JPH02187187A - Treatment of waste dry battery - Google Patents

Treatment of waste dry battery

Info

Publication number
JPH02187187A
JPH02187187A JP1087349A JP8734989A JPH02187187A JP H02187187 A JPH02187187 A JP H02187187A JP 1087349 A JP1087349 A JP 1087349A JP 8734989 A JP8734989 A JP 8734989A JP H02187187 A JPH02187187 A JP H02187187A
Authority
JP
Japan
Prior art keywords
mercury
area
oxidizing atmosphere
zinc
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1087349A
Other languages
Japanese (ja)
Other versions
JPH0416230B2 (en
Inventor
Toshio Matsuoka
松岡 俊雄
Shinichi Kuromame
黒豆 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1087349A priority Critical patent/JPH02187187A/en
Publication of JPH02187187A publication Critical patent/JPH02187187A/en
Publication of JPH0416230B2 publication Critical patent/JPH0416230B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To conserve energy by setting the upper stage of two regions divided through a valve to an oxidizing atmosphere region and the lower stage thereof to a reducing atmosphere region and treating zinc in the lower stage and mercury in the upper stage. CONSTITUTION:A waste dry battery B is crushed by a crusher 1 and classified by a classifier 2 to be charged in a shaft furnace 4 from a charge hopper 3. Mercury Hg is treated in the upper stage oxidizing atmosphere region 5 of the shaft furnace 4, and the treatment of zinc Zn and the melt-reducing treatment of a manganese-iron alloy FeMn are performed in the lower stage reducing atmosphere region 6. Generated reducing gas CO is once taken out of the region and receives necessary treatment to be converted to oxidative gas G1 which is, in turn, introduced into the oxidizing atmosphere region 5. The mercury vapor-containing gas G2 taken out of the region is guided to an incinerator 9 and mercury vapor-containing gas G2 is condensed and removed by a mercury condenser 10. By this method, cost can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、廃乾電池の処理方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for disposing of waste dry batteries.

[従来技術〕 廃乾電池は最近急に社会問題化してきたが、これは電解
層に水銀を含有している事を起因する環境汚染が予想さ
れるからである。
[Prior Art] Waste dry batteries have suddenly become a social problem recently, because environmental pollution is expected due to the electrolyte layer containing mercury.

公表されている統計より推算すれば国内で約50トン/
年の水銀が都市ゴミに混入して廃棄される事になり、−
最の焼却場や埋立地へ混入するとすれば問題であろう。
Based on published statistics, it is estimated that approximately 50 tons/
In 2017, mercury was mixed into municipal waste and disposed of.
It would be a problem if it were to get into the largest incinerators and landfills.

さらに、−mに使用されている一次乾電池の内ゴミとし
ての量が最も多いマンガン、アルカリ・マンガン電池の
成分について上記の水銀と同じように推測すると、酸化
マンガン約13 、000トン、亜鉛約15,000ト
ン、鉄約10,000)ンが毎年再資源化されずに投棄
される事になる。
Furthermore, if we estimate the components of manganese and alkaline manganese batteries, which have the largest amount of waste in the primary dry cell batteries used in -m, in the same way as for mercury, we find that there are approximately 13,000 tons of manganese oxide and approximately 15 tons of zinc. ,000 tons, or about 10,000 tons of iron, are dumped every year instead of being recycled.

現在、このような有用金属を水銀と共に再資源化する技
術が開発されており、クリーン・ジャパン・センター発
行の「再資源化技術の開発状況調査報告書(電池)(昭
和59年3月発行)」には第1図ないし第3図に示すよ
うな三つの使用済マンガン乾電池の処理方法が紹介され
ている。
Currently, technology to recycle such useful metals together with mercury has been developed, and the Clean Japan Center has published the ``Survey Report on the Development Status of Recycling Technology (Batteries)'' (published in March 1980). '' introduces three methods for disposing of used manganese batteries, as shown in Figures 1 to 3.

第1図に示す方法は、低周波あるいは高周波の電気加熱
炉を使用し、破砕した一次電池を電気加熱炉において4
00〜500℃で数時間加熱して、固相部分、液相部分
、気相部分の三つの相に大別し、固相部分は引き続き8
00℃付近で加熱した後磁選・濾過などにより鉄、カー
ボン 硫酸マンガン溶液として回収し、液相部分は粗亜
鉛であり、他の成分を除去した後塩化亜鉛溶液として回
収し、気相部分は水銀、カドミウムなどであり、キレー
ト樹脂で捕捉するなどして回収している。
The method shown in Figure 1 uses a low-frequency or high-frequency electric heating furnace, and the crushed primary battery is placed in the electric heating furnace for 4 hours.
Heating at 00 to 500℃ for several hours, the solid phase is divided into three phases: solid phase, liquid phase, and gas phase.
After heating at around 00℃, iron, carbon and manganese sulfate solution are recovered by magnetic separation and filtration.The liquid phase part is crude zinc, and after removing other components, it is recovered as a zinc chloride solution, and the gas phase part is mercury. , cadmium, etc., and are recovered by capturing them with chelate resin.

第2図に示す方法は、焙焼炉を用い石灰を加え混和して
還元雰囲気で焙焼し、適宜の処理によりそれぞれの成分
に分離するものである。
In the method shown in FIG. 2, lime is added and mixed using a roasting furnace, roasted in a reducing atmosphere, and separated into each component by appropriate treatment.

第3図に示す方法は、焙焼炉を用い、酸化雰囲気で焙焼
するものである。
The method shown in FIG. 3 uses a roasting furnace and roasts in an oxidizing atmosphere.

[発明の目的] この発明は前述のような処理方法とは異なる方法を提案
するもので、その目的は省エネルギー化が図れ、経済的
で実用的な廃乾電池の処理方法を提供することにある。
[Object of the Invention] The present invention proposes a method different from the above-mentioned processing methods, and its purpose is to provide an economical and practical method for processing waste dry batteries that can save energy.

[発明の構成] この発明に係る廃乾電池の処理方法は、ロークリバルブ
等のバルブを介して二つの区域に区分し、上段を酸化雰
囲気域、下段を還元雰囲気域とし、上段で水銀の処理を
行ない、下段で亜鉛及びマンガン鉄合金などの処理を行
なうと共に、下段で発生したガスはいったん域外へ取出
し、必要な処理を施して上段の酸化雰囲気域に導入し、
エネルギーを有効に利用し、比較的低コスト有用金属の
処理・回収を行なえるようにしたものである。
[Structure of the Invention] The method for treating waste dry batteries according to the present invention is to divide the waste battery into two zones via a valve such as a low-resolution valve, the upper zone is an oxidizing atmosphere zone, the lower zone is a reducing atmosphere zone, and mercury is treated in the upper zone. In the lower stage, zinc and manganese iron alloys are processed, and the gas generated in the lower stage is temporarily taken out of the area, subjected to the necessary treatment, and introduced into the oxidizing atmosphere area in the upper stage.
This system makes it possible to process and recover useful metals at a relatively low cost by using energy effectively.

[実施例] 以下、この発明を図示する一実施例に基づいて説明する
[Example] The present invention will be described below based on an illustrative example.

第4図に示すように、先ず廃乾電池(−次電池であれば
分別回収が行なわれている酸化銀電池を除きすべて)B
は、破砕機1で破砕して内容物が十分炉内の雰囲気にさ
らされるようにした後、分級機2により分級して、ふる
い下の炉内で発塵しやすい粉状物Pは予め混線、造粒し
て、ふるい上の固形物S(主として金属と電極黒鉛棒)
と混合してチャージ・ホッパ3からシャフト炉4内へ投
入する。
As shown in Figure 4, first, waste dry batteries (all negative batteries except silver oxide batteries, which are collected separately) B
After the contents are crushed by the crusher 1 so that they are sufficiently exposed to the atmosphere in the furnace, they are classified by the classifier 2, and the powdery materials P that are likely to generate dust in the furnace under the sieve are separated in advance. , granulate and solids S (mainly metal and electrode graphite rods) on the sieve
and charged into the shaft furnace 4 from the charge hopper 3.

シャフト炉4は、底部に誘導電気炉あるいは電気抵抗炉
などの溶融炉を有する竪型であり、上段が酸化雰囲気域
5.下段が還元雰囲気域6となっている。
The shaft furnace 4 is a vertical type having a melting furnace such as an induction electric furnace or an electric resistance furnace at the bottom, and the upper stage is an oxidizing atmosphere area 5. The lower stage is a reducing atmosphere area 6.

さらに、チャージ・ホッパ3の投入口には気密を保持で
きるロータリバルブ8あるいは二重ベル等が設置され、
また、酸化雰囲気域5と還元雰囲気域6との接続部には
雨雲囲気の混合を避けるために、ロータリバルブ等のバ
ルブを設け、酸化雰囲気域と還元雰囲気域とに区分する
と同時に不活性ガスGoを導入してガス・シールしてい
る。
Furthermore, a rotary valve 8 or a double bell, etc. that can maintain airtightness is installed at the input port of the charge hopper 3.
In addition, a valve such as a rotary valve is provided at the connection between the oxidizing atmosphere area 5 and the reducing atmosphere area 6 to avoid mixing of rain cloud surroundings, and at the same time the inert gas Go gas seal is introduced.

このようなシャフト炉4において上段の酸化雰囲気域う
で水銀Hgの処理を行ない、下段の還元雰囲気域6で亜
鉛Znの処理とマンガン鉄合金FeMnの溶融還元処理
を行なうと共に、溶融還元の際に発生する還元ガスCO
はいったん域外に取出し、必要な処理を施して酸化性ガ
スG1とし、このガスGlを酸化雰囲気域5に導入する
In such a shaft furnace 4, mercury Hg is treated in the upper oxidizing atmosphere zone, and zinc Zn and manganese iron alloy FeMn are melted and reduced in the lower reducing atmosphere zone 6. Reducing gas CO generated
The gas is once taken out of the area, subjected to necessary treatment to form an oxidizing gas G1, and this gas Gl is introduced into the oxidizing atmosphere area 5.

即ち、装入物は酸化雰囲気域5において、下から自流的
に上昇する高温の酸化性ガスG1で加熱酸化され、水銀
化合物は酸化第二水銀HgOとなり、さらに、500℃
以上で分解して金属水銀蒸気Hgとなって域外へ他のガ
スとともに取出される。
That is, the charge is heated and oxidized in the oxidizing atmosphere area 5 by high temperature oxidizing gas G1 rising self-currently from below, the mercury compound becomes mercuric oxide HgO, and further heated to 500°C.
The above decomposes the metal mercury vapor into Hg, which is taken out of the area along with other gases.

従って、ここでのガス出口温度は少なくとも500℃以
上が必要である。
Therefore, the gas outlet temperature here needs to be at least 500°C or higher.

域外へ取出された含水銀蒸気ガスG2は、酸化第二水銀
生成を完全にするためガス中の可燃分を十分な酸素量で
燃焼させるなめに焼却炉9へ導かれる。
The mercury vapor gas G2 taken out of the area is guided to the incinerator 9 in order to burn the combustible content in the gas with a sufficient amount of oxygen to complete the production of mercuric oxide.

焼却炉9から出た含水銀蒸気ガスG2は、従来行なわれ
ている水銀精錬と同じような水銀凝縮器10で凝縮除去
され、さらにガス洗浄塔11、集塵装置12を経て除害
設備13へ導かれる。 除害設(i11113としては
種々考えられるが、活性炭による吸着が効果的であり、
水銀を吸着した活性炭は、集塵装置12およびシラフナ
14の処理物とともにシャフト炉4ヘリサイクルさせる
ことにより完全なりローズド化が可能である。
The mercury-containing vapor gas G2 discharged from the incinerator 9 is condensed and removed in a mercury condenser 10 similar to conventional mercury refining, and further passes through a gas cleaning tower 11 and a dust collector 12 to a detoxification facility 13. be guided. Various types of abatement facilities (i11113) can be considered, but adsorption with activated carbon is effective.
The activated carbon that has adsorbed mercury can be completely turned into a rose by recycling it to the shaft furnace 4 together with the processed materials of the dust collector 12 and Shirafuna 14.

次に、酸化雰囲気域5で脱水銀された被処理物は、ロー
タリバルブ等を通って還元雰囲気域6に入り、ここで先
ず、亜鉛が還元され、金属亜鉛の沸点以上の域内温度で
蒸発して域外へ還元ガスCOとともに出て行く。
Next, the material to be mercury-depleted in the oxidizing atmosphere zone 5 passes through a rotary valve or the like and enters the reducing atmosphere zone 6, where the zinc is first reduced and evaporated at a temperature in the zone above the boiling point of metallic zinc. and leaves the area together with the reducing gas CO.

このため、還元雰囲気域6のガス出口のある頂部は少な
くとも907℃(亜鉛沸点)以上、好ましくは1000
°C以上の温度が必要であり、酸化雰囲気域5から来る
被処理物の温度は950℃以上は必要である。
For this reason, the top of the reducing atmosphere area 6 where the gas outlet is located is at least 907°C (zinc boiling point) or higher, preferably 1000°C or higher.
A temperature of 950° C. or higher is required, and the temperature of the object coming from the oxidizing atmosphere region 5 must be 950° C. or higher.

この還元雰囲気域6内に装入された被処理物は還元され
ながら底部で溶融される。
The workpiece charged into this reducing atmosphere area 6 is melted at the bottom while being reduced.

従って、被処理物中の酸化マンガンや鉄分は、残存する
炭素分と直接溶融還元反応を起こしフェロマンガンFe
Mnを生成するとともに一酸化炭素ガスCOを発生し、
この−酸化炭素ガスが還元ガスCOとして利用される。
Therefore, manganese oxide and iron in the material to be treated undergo a direct melting-reduction reaction with the remaining carbon, resulting in ferromanganese Fe.
Generates Mn and generates carbon monoxide gas CO,
This carbon oxide gas is used as reducing gas CO.

還元雰囲気域6から出た還元ガスCOは金属亜鉛蒸気と
ともに亜鉛凝縮器15へ導かれる。
The reducing gas CO coming out of the reducing atmosphere area 6 is led to the zinc condenser 15 together with metal zinc vapor.

亜鉛凝縮器15で、金属亜鉛Znは、溶融亜鉛として除
去され、残りのガスは冷却器16により冷却され、脱硫
器17により洗浄、脱硫した後、燃焼炉18で燃焼させ
、酸化雰囲気域5の熱源および酸化剤としての酸化性ガ
スG1となして酸化雰囲気域5の下部へ供給する。
In the zinc condenser 15 , metallic zinc Zn is removed as molten zinc, and the remaining gas is cooled in a cooler 16 , washed and desulfurized in a desulfurizer 17 , and then combusted in a combustion furnace 18 to form an oxidizing atmosphere zone 5 . The oxidizing gas G1 is supplied to the lower part of the oxidizing atmosphere region 5 as a heat source and an oxidizing agent.

[発明の効果] 前述のとおり、この発明によれば、炉を酸化雰囲気域と
還元雰囲気域とに区分し、酸化雰囲気域で水銀の処理を
行ない還元雰囲気域で亜鈴及びマンガン鉄合金などの処
理を行なうと共に、還元雰囲気域で発生したガスは酸化
雰囲気域の熱源および酸化剤として利用するようにした
ため、エネルギを有効に利用でき、比較的低コスト有用
金属の処理・回収を行なえるため、極めて経済的・実用
的である。
[Effects of the Invention] As described above, according to the present invention, the furnace is divided into an oxidizing atmosphere area and a reducing atmosphere area, and mercury is treated in the oxidizing atmosphere area, and dumbbell and manganese iron alloys are treated in the reducing atmosphere area. At the same time, the gas generated in the reducing atmosphere area is used as a heat source and oxidizing agent in the oxidizing atmosphere area, so energy can be used effectively and useful metals can be processed and recovered at a relatively low cost. Economical and practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は従来の処理方法を示すフロー
チャート、第4図はこの発明に係る廃乾電池の処理方法
を示すフローチャートである。 1・・・破砕@        2・・・分級機3・・
・チャージ・ホッパ   4・・・シャフト炉5・・・
酸化雰囲気域 8・・・ロータリバルブ 0・・・水銀凝縮器 2・・・集塵装置 4・・・シラフナ 6・・・冷却器 8・・・燃焼炉 6・・・還元雰囲気域 9・・・焼却炉 11・・・ガス洗浄塔 13・・・除害設備 15・・・亜鉛凝縮器 17・・・脱硫器 第 2 ロ
1, 2, and 3 are flowcharts showing the conventional processing method, and FIG. 4 is a flowchart showing the method for processing waste dry batteries according to the present invention. 1... Crushing @ 2... Classifier 3...
・Charge hopper 4...Shaft furnace 5...
Oxidizing atmosphere area 8...Rotary valve 0...Mercury condenser 2...Dust collector 4...Shirafuna 6...Cooler 8...Combustion furnace 6...Reducing atmosphere area 9...・Incinerator 11... Gas scrubbing tower 13... Hazard removal equipment 15... Zinc condenser 17... Desulfurizer No. 2

Claims (1)

【特許請求の範囲】 1)ロータリバルブ等のバルブを介して二つの区域に区
分し、上段を酸化雰囲気域、下段を還元雰囲気域とし、
上段で水銀の処理を行ない、下段で亜鉛及びマンガン鉄
合金などの処理を行なうと共に、下段で発生したガスは
いったん域外へ取出し、必要な処理を施して上段の酸化
雰囲気域に導入することを特徴とする廃乾電池の処理方
法。 2)上段の酸化雰囲気域で水銀化合物を酸化し酸化第二
水銀とした後、分解して金属水銀蒸気として域外に取出
すようにしたことを特徴とする特許請求の範囲第1項に
記載の廃乾電池の処理方法。 3)下段の還元雰囲気域で亜鉛を還元し、亜鉛蒸気とし
て域外に取出すと共に、残存する酸化マンガンや鉄分は
直接還元・溶融して域外に取出すようにしたことを特徴
とする特許請求の範囲第1項に記載の廃乾電池の処理方 法。
[Claims] 1) Divided into two areas via a valve such as a rotary valve, with the upper stage being an oxidizing atmosphere area and the lower stage being a reducing atmosphere area,
The upper stage processes mercury, and the lower stage processes zinc, manganese iron alloy, etc., and the gas generated in the lower stage is temporarily taken out of the area, subjected to the necessary treatment, and introduced into the oxidizing atmosphere area of the upper stage. How to dispose of waste dry batteries. 2) The waste according to claim 1, characterized in that the mercury compound is oxidized to form mercuric oxide in the upper oxidizing atmosphere area, and then decomposed and taken out of the area as metallic mercury vapor. How to dispose of dry batteries. 3) Zinc is reduced in the lower reducing atmosphere area and taken out of the area as zinc vapor, and the remaining manganese oxide and iron are directly reduced and melted and taken out of the area. The method for disposing of waste dry batteries according to item 1.
JP1087349A 1989-04-05 1989-04-05 Treatment of waste dry battery Granted JPH02187187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087349A JPH02187187A (en) 1989-04-05 1989-04-05 Treatment of waste dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087349A JPH02187187A (en) 1989-04-05 1989-04-05 Treatment of waste dry battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59112094A Division JPS60255190A (en) 1984-05-31 1984-05-31 Treatment of waste dry battery

Publications (2)

Publication Number Publication Date
JPH02187187A true JPH02187187A (en) 1990-07-23
JPH0416230B2 JPH0416230B2 (en) 1992-03-23

Family

ID=13912402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087349A Granted JPH02187187A (en) 1989-04-05 1989-04-05 Treatment of waste dry battery

Country Status (1)

Country Link
JP (1) JPH02187187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094207A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for producing metal manganese

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487348A (en) * 1987-08-28 1989-03-31 Svecia Silkscreen Maskiner Ab Method of selecting direction of printing material on outside of position of printing so as to be able to accurately print at position of printing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487348A (en) * 1987-08-28 1989-03-31 Svecia Silkscreen Maskiner Ab Method of selecting direction of printing material on outside of position of printing so as to be able to accurately print at position of printing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094207A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for producing metal manganese

Also Published As

Publication number Publication date
JPH0416230B2 (en) 1992-03-23

Similar Documents

Publication Publication Date Title
US4957551A (en) Method for treatment of dust recovered from off gases in metallurgical processes
JPH11310832A (en) Treatement of metal oxide of steel making waste
JPS6336885A (en) Method of treating small-sized battery
CN1674331A (en) Method for preparing manganese-zinc ferrite granules and mixed carbonate by using waste dry batteries
JP3461300B2 (en) Method for recovering valuable resources from used lithium-manganese batteries
JPS6325829B2 (en)
JP4022025B2 (en) Recycling method and equipment for incineration ash
JPH02187187A (en) Treatment of waste dry battery
MXPA06000236A (en) Mechanical separation of volatile metals at high temperatures.
JP2001283871A (en) Disposal method and system of waste cell
JPH02187185A (en) Treatment of waste dry battery
JP2009256741A (en) Method of recovering valuable metal from waste battery
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
JPS5931188B2 (en) How to dispose of lead scrap from storage batteries
JP2004216326A (en) Recycling method of car waste
JPH02187186A (en) Treatment of waste dry battery
JP4351352B2 (en) Method for recovering nonferrous metal resources in waste
CN112813276A (en) Method for disposing waste activated carbon
JP2013076149A (en) Recycling system
JP2001311589A (en) Method for reducing or removing hazardous substance in exhaust gas
RU2117217C1 (en) Method of reworking solid domestic and industrial wastes
JPH09227962A (en) Alloy by recovering valuable metal from municipal refuse and its recovering method
KR0138584B1 (en) Method for treating dusts produced in making steel to recover zinc oxide
JPS61234981A (en) Disposing method for waste dry cell
JPWO2018168472A1 (en) Method of producing metallic manganese

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees