at a corner point with respect to the input hydraulic pressure Pa using the relationship tanθ=Ab/Aa.

従つて制御スプリング22のバネ力が後記する
封止液室Cの液圧値の増大に伴なつて増大される
と液圧折点値も上昇されることになる。
Therefore, when the spring force of the control spring 22 is increased in accordance with an increase in the hydraulic pressure value of the sealing liquid chamber C, which will be described later, the hydraulic pressure corner value will also be increased.

電磁弁機構(バネ力調整機構)の収容部は、ア
ンチスキツド制御回路(図示せず)によつて励磁
力が2段に切換励磁されるソレノイド26と、通
常はリターンスプリング27により初期静止位置
に偏倚係止され、前記ソレノイド26の第1段の
励磁によりリターンスプリング27のバネ力に抗
し軸方向第1位置に移動され、ソレノイド26の
第2段の励磁により、前記リターンスプリング2
7及び重畳されるホールドスプリング28のバネ
力に抗して更に第2位置まで移動されるアマチユ
ア29とを備えており、このアマチユア29の初
期位置、移動第1位置、移動第2位置の移動変化
により、封止弁体30及びバランスピストン31
が可動されて所定の折点減圧制御の特性を可変さ
せるように構成されている。
The housing part of the electromagnetic valve mechanism (spring force adjustment mechanism) is biased to an initial rest position by a solenoid 26 whose excitation force is switched in two stages by an anti-skid control circuit (not shown) and a return spring 27. The first stage of the solenoid 26 is energized to move the return spring 27 to the first position in the axial direction against the spring force of the return spring 27, and the second stage of the solenoid 26 is energized to move the return spring 2 to the first position.
7 and an armature 29 that is further moved to a second position against the spring force of a superimposed hold spring 28, and changes in movement of the armature 29 between the initial position, the first movement position, and the second movement position. Accordingly, the sealing valve body 30 and the balance piston 31
is configured to be moved to vary the characteristics of the predetermined corner pressure reduction control.

即ち、封止弁体30及びバランスピストン31
は筒状のアマチユア29の内筒部において対向す
るよう配設されると共に、これらの間に圧縮型の
ホールドスプリング28が張設されており、通常
はバランスピストン31の弁部32をバルブボデ
イ1の弁座33に当合させ、他方封止弁体30を
初期静止位置にあるアマチユア29の内筒部係止
リング34に係合させて封止液室Cへの連通開口
35を有する弁座36との当合を離して流路を開
くよう構成されている。そしてアマチユア29の
第1位置への移動時には封止弁体30を弁座36
(これらが第一弁装置を構成する)に当合着座さ
せて封止液室Cを封止させ、更にアマチユア29
の第2位置への移動時には該アマチユア29の内
筒に組付けられたもう一つの係止リング37によ
りバランスピストン31を随伴移動させることに
よつて弁部33と弁座34(これらが第二弁装置
を構成する)の当合を離すように設けられてお
り、このためアマチユア29に戻しバネ力を付勢
するリターンスプリング27のバネ力はホールド
スプリング28のバネ力よりも大なるよう設定さ
れている。
That is, the sealing valve body 30 and the balance piston 31
are arranged to face each other in the inner cylinder part of the cylindrical armature 29, and a compression type hold spring 28 is stretched between them. A valve seat 36 which has a communication opening 35 to the sealing liquid chamber C by abutting the valve seat 33 and engaging the sealing valve body 30 with the inner cylindrical locking ring 34 of the armature 29 in the initial rest position. It is configured to open the flow path by separating the contact with the flow path. When the armature 29 is moved to the first position, the sealing valve body 30 is moved to the valve seat 36.
(these constitute the first valve device) to seal the sealing liquid chamber C, and then
When the armature 29 is moved to the second position, the balance piston 31 is moved along with another locking ring 37 assembled to the inner cylinder of the armature 29, so that the valve portion 33 and the valve seat 34 (these are moved to the second position) are moved to the second position. The spring force of the return spring 27, which biases the spring force of the return spring 29 to the armature 29, is set to be greater than the spring force of the hold spring 28. ing.

尚、電磁弁機構の収容部はバランスピストン3
1の縦孔流路38、通液路39を介して前述した
液圧制御弁の出力液室aと連通されていると共
に、弁座36内の開口を介して封止液室Cに連通
されていると共に、該バランスピストン31の弁
部33と弁座34の当合弁部、バランスピストン
31の外周凹部40及び通液路41を介して、前
記液圧制御弁側のシリンダ5,6の段付部及び減
圧ピストン23で囲まれた減圧室dに連通しうる
よう設けられている。
In addition, the housing part of the solenoid valve mechanism is the balance piston 3.
It communicates with the output liquid chamber a of the hydraulic pressure control valve described above through the vertical hole flow path 38 and the liquid passage 39 of No. 1, and also communicates with the sealing liquid chamber C through the opening in the valve seat 36. At the same time, the stages of the cylinders 5 and 6 on the hydraulic pressure control valve side are It is provided so as to be able to communicate with the decompression chamber d surrounded by the attachment part and the decompression piston 23.

また42はブレーキ解放時における減圧室d内
の残液圧を電磁弁機構の収容部を介して液圧制御
弁の出力液室b側に逃がすチエツク弁である。
Reference numeral 42 designates a check valve that releases residual fluid pressure in the pressure reducing chamber d when the brake is released to the output fluid chamber b side of the fluid pressure control valve via the accommodating portion of the electromagnetic valve mechanism.

以上の構成をなす電磁弁機構の作動について説
明すると、通常図示する初期静止位置にあるアマ
チユア29によつて封止液室Cは液圧制御弁の出
力液室bに連通されており、他方減圧室Cへの連
通は遮断されている。この状態でブレーキ操作が
行なわれ、図示しないアンチスキツド制御回路に
より電気的に車両(車輪)の一定減速度が検出さ
れると、ソレノイド26に通電されてアマチユア
29は第1位置に移動され、このため封止弁体3
0が弁座36に当合着座し封止液室Cは封止され
る。このときバランスピストン31は静止を継続
し、減圧室dは出力液室bに連通されていない。
この後アンチスキツド制御回路が後輪のロツク状
態を検出するソレノイド26の励磁力が増幅され
てアマチユア29は第2位置に更に移動され、こ
のためバランスピストン31が随伴されて弁部3
2が弁座33より離れ減圧室dが液圧制御弁の出
力液室bに連通される。この結果液圧力により減
圧ピストン23が調整スプリング24及びホール
ドスプリング25のバネ力に抗し図の右方大径側
に移動され、減圧室dの容積増大分だけ出力液圧
Pbの圧力が降下されることになる。
To explain the operation of the electromagnetic valve mechanism having the above configuration, the sealing liquid chamber C is communicated with the output liquid chamber b of the hydraulic pressure control valve by the armature 29 which is normally in the initial rest position shown in the figure, and the other side is depressurized. Communication to room C is cut off. When a brake operation is performed in this state and a constant deceleration of the vehicle (wheels) is electrically detected by an anti-skid control circuit (not shown), the solenoid 26 is energized and the armature 29 is moved to the first position. Sealing valve body 3
0 is seated against the valve seat 36, and the sealing liquid chamber C is sealed. At this time, the balance piston 31 continues to stand still, and the decompression chamber d is not communicated with the output liquid chamber b.
Thereafter, the anti-skid control circuit detects the locked state of the rear wheel.The excitation force of the solenoid 26 is amplified and the armature 29 is further moved to the second position.
2 is separated from the valve seat 33, and the pressure reducing chamber d is communicated with the output liquid chamber b of the hydraulic pressure control valve. As a result, the pressure reducing piston 23 is moved to the right side of the diagram in the larger diameter direction against the spring force of the adjustment spring 24 and the hold spring 25 due to the liquid pressure, and the output liquid pressure is increased by the volume increase of the pressure reducing chamber d.
The pressure of Pb will be reduced.

ブレーキ解放時には、アマチユア29、封止弁
体30及びバランスピストン31が初期位置に復
帰し、減圧室dの液はチエツク弁42を介して出
力液室bに還流される。
When the brake is released, the armature 29, the sealing valve body 30 and the balance piston 31 return to their initial positions, and the liquid in the pressure reducing chamber d is returned to the output liquid chamber b via the check valve 42.

以上の関係によつて制御される前後輪ブレーキ
力の特性を第2図及び第3図により説明すると、
第2図のイ,ロの曲線は夫々空車時、荷重最大積
載時における前後輪の理想的ブレーキ力配分曲線
を示しており、イ′,ロ′、はこれに近以した実際
の制御特性線を示している。即ち空車時には比較
的低いブレーキ力にて高い減速度が得られるた
め、封止液室Cの液圧Pcが小なる状態で一定減
速度の発生による液圧封止が行なわれ、従つて比
較的低い折点値より減圧制御が行なわれる。他方
荷重最大積載時には、これとは逆にかなり高い液
圧Pcが封止液室Cに封止されるため、高い折点
値より減圧制御が行なわれることとなる。
The characteristics of the front and rear wheel braking forces controlled by the above relationship are explained with reference to FIGS. 2 and 3.
Curves A and B in Figure 2 show the ideal brake force distribution curves for the front and rear wheels when the vehicle is empty and at maximum load, respectively, and A' and B' are actual control characteristic curves that are close to this. It shows. In other words, when the car is empty, a high deceleration can be obtained with a relatively low braking force, so hydraulic sealing is performed by generating a constant deceleration while the hydraulic pressure Pc in the sealing liquid chamber C is small. Pressure reduction control is performed from a lower corner value. On the other hand, when the maximum load is applied, on the contrary, a considerably high hydraulic pressure Pc is sealed in the sealing liquid chamber C, so that pressure reduction control is performed from a high corner value.

また第3図は、このような後輪ブレーキ液圧の
制御にもかかわらず、後輪ロツクの発生を招いた
場合に、後輪ブレーキ液圧が減圧制御されて後輪
ブレーキ力が低下される状態を示しており、これ
は例えば図示する後輪ロツク限界線を越えて後輪
ブレーキ力の増大が行なわれないようにアンチス
キツド制御回路による検出値を設定することにて
行なえばよい。
Figure 3 also shows that despite such control of the rear wheel brake fluid pressure, if rear wheel lock occurs, the rear wheel brake fluid pressure is controlled to be depressurized and the rear wheel braking force is reduced. This can be done, for example, by setting the detected value by the anti-skid control circuit so that the rear wheel braking force does not increase beyond the illustrated rear wheel lock limit line.

尚以上述べた実施例においては一つのソレノイ
ドによつて封止弁体及びバランスピストンを順次
可動させるように構成しているが、これは封止弁
体の封止液室の封止についてのみ慣性力を利用し
た慣性力を利用することも可能であり、この場合
に一定減速度による慣性力を車両前進方向に対し
て傾斜した斜面にて設定し、あるいはスプリング
のバネ力にて設定してもよいものである。
In the embodiment described above, the sealing valve body and the balance piston are sequentially moved by one solenoid, but this is because only the inertia is used for sealing the sealing liquid chamber of the sealing valve body. It is also possible to use inertial force using force, and in this case, the inertial force due to constant deceleration can be set on a slope inclined with respect to the forward direction of the vehicle, or it can be set using the spring force of a spring. It's good.

以上述べた如く、本発明よりなる減速度感知式
の液圧制御装置は、理想的な前後輪ブレーキ力の
配分比に近以した液圧制御を良好に得ることがで
き、また減圧制御のための機構である減圧ピスト
ン、これを弾性的に付勢するホールドスプリング
の配置が、プロポーシヨニング液圧制御弁の機構
を構成している部材と都合よく重複的に配置され
ているので、装置が小型化できるという効果があ
り、その有用性は極めて大なるものであつた。
As described above, the deceleration sensing type hydraulic pressure control device according to the present invention can satisfactorily obtain hydraulic pressure control close to the ideal front and rear wheel brake force distribution ratio, and can also achieve pressure reduction control. The mechanism of the pressure reducing piston and the hold spring that elastically biases it are conveniently arranged to overlap with the parts that make up the mechanism of the proportioning hydraulic control valve, so the device is It had the effect of being able to be miniaturized, and its usefulness was extremely great.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明の一実施例を示す減速度感
知式液圧制御装置の縦断面図、第2図及び第3図
は同装置による液圧制御特性を示す特性線図であ
る。 1……バルブボデイ、2,3,4,5,6……
シリンダ、7……調整シリンダ、8……中シリン
ダ部材、9……中シリンダ、10……係止リン
グ、11……制御ピストン、12……弁体部、1
3……バルブシート、14……ホールドスプリン
グ、15,16……スプリング座、17……ピス
トンカツプ、18……入力ポート、19……出力
ポート、20……スプリング座、21……調整ピ
ストン、22……制御スプリング、23……減圧
ピストン、24……調整スプリング、25……ホ
ールドスプリング、26……ソレノイド、27…
…リターンスプリング、28……ホールドスプリ
ング、29……アマチユア、30……封止弁体、
31……バランスピストン、32……弁部、33
……弁座、34,37……係止リング、35……
開口、36……弁座、38……縦孔流路、39…
…通液路、40……凹部、41……通液路、42
……チエツク弁。
FIG. 1 is a longitudinal sectional view of a deceleration sensing type hydraulic pressure control device showing one embodiment of the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the hydraulic pressure control characteristics of the device. 1... Valve body, 2, 3, 4, 5, 6...
Cylinder, 7... Adjustment cylinder, 8... Middle cylinder member, 9... Middle cylinder, 10... Locking ring, 11... Control piston, 12... Valve body part, 1
3... Valve seat, 14... Hold spring, 15, 16... Spring seat, 17... Piston cup, 18... Input port, 19... Output port, 20... Spring seat, 21... Adjustment piston, 22... Control spring, 23... Decompression piston, 24... Adjustment spring, 25... Hold spring, 26... Solenoid, 27...
...Return spring, 28...Hold spring, 29...Amateur, 30...Sealing valve body,
31...Balance piston, 32...Valve part, 33
... Valve seat, 34, 37 ... Locking ring, 35 ...
Opening, 36... Valve seat, 38... Vertical hole passage, 39...
...Liquid passage, 40...Recess, 41...Liquid passage, 42
...Check valve.

Claims (1)

【特許請求の範囲】 1 プロポーシヨニング型液圧制御弁の制御ピス
トンと調整ピストンの一端との間に設けた制御ス
プリングと、一定減速度に達したときに閉じられ
る第一弁装置を介して後輪ブレーキ装置に接続さ
れ、かつ前記調整ピストンの他端が臨む封止液室
とを備えた車両ブレーキ系の減速度感知式液圧制
御装置において、 前記制御ピストンと同軸的に配置され、かつ摺
動可能な減圧ピストンと、前記減圧ピストンの一
端に設けられた減圧室と、前記制御スプリングの
外側に設けられ、前記減圧ピストンの他端に作用
して減圧室の容積を縮小すべく付勢するホールド
スプリングと、前記後輪ブレーキ装置と前記減圧
室とを接続する通液路と、前記通液路に設けら
れ、後輪のロツク状態が検出されたときに開かれ
る第二弁装置とを備えたことを特徴とする車両ブ
レーキ系の減速度感知式液圧制御装置。
[Claims] 1. Via a control spring provided between the control piston of the proportioning type hydraulic control valve and one end of the adjustment piston, and a first valve device that is closed when a certain deceleration is reached. A deceleration-sensing hydraulic pressure control device for a vehicle brake system, which is connected to a rear wheel brake device and includes a sealing fluid chamber from which the other end of the adjustment piston faces, the device being disposed coaxially with the control piston, and a slidable pressure reduction piston; a vacuum chamber provided at one end of the pressure reduction piston; and a pressure reduction chamber provided outside the control spring and biased to act on the other end of the pressure reduction piston to reduce the volume of the pressure reduction chamber. a hold spring that connects the rear wheel brake device and the pressure reduction chamber; and a second valve device that is provided in the fluid passage and is opened when a locked state of the rear wheel is detected. A deceleration-sensing hydraulic pressure control device for a vehicle brake system.
JP1464981A 1981-02-03 1981-02-03 Deceleration sensing type hydraulic pressure controller for vehicle brake system Granted JPS57130849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1464981A JPS57130849A (en) 1981-02-03 1981-02-03 Deceleration sensing type hydraulic pressure controller for vehicle brake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1464981A JPS57130849A (en) 1981-02-03 1981-02-03 Deceleration sensing type hydraulic pressure controller for vehicle brake system

Publications (2)

Publication Number Publication Date
JPS57130849A JPS57130849A (en) 1982-08-13
JPH0219024B2 true JPH0219024B2 (en) 1990-04-27

Family

ID=11867042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1464981A Granted JPS57130849A (en) 1981-02-03 1981-02-03 Deceleration sensing type hydraulic pressure controller for vehicle brake system

Country Status (1)

Country Link
JP (1) JPS57130849A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227453A (en) * 1987-03-17 1988-09-21 Nissin Kogyo Kk Brake hydraulic control valve gear for vehicle

Also Published As

Publication number Publication date
JPS57130849A (en) 1982-08-13

Similar Documents

Publication Publication Date Title
JPH0647370B2 (en) Hydraulic brake system
JP2612764B2 (en) Braking hydraulic control device
EP0353506B1 (en) Hydraulic braking system for an automotive vehicle
US4500138A (en) Brake oil pressure controlling valve device for vehicles
US4116493A (en) Brake pressure control valve
JPH0217380B2 (en)
US4080006A (en) Braking pressure control valve unit
US4070067A (en) Fluid pressure control device
JPH0219024B2 (en)
US4036535A (en) Braking fluid pressure control device
US5174635A (en) Hydraulic braking pressure control system for rear wheel brake
GB2097080A (en) Deceleration-sensing pressure proportioning or limiting valve assembly for vehicle braking systems
JP2849947B2 (en) Braking fluid pressure control device
JP2632222B2 (en) Proportional pressure reducing valve
US4561699A (en) Brake pressure control device for vehicle braking systems
GB2027505A (en) Brke pressure limiting valves
JP2704758B2 (en) Braking hydraulic control device
JPH0327418B2 (en)
JP2627446B2 (en) Braking hydraulic control device
EP0560197A1 (en) Brake fluid pressure control apparatus for antiskid brakes
JPH07149220A (en) Brake hydraulic pressure control device of vehicle
JP2684085B2 (en) Braking hydraulic control device
JPS5846925Y2 (en) hydraulic control valve
JPH0939766A (en) Device for controlling hydraulic pressure of brake
JP2719957B2 (en) Braking hydraulic control device