JPH02188537A - Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane - Google Patents

Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane

Info

Publication number
JPH02188537A
JPH02188537A JP1007056A JP705689A JPH02188537A JP H02188537 A JPH02188537 A JP H02188537A JP 1007056 A JP1007056 A JP 1007056A JP 705689 A JP705689 A JP 705689A JP H02188537 A JPH02188537 A JP H02188537A
Authority
JP
Japan
Prior art keywords
reaction
tetrafluoroethane
catalyst
trifluoroethane
trichloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007056A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yanagii
楊井 清志
Satoru Yoshikawa
悟 吉川
Katsuyoshi Murata
村田 勝義
Sadaji Misumi
三隅 定治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1007056A priority Critical patent/JPH02188537A/en
Priority to US07/357,291 priority patent/US4996379A/en
Priority to FR8907005A priority patent/FR2631959A1/en
Priority to IT8920692A priority patent/IT1230795B/en
Priority to GB8912325A priority patent/GB2219796B/en
Priority to DE3917573A priority patent/DE3917573A1/en
Publication of JPH02188537A publication Critical patent/JPH02188537A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound on an industrial scale at a low cost by isomerizing 1,1,2-trichloro-1,2,2-trifluoroethane and reacting the resultant 1,1,1-trichloro-2,2,2-trifluoroethane with HF in the presence of a catalyst. CONSTITUTION:The objective 2,2-dichloro-1,1,1,2-tetrafluoroethane is produced by isomerizing 1,1,2-trichloro-1,2,2-trifluoroethane into 1,1,1-trichloro-2,2,2- trifluoroethane and reacting the isomerized product with hydrogen fluoride in the presence of a catalyst. The process is extremely excellent from industrial viewpoint because it can effectively decrease the content of 1,2-dichloro-1,1,2,2- tetrafluoroethane which is an isomer extremely difficult to separate. The objective compound is useful as a raw material for 1,1,1,2-tetrafluoroethane which is a refrigerant having moderate stability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、適度な安定性を有する冷媒である1、1.1
.2−テトラフルオロエタンの原料として有用な2,2
−ジクロロ−1,1,1,2−テトラフルオロエタン(
以後、R−114aと略す、)の製造法に関、する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to refrigerants 1, 1.1, which are moderately stable refrigerants.
.. 2,2 useful as a raw material for 2-tetrafluoroethane
-dichloro-1,1,1,2-tetrafluoroethane (
Hereinafter, it will be abbreviated as R-114a).

[従来技術とその解決しようとする課題]従来、R−1
14aを製造するには1,1.2−トリクロロ−1,2
,2−トリフルオロエタン(以後、R−113と略す、
)を触媒の存在下、フッ化水素でフッ素化する方法が知
られている。
[Prior art and problems to be solved] Conventionally, R-1
To produce 14a, 1,1,2-trichloro-1,2
, 2-trifluoroethane (hereinafter abbreviated as R-113,
) with hydrogen fluoride in the presence of a catalyst is known.

この反応に使われる触媒としては、■塩化アルミニウム
をフッ素化したフッ化アルミニウム(米国特許第2.7
48.177号)■工業的製造法による市販のフッ化ア
ルミニウム粉末[にJecchio。
Catalysts used in this reaction include: ■ Aluminum fluoride, which is fluorinated aluminum chloride (U.S. Patent No. 2.7)
48.177) ■ Commercially available aluminum fluoride powder by industrial production method [Jecchio.

G、Groppelli、J、C,Tatlow、J、
Fluoririe Ches+、4゜117 (19
74) ]■酸化クロム[L、Marangoni e
t at、。
G., Groppelli, J., C. Tatlow, J.
Fluoririe Ches+, 4°117 (19
74) ]■Chromium oxide [L, Marangoni e
t at,.

Chim、Ind、(Milan)、、64,135 
(1982)]  等が提案されている。このような反
応においては、触媒の調整方法や反応条件を最適化する
ことによってR−114aの収率を相当程度まで向上さ
せることが可能である。しかしながらこの場合、R−1
14aの異性体である1、2−ジクロロ−1,1,2,
2−テトラフルオロエタン(以後、R−114と略す、
)の副生は避けられず、またR−114aの収率の向上
には限界があり、しかも副生物のR−114とR−11
4aは沸点差が0.6℃と非常に小さく、蒸溜分離する
のは極めて困難であるので、純度の高いR−114aは
得られない。
Chim, Ind. (Milan), 64,135
(1982)] etc. have been proposed. In such a reaction, the yield of R-114a can be improved to a considerable extent by optimizing the catalyst preparation method and reaction conditions. However, in this case, R-1
1,2-dichloro-1,1,2, which is an isomer of 14a
2-tetrafluoroethane (hereinafter abbreviated as R-114,
) is unavoidable, and there is a limit to improving the yield of R-114a.
4a has a very small boiling point difference of 0.6° C. and is extremely difficult to separate by distillation, making it impossible to obtain highly pure R-114a.

[課題を解決するための手段] 本発明者らはこのような現状に鑑み、経済的かつ工業的
に有利なR−114aの製造方法につき種々の検討を行
い、R−113からR(14aを高収率で製造するには
、R−114の副生を抑制することが必須であるとの結
論より、本発明のプロセスに到達したものである。
[Means for Solving the Problems] In view of the current situation, the present inventors conducted various studies on an economically and industrially advantageous method for producing R-114a, and obtained R-113 to R(14a). The process of the present invention was arrived at from the conclusion that it is essential to suppress the by-product of R-114 in order to produce it in high yield.

すなわち本発明は゛、R−113からR−113aへの
異性化反応を行った後、触媒の存在下にフッ化水素との
反応を行うことを特徴とするR(14aの製造方法であ
る。
That is, the present invention is a method for producing R(14a), which is characterized by carrying out an isomerization reaction from R-113 to R-113a, and then carrying out a reaction with hydrogen fluoride in the presence of a catalyst.

この場合、ト113からR−113aの異性化反応を行
った後、生成物を特に精製することなく、次のフッ素化
工程を行うこともできる。
In this case, after performing the isomerization reaction of R-113a from T-113, the next fluorination step can be performed without particularly purifying the product.

本発明において、R−113からR−113aへの異性
化反応を第1工程、次のフッ素化の工程を第2工程とす
ると、第1工程としては■R−113に触媒を添加し、
加熱することより成る液相反応、■R−113を250
℃以上に加熱したフッ化アルミニウムに接触させること
より成る気相反応の二つの方法があり、いずれの方法も
本発明に含まれる。
In the present invention, if the isomerization reaction from R-113 to R-113a is the first step, and the subsequent fluorination step is the second step, the first step is: (1) adding a catalyst to R-113;
Liquid phase reaction consisting of heating ■ R-113 at 250°C
There are two methods of gas phase reaction consisting of contacting aluminum fluoride heated to temperatures above .degree. C., both of which are included in the present invention.

また第2工程としては、第1の工程で得られたR−11
3aとフッ化水素の混合物を各種の方法で作成したフッ
化アルミニウム、フッ化クロムまたはその他の触媒と接
触させることからなる気相フッ素化反応が利用できる。
In addition, as the second step, R-11 obtained in the first step
A gas phase fluorination reaction consisting of contacting a mixture of 3a and hydrogen fluoride with variously prepared aluminum fluoride, chromium fluoride or other catalysts is available.

第1の工程で得られるR−113aの純度を高くするの
は好ましいが、必ずしもR−113を殆ど含まないR−
113aにする必要は無い、 R−113aとR−11
3の混合物を第2の工程でフッ素化する場合、R113
aはR−114aとなり、R−113の一部はR−11
4となり大部分はR−114aになると考えられる。従
ってR−113とR−113aの混合物を原料とした場
合もR−113とR−113aの比率に応じてR−11
4aの収率が向上し、本発明に含まれる。
Although it is preferable to increase the purity of R-113a obtained in the first step, it is not necessary to increase the purity of R-113a obtained in the first step.
There is no need to make it 113a, R-113a and R-11
When the mixture of R113 is fluorinated in the second step, R113
a becomes R-114a, and a part of R-113 becomes R-11
4, and most of it is thought to be R-114a. Therefore, even when a mixture of R-113 and R-113a is used as a raw material, R-11
The yield of 4a is improved and is included in the present invention.

本発明によって得られるR−114aは公知の反応すな
わちR−114aと水素との反応により、適当な安定性
を有し、冷媒として有用な1,1.1.2−テトラフル
オロエタン(以後、R−134aと略す、)に変換する
ことができる。上記方法で使用される触媒としては、種
々の担体にパラジウムを担持させた触媒等があり、本出
願人の提案した発明の名称r 1.1.1.2−テトラ
フルオロエタンの製造法」特願昭63−132395の
方法、すなわちR−114a等を活性アルミナ担持パラ
ジウム触媒の存在下、120〜200℃未満の温度範囲
で水素と反応させることにより、目的のR−134&を
製造することができる。
R-114a obtained by the present invention has appropriate stability by a known reaction, that is, the reaction of R-114a with hydrogen, and is useful as a refrigerant. -134a). Catalysts used in the above method include catalysts in which palladium is supported on various carriers. The desired R-134& can be produced by the method of Application No. 63-132395, that is, by reacting R-114a etc. with hydrogen in the presence of an activated alumina-supported palladium catalyst at a temperature range of 120 to less than 200°C. .

[実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は係る実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 還流冷却器と撹拌機を設けた容量11のガラス製画ツロ
フラスコにR−113を500gと、触媒として粉末に
した無水塩化アルミニウム20gを入れ、撹拌しながら
フラスコを加熱し、内部の液体が沸騰した状態を3時間
保った。
Example 1 500 g of R-113 and 20 g of anhydrous aluminum chloride powdered as a catalyst were placed in a glass flask with a capacity of 11 equipped with a reflux condenser and a stirrer, and the flask was heated with stirring to remove the liquid inside. was kept boiling for 3 hours.

反応生成物を水で洗浄、塩化カルシウム乾燥してガスク
ロマトグラフィーと”lFnmrで分析したところ、R
−114a : 2.5eetL R−113a : 
94.2wtχであり、ト113の転化率は100wt
χ、R−113aの収率は94.2χとなった。
The reaction product was washed with water, dried with calcium chloride, and analyzed by gas chromatography and IFnmr.
-114a: 2.5eetL R-113a:
94.2wtχ, and the conversion rate of To113 is 100wt
The yield of R-113a was 94.2χ.

この反応生成物を蒸溜して99.9wt%以上の純度の
R−113&を得た。
This reaction product was distilled to obtain R-113& with a purity of 99.9 wt% or more.

次に、上述の異性化工程得られたものの蒸溜生成物(R
−113a : 99.9wt%以上)を原料として以
下に示す反応を行った。
Next, the distillation product (R
-113a: 99.9 wt% or more) was used as a raw material to carry out the reaction shown below.

すなわち、直径5膳鳳のγ−アルミナ200 ccを直
径5C■、長さ50cmの円筒形SUS反応管に充填し
た。窒素ガスを流しながら300℃まで昇温し、1時間
保った後、その温度で窒素に同伴したフッ化水素ガスを
供給した。充填された触媒のフッ素化によるホットスポ
ットが出口に達したところで、反応器温度を400℃に
上げ、その状態を1時間保ち触媒調整を行った。
That is, 200 cc of γ-alumina with a diameter of 5 cm was filled into a cylindrical SUS reaction tube with a diameter of 5 C and a length of 50 cm. The temperature was raised to 300° C. while flowing nitrogen gas, and after keeping it for 1 hour, hydrogen fluoride gas accompanied by nitrogen was supplied at that temperature. When the hot spot due to fluorination of the packed catalyst reached the outlet, the reactor temperature was raised to 400°C, and this state was maintained for 1 hour to adjust the catalyst.

このように調整した触媒200 ccを充填しである前
記反応管の温度を300℃に保ち、そこへ上記蒸溜生成
物とフッ化水素をそれぞれ0.5mol/hr、0.5
■ol/hrで導入した0反応品出ロガスをガスクロマ
トグラフィーにより分析したところ、R−114a :
 55.5wtZとなり、R−113aの転化率は55
,6IIILχ、R−114aの収率は99.8χとな
った。これにより初めの原料であるR−113からR−
114aまでの通算の収率を計算すると96.5Xどな
った。
The temperature of the reaction tube filled with 200 cc of the catalyst prepared in this way was kept at 300°C, and the distillation product and hydrogen fluoride were added thereto at 0.5 mol/hr and 0.5 ml/hour, respectively.
■When the 0-reaction product log gas introduced at ol/hr was analyzed by gas chromatography, it was found that R-114a:
55.5wtZ, and the conversion rate of R-113a is 55.
, 6IIILχ, the yield of R-114a was 99.8χ. This allows the initial raw material R-113 to become R-
The total yield up to 114a was calculated to be 96.5X.

また本実施例の生成物を蒸溜したところ、問題となるR
−114は0.1社%以下の含量であった。
Furthermore, when the product of this example was distilled, the problematic R
-114 had a content of 0.1% or less.

実施例2 上部に還流冷却器と撹拌機を設けた直径5C■、高さ3
0cmのガラス製反応管に400 ccのR−113と
触媒として粉末の無水塩化アルミニウム15gを入れ、
撹拌しながら反応管を加熱し内部の液体が沸騰した状態
で外部への溜出のない状態を2時間保った。その後、上
部からR−113を5g/winで滴下し、液高の変化
のないように還流冷却器から生成物を流出させた。この
状態で2時間後から5時間にわたって生成物を捕集した
ところ生成物は1500gであり、その組成をガスクロ
マトグラフと19Fn■rで分析したところ、R−11
4a :1.2wtχ、R−113a: 90.2wt
! 、 R−113: 8.6wtχであった。
Example 2 Diameter 5C■, height 3 with reflux condenser and stirrer on top
Put 400 cc of R-113 and 15 g of powdered anhydrous aluminum chloride as a catalyst into a 0 cm glass reaction tube.
The reaction tube was heated while stirring, and the liquid inside was kept boiling for 2 hours without spilling to the outside. Thereafter, R-113 was added dropwise from the top at a rate of 5 g/win, and the product was allowed to flow out from the reflux condenser without changing the liquid level. When the product was collected in this state for 5 hours from 2 hours later, the product amount was 1500g, and its composition was analyzed using a gas chromatograph and 19Fnr, and it was found that R-11
4a: 1.2wtχ, R-113a: 90.2wt
! , R-113: 8.6wtχ.

ここで得られた生成物を精製することなく、実施例1で
使用したフッ素化反応器および触媒を用い、実施例1と
同様の方法でフッ素化を行った。この際の反応温度は3
30℃であり、異性化生成物とフッ素の導入蓋はそれぞ
れ0.5s+ol/hr、0.5sol/hrである0
反応品出ロガスを分析したところ、R−114a : 
58.Owt!となり、フッ素化反応の原料となるR−
113aおよびR−113の転化率は60.5wtz、
R−113h’らR−114aA、、ノ収率+、t97
.Ozとなった。
Fluorination was performed in the same manner as in Example 1 using the fluorination reactor and catalyst used in Example 1 without purifying the product obtained here. The reaction temperature at this time was 3
The temperature is 30°C, and the isomerization product and fluorine introduction lids are 0.5 s+ol/hr and 0.5 sol/hr, respectively.
Analysis of the reaction product log gas revealed that R-114a:
58. Owt! and R-, which is the raw material for the fluorination reaction.
The conversion rate of 113a and R-113 is 60.5wtz,
R-113h' et R-114aA, yield +, t97
.. It became Oz.

このフッ素化生成物を蒸溜精製したR−114aには、
R−114が0.5wtχ含まれていた。
R-114a, which is purified by distillation of this fluorinated product, has
It contained 0.5wtχ of R-114.

比較例 実施例1のフッ素化反応で用いたで反応器および触媒を
使用してR−113のフッ化水素との反応を、反応温度
を360℃にした他は同様にして行った。
Comparative Example Using the reactor and catalyst used in the fluorination reaction of Example 1, the reaction of R-113 with hydrogen fluoride was carried out in the same manner as in Example 1, except that the reaction temperature was changed to 360°C.

この結果、R−114a : 58.Owtχの生成物
が得られ、ト113の転化率は66.4wtχ、R−I
L4aの収率は87.3χであった。
As a result, R-114a: 58. A product of Owtχ was obtained, and the conversion rate of To113 was 66.4wtχ, R-I
The yield of L4a was 87.3χ.

これを蒸溜したR−114&には11 、3wt%のR
−114が含まれていた。
Distilled from this, R-114& contains 11, 3wt% R.
-114 was included.

[発明の効果] 本発明の方法によれば、工業的に製造されているR−1
13を異性化反応により、−旦R−113aに変換した
後、フッ化水素と反応させることにより、分離するのが
非常に困難なR−114の含量を効果的に低減させるこ
とができ、工業的に極めて優れたR−114aの製造法
である。
[Effect of the invention] According to the method of the invention, industrially produced R-1
By converting 13 into R-113a through an isomerization reaction and then reacting it with hydrogen fluoride, the content of R-114, which is very difficult to separate, can be effectively reduced, making it possible to reduce the content of R-114, which is very difficult to separate. This is an extremely excellent method for producing R-114a.

2S−2S-

Claims (1)

【特許請求の範囲】[Claims] (1)1,1,2−トリクロロ−1,2,2トリフルオ
ロエタンから1,1,1−トリクロロ−2,2,2−ト
リフルオロエタンへの異性化反応を行った後、触媒の存
在下にフッ化水素との反応を行うことを特徴とする2,
2−ジクロロ−1,1,1,2−テトラフルオロエタン
の製造方法
(1) After performing the isomerization reaction from 1,1,2-trichloro-1,2,2-trifluoroethane to 1,1,1-trichloro-2,2,2-trifluoroethane, the presence of a catalyst 2, characterized by carrying out a reaction with hydrogen fluoride below.
Method for producing 2-dichloro-1,1,1,2-tetrafluoroethane
JP1007056A 1988-05-30 1989-01-13 Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane Pending JPH02188537A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1007056A JPH02188537A (en) 1989-01-13 1989-01-13 Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane
US07/357,291 US4996379A (en) 1988-05-30 1989-05-26 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
FR8907005A FR2631959A1 (en) 1988-05-30 1989-05-29 PROCESS FOR THE PREPARATION OF 1,1,1,2-TETRAFLUOROETHANE FROM 1,1-DICHLORO-1,2,2,2-TETRAFLUOROETHANE
IT8920692A IT1230795B (en) 1988-05-30 1989-05-30 PROCEDURE FOR PREPARING 1,1,1,2 TETRAFLUOROETHANE FROM 1,1 DICHLOR 1,2,2,2 TETRAFLUOROETHANE.
GB8912325A GB2219796B (en) 1988-05-30 1989-05-30 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
DE3917573A DE3917573A1 (en) 1988-05-30 1989-05-30 METHOD FOR PRODUCING 1,1,1,2-TETRAFLUORETHANE FROM 1,1-DICHLOR-1,2,2,2-TETRAFLUORETHANE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007056A JPH02188537A (en) 1989-01-13 1989-01-13 Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane

Publications (1)

Publication Number Publication Date
JPH02188537A true JPH02188537A (en) 1990-07-24

Family

ID=11655411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007056A Pending JPH02188537A (en) 1988-05-30 1989-01-13 Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JPH02188537A (en)

Similar Documents

Publication Publication Date Title
EP0451199B1 (en) Processes using aluminum fluoride catalyst compositions for preparing haloethanes containing fluoride
US6066768A (en) Perhalofluorinated butanes and hexanes
US9061957B2 (en) Method for producing fluorinated organic compounds
US5672785A (en) Process for producing 1,1-dichloro-12,2,2-tetrafluoroethane
US2598411A (en) Rearrangement of saturated halocarbons
WO2010082662A1 (en) Process for preparation of 1,1-dichloro-2,2,3,3,3–penta- fluoropropane
EP0541559A1 (en) Catalytic equilibration of selected halocarbons
JPH04273839A (en) Synthesis of fluorinated ether
JP2019038850A (en) Method for producing cis-1-chloro-3,3,3-trifluoropropene
JPH04211026A (en) Method for preparation of hydrocarbon containing saturated fluorine but not chlorine
JPH06256235A (en) Preparation of 1,1,1,3,3,-pentafluoropropane
JP5713015B2 (en) Method for producing 1,1-dichloro-2,2,3,3,3-pentafluoropropane
US5430204A (en) Halocarbon hydrogenolysis
US4996379A (en) Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
US5146018A (en) Hydrogenolysis/dehydrohalogenation process
JPH08291087A (en) Preparation of 1,1-difluoroethane
JP3794859B2 (en) Method for producing perhalogenated cyclopentane
JPH02188537A (en) Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane
RU2010789C1 (en) Continuous method of 1,1-dichlorotetrafluoroethane synthesis
US5406009A (en) Catalytic equilibration to improve the relative yield of selected halocarbons
US5621151A (en) Halocarbon hydrogenolysis
US2097750A (en) Synthesis of alkyl halides
JP2021014410A (en) Production method of vinyl compound
US5243108A (en) Aluminum fluoride catalyst compositions and use thereof in a chlorofluorination process for preparing 1,1-dichloro-1,2,2,2-tetrafluoroethane
JPH04224527A (en) Production of pentafluorodichloropropane