JPH0218717Y2 - - Google Patents

Info

Publication number
JPH0218717Y2
JPH0218717Y2 JP1980041696U JP4169680U JPH0218717Y2 JP H0218717 Y2 JPH0218717 Y2 JP H0218717Y2 JP 1980041696 U JP1980041696 U JP 1980041696U JP 4169680 U JP4169680 U JP 4169680U JP H0218717 Y2 JPH0218717 Y2 JP H0218717Y2
Authority
JP
Japan
Prior art keywords
contactor
field winding
current
shunt field
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980041696U
Other languages
Japanese (ja)
Other versions
JPS56145398U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980041696U priority Critical patent/JPH0218717Y2/ja
Publication of JPS56145398U publication Critical patent/JPS56145398U/ja
Application granted granted Critical
Publication of JPH0218717Y2 publication Critical patent/JPH0218717Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Direct Current Motors (AREA)

Description

【考案の詳細な説明】 本考案は、複数個のチヨツパで直流複巻電動機
を制御する制御装置に関する。
[Detailed Description of the Invention] The present invention relates to a control device for controlling a DC compound-wound motor using a plurality of choppers.

第1図は従来の直流電動機の制御装置による力
行回路図の一例である。図中1は電車線、2はパ
ンタグラフ、3はフイルタリアクトル、4はフイ
ルタコンデンサ、5は直流電動機の電機子巻線、
6は直巻界磁巻線、7,8は主平滑リアクトル、
9,10はチヨツパ装置、11,12はフリーホ
イーリングダイオード、13は多相ブリツジ整流
回路、14は分巻界磁巻線、15は接触器、16
は帰線、A,Bは接続点を示す。
FIG. 1 is an example of a power running circuit diagram using a conventional DC motor control device. In the figure, 1 is a contact wire, 2 is a pantograph, 3 is a filter reactor, 4 is a filter capacitor, 5 is an armature winding of a DC motor,
6 is a series field winding, 7 and 8 are main smoothing reactors,
9 and 10 are chopper devices, 11 and 12 are freewheeling diodes, 13 is a multiphase bridge rectifier circuit, 14 is a shunt field winding, 15 is a contactor, 16
indicates the return line, and A and B indicate the connection points.

第1図において、チヨツパ装置9と10は互い
に180゜の位相差運転をしており、接続点A点−B
点間には交流電圧が発生し、これが多相ブリツジ
整流回路13に印加される。また接触器15を閉
じておけば多相ブリツジ整流回路13で整流され
直流になつた電流は、分巻界磁巻線14を経て接
触器15を介して電源から供給される。このよう
に接続された回路において、力行時、チヨツパ装
置9および10は電動機が加速し、速度が上昇す
ると共に通流率がmin(ほぼ0)からmax(ほぼ
1)へと連続的に変化する。この時、チヨツパ装
置9,10の通流率の増加に伴い、分巻界磁巻線
14に流れる電流は第2図の特性図に示すように
変化する。即ち、通流率がminから0.5までは分
巻界磁巻線14の電流はIshpであり、通流率が0.5
からmaxまでは通流率の増加に伴い減少する。
このようにして電機子巻線5の電流をチヨツパ装
置9および10にて制御することにより、中・高
速域で自動的に弱め界磁制御を行うことができ
る。
In Fig. 1, the chopper devices 9 and 10 are operated with a phase difference of 180° from each other, and the connection points are A-B.
An alternating current voltage is generated between the points and is applied to the multiphase bridge rectifier circuit 13. Furthermore, if the contactor 15 is closed, the current rectified by the multiphase bridge rectifier circuit 13 and turned into direct current is supplied from the power source via the contactor 15 via the shunt field winding 14. In the circuit connected in this way, during power running, the electric motors of chopper devices 9 and 10 accelerate, and as the speed increases, the conduction rate changes continuously from min (almost 0) to max (almost 1). . At this time, as the conductivity of the chopper devices 9 and 10 increases, the current flowing through the shunt field winding 14 changes as shown in the characteristic diagram of FIG. That is, when the conduction rate is from min to 0.5, the current in the shunt field winding 14 is I shp , and when the conduction rate is 0.5
From to max, it decreases as the conduction rate increases.
By controlling the current in the armature winding 5 by the chopper devices 9 and 10 in this manner, field weakening control can be automatically performed in medium and high speed ranges.

いま電動機の発生するトルクを一定に保つて運
転する場合について考えてみる。
Let us now consider the case where the electric motor is operated while keeping the torque generated constant.

第3図はチヨツパ装置9,10の通流率をパラ
メータにした電動機の特性図で、図に示すように
通流率が0.5以下の低速域では、先に述べた如く
分巻界磁巻線14の電流は一定であるため、電機
子巻線5の電流もI1に一定に制御される。速度が
S1に達し通流率が0.5となつた後は、第2図に示
すように分巻界磁巻線14の電流は次第に減少す
るので電機子巻線5の電流はトルクを一定に保つ
ために増加させなければならない。このようにし
て通流率がmaxとなる点では速度がS3であり、
電機子巻線5の電流はI3となる。即ち、第3図で
速度0では電機子巻線5の電流はI1であり、速度
がS1となるC点までは一定となる。更に加速し速
度がS3となるF点では、電機子巻線5の電流はI3
となるように増加することになる。
Figure 3 is a characteristic diagram of the motor with the conductivity of the chopper devices 9 and 10 as a parameter. Since the current in armature winding 14 is constant, the current in armature winding 5 is also controlled to be constant at I1 . The speed is
After S 1 is reached and the conductivity becomes 0.5, the current in the shunt field winding 14 gradually decreases as shown in Figure 2, so the current in the armature winding 5 maintains the torque constant. must be increased to In this way, at the point where the conduction rate is maximum, the speed is S 3 ,
The current in armature winding 5 is I3 . That is, in FIG. 3, when the speed is 0, the current in the armature winding 5 is I1 , and remains constant up to point C where the speed becomes S1 . At point F, where the speed is further accelerated to S 3 , the current in armature winding 5 is I 3
It will increase as follows.

次に速度の増加と共にトルクと電機子巻線5の
電流が変化する様子を示した特性図が第4図であ
る。第4図に示すように、速度が0→S1→S3と変
化するに従い、トルクはT1で一定、また電機子
巻線5の電流は I1(一定) ―――→ →I1→I3へと変化する。
Next, FIG. 4 is a characteristic diagram showing how the torque and the current in the armature winding 5 change as the speed increases. As shown in Figure 4, as the speed changes from 0 → S 1 → S 3 , the torque is constant at T 1 , and the current in the armature winding 5 is I 1 (constant) --- → →I 1 →Changes to I 3 .

このように従来の装置ではチヨツパ装置9,1
0の通流率が0.5を超えると、電機子巻線5の電
流を増加させなければならないため、電機子巻線
5の電流の実効値が増えるという欠点があつた。
In this way, in the conventional device, the chopper device 9, 1
When the conductivity of 0 exceeds 0.5, the current in the armature winding 5 must be increased, which has the disadvantage that the effective value of the current in the armature winding 5 increases.

本考案は上述したような欠点を改善するために
なされたもので、以下本考案を実施例図面にもと
づいて説明する。第5図は本考案の一実施例を示
す直流電動機の制御装置の力行回路図で、図中符
号1〜16は第1図と同一のものを示し、17は
接触器である。
The present invention has been made to improve the above-mentioned drawbacks, and the present invention will be explained below based on the drawings of the embodiments. FIG. 5 is a power running circuit diagram of a control device for a DC motor showing an embodiment of the present invention, in which reference numerals 1 to 16 indicate the same components as in FIG. 1, and 17 is a contactor.

第5図において、接触器15および接触器17
を閉じておけば分巻界磁巻線14には、電車線1
→パンタグラフ2→フイルタリアクトル3→接触
器15→分巻界磁巻線14→接触器17→帰線1
6の電路が構成され、チヨツパ装置9,10の動
作に関係なく第2図に示すIshpと同じ電流が流れ
る。電動機を加速する際、この状態を保ちチヨツ
パ装置9,10により電機子巻線5の電流を制御
する。チヨツパ装置9,10の通流率がmaxに
達した後は接触器17を開き、第1図と同一の回
路とすることにより、高速域での自動的な弱め界
磁制御が可能となる。
In FIG. 5, contactor 15 and contactor 17
If you close the shunt field winding 14, the contact wire 1
→ Pantograph 2 → Filter reactor 3 → Contactor 15 → Shunt field winding 14 → Contactor 17 → Return line 1
6 is constructed, and the same current as I shp shown in FIG. 2 flows regardless of the operation of the chopper devices 9 and 10. When accelerating the motor, this state is maintained and the chopper devices 9 and 10 control the current in the armature winding 5. After the conductivity of the chopper devices 9 and 10 reaches the maximum, the contactor 17 is opened and the circuit is the same as that shown in FIG. 1, thereby enabling automatic field weakening control in the high speed range.

次に、本考案の係る電動機の発生するトルクを
一定に保つて加速する場合について、再び第3図
および第4図を用いて説明する。
Next, the case of accelerating while keeping the torque generated by the electric motor according to the present invention constant will be explained with reference to FIGS. 3 and 4 again.

本考案の装置によれば、先に述べたように低・
中速域ではまず接触器15,17は閉じているの
で、分巻界磁巻線14に流れる電流はIshpで一定
あり、従つて第3図で速度0→S1→S2へと電機子
巻線5の電流はI1のまま0点→C点→D点へと加
速され、D点に達した時、チヨツパ装置9,10
の通流率はmaxとなる。ここで接触器17を開
けば分巻界磁巻線14の電流は減少するため、電
機子巻線5の電流を増加させて一定のトルクを発
生するように制御される。従つて第3図でD点→
E点へ移り、電機子巻線5の電流はI1→I2へと変
化する。そして更にF点へ向けて従来の装置と同
様にトルク一定で加速される。
According to the device of the present invention, as mentioned above, the
In the medium speed range, the contactors 15 and 17 are first closed, so the current flowing through the shunt field winding 14 is constant at I shp , and therefore the electric motor changes from speed 0 → S 1 → S 2 in Figure 3. The current in the child winding 5 is accelerated from the 0 point to the C point to the D point while keeping I1 , and when it reaches the D point, the chopper devices 9 and 10
The conduction rate of is max. If the contactor 17 is opened here, the current in the shunt field winding 14 decreases, so the current in the armature winding 5 is increased and controlled to generate a constant torque. Therefore, point D in Figure 3→
Moving to point E, the current in armature winding 5 changes from I 1 to I 2 . Then, it is further accelerated toward point F with constant torque, similar to the conventional device.

これを第4図で説明すると、速度が0→S2まで
は電機子巻線5の電流はI1であり、速度S2でI1
I2へ移行し、速度S2→S3への間は電機子巻線5の
電流はI2→I3へ次第に増加する。一方、トルクは
速度0→S3の間、常にT1で一定に制御される。
To explain this with Fig. 4, the current in the armature winding 5 is I 1 when the speed is from 0 to S 2 , and when the speed is S 2 , I 1
During the transition from speed S 2 to S 3 , the current in the armature winding 5 gradually increases from I 2 to I 3 . On the other hand, the torque is always controlled to be constant at T1 during the speed 0→ S3 .

ここで従来の装置と比較した時、全く同一のト
ルクを発生させる制御を行つているにもかかわら
ず、本考案装置による場合の方が、第4図に示す
ΔGHJで囲まれる部分(斜線部)だけ、電機子巻
線5の電流を少くすることができる。
Here, when compared with the conventional device, the part surrounded by ΔGHJ (hatched area) shown in Fig. 4 is better in the case of the device of the present invention, even though it performs control to generate exactly the same torque. Therefore, the current in the armature winding 5 can be reduced.

このように本考案によれば、分巻界磁電流を開
閉する接触器の追加のみにより、電機子電流の実
効値を減らすことが可能となる。即ち、電動機の
熱的定格を下げることが実現される。
As described above, according to the present invention, it is possible to reduce the effective value of the armature current only by adding a contactor for opening and closing the shunt field current. That is, it is realized that the thermal rating of the electric motor can be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流電動機の制御装置を示す回
路図、第2図〜第4図は従来装置と本考案装置と
を説明するための特性図、第5図は本考案の一実
施例を示す回路図である。 1……電車線、2……パンタグラフ、3……フ
イルタリアクトル、4……フイルタコンデンサ、
5……電機子巻線、6……直巻界磁巻線、7,8
……主平滑リアクトル、9,10……チヨツパ装
置、11,12……フリーホイーリングダイオー
ド、13……多相ブリツジ整流回路、14……分
巻界磁巻線、15,17……接触器、16……帰
線。
Fig. 1 is a circuit diagram showing a conventional DC motor control device, Figs. 2 to 4 are characteristic diagrams for explaining the conventional device and the device of the present invention, and Fig. 5 shows an embodiment of the present invention. FIG. 1... Tram line, 2... Pantograph, 3... Filter reactor, 4... Filter capacitor,
5... Armature winding, 6... Series field winding, 7, 8
...Main smoothing reactor, 9,10...Chipper device, 11,12...Freewheeling diode, 13...Multiphase bridge rectifier circuit, 14...Shunt field winding, 15,17...Contactor , 16...Return.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電車線にパンタグラフを介してフイルタリアク
トルとフイルタコンデンサとを直列接続して帰線
させ、該フイルタリアクトルとフイルタコンデン
サの接続点に複数個の互いに位相差制御を行うチ
ヨツパ装置の入力端子をそれぞれ接続するととも
に、該チヨツパ装置の出力端子にそれぞれフリー
ホイーリングダイオードのカソードと主平滑リア
クトルの一端を接続し、該フリーホイーリングダ
イオードのアノードを帰線に接続し、前記主平滑
リアクトルの他端間を共通接続し、該共通接続点
より直流複巻電動機の直巻界磁巻線と電機子巻線
を直列接続して帰線させて成る電機子チヨツパ装
置において、前記チヨツパ装置の出力端子を交流
入力端子とする多相ブリツジ整流回路を備え、該
多相ブリツジ整流回路の直流出力を前記直流複巻
電動機の分巻界磁巻線により終端すると共に、前
記多相ブリツジ整流回路の正側出力端子を第1の
接触器を介して前記フイルタコンデンサ正側端子
に接続し、かつ前記多相ブリツジ整流回路の負側
出力端子を第2の接触器を介して接地端子に接続
しておき、低・中速加速時には前記第1および第
2の接触器を閉じたまま運転することにより前記
チヨツパ装置の通流率に拘り無く電源電圧と前記
分巻界磁巻線抵抗で決定される強大な分巻界磁電
流が流れるようにするとともに、前記チヨツパ装
置の通流率が最大値に達したとき前記第2の接触
器を開放することにより弱界磁制御に切り替える
ことを特徴とする直流電動機の制御装置。
A filter reactor and a filter capacitor are connected in series to the overhead contact line via a pantograph to return the line, and the input terminals of a plurality of chopper devices that perform mutual phase difference control are connected to the connection points of the filter reactor and filter capacitor, respectively. At the same time, the cathode of the freewheeling diode and one end of the main smoothing reactor are connected to the output terminals of the chopper device, the anode of the freewheeling diode is connected to the return line, and the other end of the main smoothing reactor is connected in common. In an armature chopper device in which a series field winding and an armature winding of a DC compound motor are connected in series and returned from the common connection point, the output terminal of the chopper device is connected to an AC input terminal. The DC output of the multiphase bridge rectifier circuit is terminated by the shunt field winding of the DC compound motor, and the positive output terminal of the multiphase bridge rectifier circuit is terminated by the shunt field winding of the DC compound motor. The filter capacitor is connected to the positive side terminal of the filter capacitor through the first contactor, and the negative side output terminal of the multiphase bridge rectifier circuit is connected to the ground terminal through the second contactor. By operating the first and second contactors with them closed during acceleration, a strong shunt field determined by the power supply voltage and the shunt field winding resistance is generated regardless of the conduction rate of the chopper device. A control device for a DC motor, characterized in that the control device switches to weak field control by allowing current to flow and opening the second contactor when the conduction rate of the chopper device reaches a maximum value.
JP1980041696U 1980-03-31 1980-03-31 Expired JPH0218717Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980041696U JPH0218717Y2 (en) 1980-03-31 1980-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980041696U JPH0218717Y2 (en) 1980-03-31 1980-03-31

Publications (2)

Publication Number Publication Date
JPS56145398U JPS56145398U (en) 1981-11-02
JPH0218717Y2 true JPH0218717Y2 (en) 1990-05-24

Family

ID=29637090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980041696U Expired JPH0218717Y2 (en) 1980-03-31 1980-03-31

Country Status (1)

Country Link
JP (1) JPH0218717Y2 (en)

Also Published As

Publication number Publication date
JPS56145398U (en) 1981-11-02

Similar Documents

Publication Publication Date Title
US4323835A (en) Simplified power factor controller for induction motor
US4733146A (en) Energy recovery system for cyclic drives
JP4489238B2 (en) Electric motor control device
JPH06217416A (en) Inverter device able to be constituted again for electric motor-car driving system
US4127803A (en) Charging circuit for an auxiliary battery on an electrically-propelled vehicle
US4037145A (en) Multiple frequency chopper control
US3866098A (en) Electrical motor drive system with field control operable in motoring and braking modes
US20050242783A1 (en) Inverter controlled generator set
JPH0218717Y2 (en)
US4380724A (en) Shunt field control apparatus and method
JPH05959B2 (en)
JPH0218716Y2 (en)
JPH0265632A (en) Charging generator
Steigerwald A two-quadrant transistor chopper for an electric vehicle drive
JPS6117231B2 (en)
Bhadra et al. Regenerative braking performance analysis of a thyristor-chopper controlled dc series motor
JP2569016B2 (en) Induction machine control device
JPH06245322A (en) Power generation controller for hybrid car
JPS5936507B2 (en) Chiyotsupa control device
RU2129495C1 (en) Dc drive
JPH0591787A (en) Controller for dc brushless motor
JPS5836239Y2 (en) Regenerative braking control device for induction motor
JPH0229831Y2 (en)
SU1387157A1 (en) D.c. traction drive
JPH0531392B2 (en)